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Geometric phase accompanying SU(2) coherent states for quantum polarized light
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The geometric phase is studied for quantum polarized light described by an SU(2) coherent state. This is
revealed by using quantum interference. The SU(2) coherent state is constructed from the quantized Stokes
parameters. The quantum interferometry is arranged by the evolution operator implemented by the Hamiltonian
inspired from the birefringence of the Faraday and Kerr effect. The geometric phase is given by the coherent state
path integral. In particular, by considering a resonant Hamiltonian, the geometric phase is extracted from the total
factor that consists of both geometric and dynamical phases. This extraction forms the basis of an experimental
way to detect the geometric phase.
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I. INTRODUCTION

Polarization is one of the most important key words in
modern physics. In quantum mechanics, this is represented by
two states. Historically, the most appealing object expressed
in terms of two states is undoubtedly the “spin” of electron;
that is described by the Pauli spin matrix. Shortly after the
advent of spin, Jordan pointed out a possible analogy between
electron spin and light polarization [1]. Jordan’s recognition
may be, in some sense, a real breakthrough in the history of
modern quantum optics, though it was almost forgotten in the
celebrated history of modern quantum physics.

The concept of polarization has been exhaustively studied
within the framework of classical optics or radiation theory
[2,3], in which the two-component nature of waves (not states)
corresponding to left- and right-handed polarization plays a
key role. Indeed, it is crucial that two waves have a spinor form,
as had been early recognized by Jordan [1]. In an anisotropic
optical substance, there occurs mutual change between these
two states, which gives rise to the so-called “optical activity.”
In classical optics, the polarization is described by the Stokes
parameters, which is very analogous to the spin vector that is
obtained by sandwiching the Pauli spin in terms of the spinor
form of light waves (see [4–7]). This may be regarded as a
variant of the well-known procedure of describing the vector
in terms of spinor, the so-called Fierz decomposition [8].

On the other hand, the essence of modern quantum optics
[9], which is based on Dirac’s quantum theory of radiation, is
concisely stated by just one term, quantized field operator,
which represents the creation and annihilation operator of
photons. Within the framework of the quantum theory of
radiation, quantized light polarization can be described by
the field operator that consists of two independent elements
corresponding to the left and right polarization. If we substitute
two field operators into Jordan’s spinor, one can naturally
obtain the quantized Stokes parameter. This has been treated
in previous papers (see, e.g., Refs. [10] and [11]) in a different
context from the present attempt that is given below.

An algebraic structure behind the quantum Stokes parame-
ters is SU(2) algebra; this was suggested early on in connection
with the unpolarized light [12] and further elaborated in
[13]. The SU(2) aspect of quantum polarized light has been
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recently developed in several ramifications, e.g., the quantum
tomography [14,15] and entanglement of photons [16].

The purpose of this article is to explore a characteristic
aspect of the quantum polarized light that is based on a quite
foreign view from the studies investigated so far [14–16].
The object we are concerned with is the geometric phase
[17] accompanying the quantum polarization state, which is
realized as the SU(2) coherent state [18–20]. The geometric
phase provides a simple means to extract the geometric
structure inherent in a wide class of quantum systems [17].
Hence it is highly expected that possible hidden aspects of the
quantum polarized light may be uncovered by investigating
the geometric phase.

The starting point is to construct the SU(2) coherent state
from the quantized Stokes parameters, which is naturally
connected with the classical Stokes parameters and is obtained
as an expectation value with respect to the coherent state.
The central point is to arrange the quantum interferometry
implemented by an evolution of the quantum polarized light
transmitted in anisotropic media, for which the evolution is
described by the Hamiltonian inspired from the birefringence
caused by the Faraday and Kerr effects. The interference in this
process is expressed by a transition amplitude along a cyclic
path in the polarization space, which is naturally evaluated by
a coherent state path integral [21,22]. The path integral results
in the phase factor that consists of the geometric as well as
dynamical phases [17]. Here it is crucial to discriminate the
geometric phase from the dynamical one. This can be achieved
by considering a special case of the resonant Hamiltonian. The
way to extract the geometric phase may be used to design an
experiment to detect the geometric phase.

The content of the paper is organized as follows. In the
next section we present a preliminary account of the the
quantized Stokes parameters together with the construction
of the polarization coherent state. In Sec. III, the geometric
phase is formulated in a general form. In Sec. IV, we give
the details of the extraction of the geometric phase. The last
section is a summary.

II. SU(2) COHERENT STATE FOR QUANTUM
POLARIZED LIGHT

In this section a brief account is given of the SU(2) coherent
state by constructing the quantized Stokes parameters in terms
of the Schwinger boson.
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A. Quantized Stokes parameters

We start with the quantized electric and magnetic. Specif-
ically, we are concerned with the case of a single mode. For
the present purpose it is sufficient to consider this case and an
extension to many modes is straightforward. Taking account
of the polarization degree, the electric and magnetic field read
in a complex form [23],

E = i

√
h̄ω

2V
{(e+a† + e−b†)f (x,t) + H.c.},

(1)

B = i

√
h̄ω

2V
k̂ × {(e+a† + e−b†)f (x,t) + H.c.}.

Here we have mind of the quantized wave contained in the box
of volume V , which consists of the plane wave propagating in
the z direction (k̂ denotes the unit vector along z direction);
f (x,t) = exp{i[k(z − ct)]}, with the polarization in the plane
perpendicular to the z axis, namely, the (x,y) plane. The pair
(a,b) stands for the photon operator corresponding to the left
and right polarization that are denoted by e± [24]. Here the
circular polarization basis is written in terms of the linear basis
(ex,ey) as follows:

e± = 1√
2

(ex ± iey), (2)

which represents the basis vector in the plane that is perpen-
dicular to the propagation direction of photon.

Here we note a connection between the circular basis thus
defined and the linear polarization basis treated by previous
literature (see, e.g., [10,11]). Namely, let (ax,ay) be the photon
operator in terms of linear polarization basis, then this is related
to the operator expressed in terms of the circular basis:

(a,b) = (ax,ay)T †, (3)

where T stands for the unitary matrix:

T = 1√
2

(
1 i

1 −i

)
. (4)

In classical optics the polarization state is described by the
Stokes parameters, the quantum counterpart of which plays a
role of the pseudospin S that is constructed from a two-photon
state. The classical Stokes parameters are defined in terms of
the light wave of two components, (ψl,ψr ) = ψ [7],

Scl = ψ†σψ,

with σ being the Pauli matrix. By replacing ψ by the pair
of photon operators, ψ = (a,b), one can define the quantized
version of the Stokes parameter, which becomes

Sz = 1
2 (a†a − b†b), S+ = a†b, S− = b†a, (5)

with S± = Sx ± iSy . The commutation relation holds for
S ≡ (Sx,Sy,Sz), that is, S × S = iS. The physical meaning
of pseudospin S±, which is simply the quantum counterpart of
the Stokes parameters in classical optics, is that it plays a role
of mutual change of photon state from the left polarization to
the right polarization and vice versa.

Here a remark is in order concerning a peculiar feature of
the circular basis to describe the quantized Stokes parameters.
This comes from the fact that the circular basis is closely

connected with the optical activity leading to the concept of
chirality. In this sense, the circular basis is suitable only for the
present purpose, because it utilizes the characteristics of the
Faraday effect that is essentially an induced optical anisotropy
of chiral nature.

B. Polarization coherent state

a. General remarks. In order to construct the quantum
state for an assembly of polarized photons, we start with
a preparatory account for the fact about the classical and
quantum correspondence.

The first point to be noted is that the polarization state can
be written as a superposition,

|ψ〉p =
∑

Nl+Nr=N

CNl,Nr
|Nl,Nr〉, (6)

with appropriate coefficients and the fixed number of
photons N . Here |Nl,Nr〉 means the substrate, with (Nl,Nr )
being the number of photons of the left- and right-handed
polarization. The point here is how to prepare the fixed photon
number. According to the quantized field theory, it has been a
consensus that it is not feasible to create the state with fixed
photon number; however, this is not the case. Recent progress
in cavity quantum electrodynamics has enabled us to realize the
fixed photon number [25]. Thus we have a basis to consider the
state of a fixed number of photons in principle. In particular,
once having the state with a fixed number of photons, the
completely polarized state is obtained by filtering the state (6)
through appropriate ellipsometry.

The second point to be noted is that the quantum polarized
state of the form (6) should be in conformity with the classical
Stokes parameters. That is, the quantized Stokes parameters
lead to the classical Stokes parameters by choosing the
coefficients CNl,Nr

appropriately. Ideally such a state could
be realized by an analogous state with the spin coherent state,
if we note the parallelism between the spin operator and the
quantized Stokes parameters. For the spin coherent state, the
expectation value of the quantum spin leads to the classical
spin, though this cannot result in the eigenstate of the spin
operators. In this way, a similar procedure can be applied to
obtain the quantum polarized state as the SU(2) coherent state.

b. SU(2) coherent state. Now by taking account of the
general procedure given in the above, we shall construct the
polarization state in terms of the SU(2) coherent state. Let us
express the state |Nl,Nr〉 by using two kinds of photons [26]:

|Nl,Nr〉 = 1√
Nl!Nl!

(a†)Nl (b†)Nr |0,0〉, (7)

which is nothing but the Fock state with |0,0〉 ≡ |0〉l|0〉r . |0〉l,r
means the vacuum for the left (right) polarized photon. By
arranging the quantum number such that Nl = S + M,Nr =
S − M (note that N = 2S), the Fock state is rewritten as

|S,M〉 = 1√
(S + M)!(S − M)!

(a†)S+M (b†)S−M |0〉, (8)

with |0〉 ≡ |0,0〉. In particular, we have for M = −S,

|S,−S〉 = 1√
(2S)!

(b†)2S |0〉, (9)
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which stands for the completely right-handed circular po-
larization state, with the photon number Nr = N , satisfying
Ŝz|S,−S〉 = −S|S,−S〉. By using this basis state, the general
polarization state is written as

|S,M〉 = 1√
(S + M)!(S − M)!

(a†b)S+M |S,−S〉. (10)

Now according to the SU(2) group structure inherent in
the quantum polarization state, the polarization change takes
place transitively from one polarized state to the others,
which can be realized by applying the rotational operator
[unitary group SU(2)] to a specific starting state. Noting this
fact, by choosing the state |S,−S〉 (completely right-handed
circular polarization state) as the fiducial state [18–20], we
obtain the spin [SU(2)] coherent state (alias Bloch state).
The procedure is carried out in the following manner: Let
R(θ,φ) be the rotational operator that gives the rotation of
an angle θ about the fixed axis n = (sin φ,− cos φ), namely,
R = exp[−iθSn] = exp[−iθ (Sx sin φ − Sy cos φ)], which is
expressed in the complex form

R(θ,φ) = exp[ξS+ − ξ ∗S−], (11)

with ξ = 1
2θ exp[−iφ]. By applying this to the starting,

completely right-handed polarized state |S,−S〉, we obtain

|θ,φ〉 = R(θ,φ)|S,−S〉. (12)

Here a remark is given regarding the convention for the angle
variables θ,φ, which is measured from the south pole following
Ref. [19]. In what follows, we adopt the alternative, θ →
π − θ , which means the angle measured from the north pole,
in order to be fitted to the coordinate the Poincarè sphere (see
below).

Now according to the entanglement formula [18–20], we
have the form

|z〉 = (1 + |z|2)−SezS+ |0〉, (13)

and z is the (complex valued) stereographic coordinate,

z = tan

(
π − θ

2

)
e−iφ = cot

θ

2
e−iφ. (14)

Here if introducing a non-normalized coherent state denoted
as ˜|z〉 with the norm

(1 + z∗z)2S ≡ F (z,z∗), (15)

then the normalized coherent state |z〉 ≡ 1√
F (z,z∗)

˜|z〉. The
coherent state constructed in the above is regarded as an ideal
state to describe the polarization state.

The relation of paramount importance is the relation of
partition of unity (or completeness relation), namely,∫

|z〉dμ(z)〈z| = 1, (16)

with the invariant measure on the sphere,

dμ(z) = 2S + 1

4π

dz∗ ∧ dz

(1 + z∗z)2
.

The relation of partition of unity (16) plays a key role in
constructing the path integral that will be used later.

In order to verify the correspondence between the quantum
and classical Stokes parameters, we calculate the expectation
value of the quantized Stokes operators [27],

〈z|Sx |z〉 = 2Sz∗

1 + z∗z
= S sin θ cos φ,

〈z|Sy |z〉 = 2Sz

1 + z∗z
= S sin θ sin φ, (17)

〈z|Sz|z〉 = −S
1 − z∗z
1 + z∗z

= S cos θ.

Thus the classical Stokes parameters can be recovered. From a
pictorial point of view, these represent the point on the Poincarè
sphere, the point of which is parametrized by the polar angle
(θ,φ).

III. GEOMETRIC PHASE ACCOMPANYING THE
POLARIZATION COHERENT STATE

In this section, as a forerunner to the next section, we present
a general setting of the geometric phase by using the quantum
interference arranged by the coherent state path integral.

A. Interferometry arranged by birefringent Hamiltonian

We first consider a way to detect the phase using the “light
beam” carrying the polarization coherent state. We have in
mind the interferometer that consists of the photon source and
the transmitter of the photon. The transmitter plays the role of
changing the incident photon state to a variety of states through
the unitary transformation that is controlled by the mechanism
built in the interferometer.

Let us suppose an apparatus consisting of two “paths,”
which is a schematic experimental setup similar to the
Aharonov-Bohm (AB) type device [28,29] (see Fig. 1). That
is, an incident beam is injected and it is split into two beams
traveling along two paths: the one is AMB and the other is
ATB. Point B is a region of interference. Here the carrier wave
(plane-wave component) is discarded and only the polarization
state is considered, which is sufficient for the present purpose.
At the initial junction point (point A in Fig. 1), the polarization
state is set to be |z〉. Just after A, this is split into two states,

1
2
|z

1
2

|z + U(T )|z|z

A B

M

T

1
2
U(t)|z

1
2
|z

FIG. 1. Schematic setup of AB-type interferometry. At point A
|z〉 is split into two states 1/2|z〉 and 1/2|z〉. Going through the
transmitter and arriving at B after the time T , the two states are
recombined to give |ψ〉 = 1/2(|z〉 + U (T )|z〉), which results in the
interference.
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1
2 |z〉 and 1

2 |z〉. For the state of the one beam in which there
is no transmitter, the state 1

2 |z〉 arrives at junction B, keeping
the state in the same state as 1

2 |z〉. On the other hand, the
state in the other beam, which goes through the transmitter
devised as “time dependent,” a pseudomagnetic field is built,
and it is converted to 1

2U (t)|z〉 after the time interval t . Here
U (t) means the unitary operator which governs the evolutional
behavior of the polarization state. Thus, after time T , the two
beams are combined at the final point (point B in Fig. 1). Here
we have the interference given by the superposition following
the procedure of the AB type [29]:

|ψ〉 = 1
2 [|z〉 + U (T )|z〉]. (18)

Then the interference effect can be observed by the overlap
〈ψ |ψ〉, which turns out to be

〈ψ |ψ〉 = 1
4 (2 + 〈z|U (T )|z〉 + 〈z|U †(T )|z〉). (19)

Putting 〈z|U †(T )|z〉) = exp[i	(C)], we have the relation

〈ψ |ψ〉 = 1

2
[1 + cos 	(C)] = cos2 	(C)

2
, (20)

which results in the interference pattern. The details of the
meaning of Eqs. (19) and (20) are given here. First, the
interference at junction B in Fig. 1 may be regarded as selecting
the state |z〉 from the transmitted state U (T )|z〉, that is, the
reduction of U (T )|z〉 to the state |z〉. Second, the phase 	(C)
incorporates the history of the polarization during passage
through the transmitter, which is given by a closed path C

starting from z and ending at z in the parameter space for
designating the coherent state (this may have a similarity
with constructing a “polygon” on the Poincarè sphere, see
Ref. [29]). In the next subsection we give a general expression
of 	(C) in terms of path integral. In Sec. IV the concrete
analysis will be discussed by adopting the special form of the
Hamiltonian.

Hamiltonian connected with linear birefringence. The uni-
tary transformation is governed by the Hamiltonian generator,
which is constructed by using characteristics of the optical
device controlled by an externally driven electric field (as
for similar sorts of optical devices, see, e.g., [30,31]). The
medium we are here concerned with is the dielectrics, which
reflects an anisotropic structure giving rise to birefringence.
The classical counterpart of the birefringent effect has been
given in Ref. [32].

The Hamiltonian is given by the standard form of H =∫
(E†ε̂E + μB†B)dx(ε̂ and μ0 mean the dielectric tensor and

magnetic susceptibility, respectively, and μ is assumed to be
scalar and equal to the value in the vacuum state). Then the
Hamiltonian is written in terms of the field operators: H =
H0 + Ĥ . The first term is the Hamiltonian for the photon in
the vacuum state, that is, H0 = h̄ω(a†a + b†b), so this is not
a concern here. The remaining term represents the effect of
the linear birefringence, which consists of the two main terms
of the Faraday and the Kerr effects. The details will be given
in Appendix A, and the final result is written in the form of a
pseudomagnetic field in the form

G =
(

κ α + iβ

α − iβ −κ

)
, (21)

where the diagonal term represents the Faraday effect and the
off-diagonal term comes from the external Kerr effect. The
corresponding Hamiltonian becomes

Ĥ = h̄ω

2
(a†,b†)G

(
a

b

)

= γ (a†a − b†b) + Ka†b + K∗b†a, (22)

with γ = h̄ωκ
2 and K = h̄ω

2 (α + iβ). (The explicit form of
the parameters is given in Appendix A). We note that these
parameters have time dependence in general, and the special
feature of the time dependence will play a crucial role in
investigating the geometric phase, as will be shown in the next
section.

B. Geometric phase devised by the path integral

The overlap function 〈z|U (T )|z〉 ≡ K(zT ; z0) in Eq. (19)
represents the quantum cyclic change along a closed path from
z to z, as was discussed in the previous subsection. Having this
in mind, let us write the propagator:

K(zT ; z0) = 〈z|P
{

exp

[
− i

h̄

∫ T

0
Ĥ (t) dt

]}
|z〉, (23)

where P means the time-ordered product. (The time-ordered
product is denoted by using the symbol P , instead of T , in order
to be discriminated from the time interval T .) Equation (23)
represents the probability amplitude of coincidence, the
amplitude for a cyclic change that the system starts with the
state |z0〉 and returns to the same state after a time interval T .
This implies that the polarization state proceeds along closed
paths in the Hilbert space spanned by the set of coherent state.
The polarization state changes successively from state to state,
and by inserting the relation of partition of unity (16) at each
infinitesimal time interval the transition amplitude is written
as a product integral [27]:

K =
∫ ∞∏

k=1

〈zk+1|zk〉 exp

[
− i

h̄

∫
C

〈z|Ĥ |z〉dt

]
Dμ(z), (24)

with Dμ(z) ≡ ∏T
t=0 dμ[z(t)]. The overlap of polarization

coherent states between an infinitesimal time interval is given
by

〈zk+1|zk〉 = (1 + z∗
k+1zk)2S

{(1 + z∗
k+1zk+1)(1 + z∗

kzk)}S , (25)

and the infinite product in (24) represents the finite connection
along the closed loop in the complex parameter space, in which
each infinitesimal factor represents the connection between
two infinitesimally separated points. If use is made of the
approximation 〈zk−1|zk〉 
 exp[i〈z| ∂

∂t
|z〉dt], (24) is written as

the functional integral over all closed paths,

K =
∫

exp

[
i

h̄
	(C)

]
Dμ(z), (26)

where 	 is the action functional:

	(C) =
∫ T

0
〈z|ih̄ ∂

∂t
− Ĥ (t)|z〉dt

≡ �(C) − �(C). (27)
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The first term � in (27) represents the geometric phase,
whereas the second term is the Hamiltonian (dynamical) term,
〈z|Ĥ |z〉 ≡ H (z,z∗,t). If one uses the norm F (z,z∗) = 〈z̃|z̃〉,
(note that |z̃〉 is the un-normalized coherent state), � is cast
into the form

�(C) =
∮ (

∂ ln F

∂z
dz − ∂ ln F

∂z∗ dz∗
)

. (28)

In order to calculate the explicit form of �, it is crucial to single
out a specific cyclic path C[z(t)] from the path integral. This
may be realized by considering the semiclassical limit of (27),
the stationary phase condition δ	 = 0 yielding the equations
of motion for z [33]. The semiclassical limit corresponds to the
adiabatic approximation for the adiabatic (Berry’s) phase [21].
In other words, the Planck constant plays a role of substitute of
the parameter that measures the adiabaticity. The propagator
is thus reduced to a simple form,

Ksc = exp

[
i�(C)

h̄

]
exp

[
− i�

h̄

]
. (29)

Namely, if there exist closed paths, the propagator can be
expressed as the overlap between two polarization states:
Ksc = 〈z(T )|z(0)〉, the end point of which coincides with z0

at the time T . In this way the final state may accumulate the
history which the system evolves.

As the above formula suggests, the total phase (action
integral) consists of two terms: 	 = � − �. In particular, our
concern is how to to detect the geometric phase �; in other
words, the geometric phase should be discriminated from the
total phase. This may be realized by using a characteristic
property of a cyclic motion. However, it is not easy to find
out the cyclic path that is suitable for evaluating the phase
�(C). So we have to restrict the argument to a special case that
enables us to extract the cyclic path in a simple way, which
will be given in the next section.

IV. EXTRACTION OF THE GEOMETRIC PHASE

We now come to the central part of the present paper,
namely, we consider how to manage the geometric phase using
the specific feature of the interferometry.

A. The geometric phase associated with the
resonant Hamiltonian

We are particularly concerned with the Hamiltonian in such
a form that it enables us to extract the information of geometric
phase in a concise way. This feature can be achieved by
considering the Kerr effect that is arranged by the external
electric field exhibiting sinusoidal oscillation:

Ex(e) = E0 cos ωct, Ey(e) = E0 sin ωct. (30)

Hence, noting that α = k
2E2

0 cos 2ωct,β = k
2E2

0 sin 2ωct we
have the Hamiltonian in a form which is called the “resonant
Hamiltonian,”

Ĥ = γ Sz+ η(S+ exp[2iωct] + S− exp[−2iωct]) ≡ G(t) · S,

(31)
with the “sinusoidal oscillating field”

G(t) = (η cos 2ωct,η sin 2ωct,γ ). (32)

Here we use the notation

η = h̄ω

2
d, (33)

with d ≡ k
2E2

0 . It is notable that the Kerr effect is usually much
smaller than the Faraday effect, namely, η << γ holds.

Special orbit leading to the geometric phase. We now
examine the geometric phase that is derived from the resonant
Hamiltonian for the pseudospin. Using the formula (17), the
expectation value of the Hamiltonian H (t) = H (z,z∗,t) is
given by

H (θ,φ) = S[η sin θ cos(φ − f t) − γ cos θ ], (34)

where we put f = 2ωc. The equation of motion is thus written
in terms of the angular variable [33]:

φ̇ = 1

Sh̄ sin θ

∂H

∂θ
= 1

h̄
[η cot θ cos(φ − f t) + γ ],

(35)

θ̇ = − 1

Sh̄ sin θ

∂H

∂φ
= −η

h̄
sin(φ − f t),

where use is made of the kernel function F (z,z∗) [Eq. (15)],
together with the stereographic projection z = cot θ

2 exp[−iφ].
We see that this form of equations of motion allows a special
solution

φ = f t, θ = θ0(=const), (36)

which just corresponds to the solution in the “rotating frame” in
analogy with the NMR (see Appendix B), where the following
relation should hold among the parameters θ0,γ,η:

cot θ0 = h̄f − γ

η
≡ 2f − κω

dω
. (37)

The set of parameters (γ,η,f ) satisfying (37) for a fixed
value θ = θ0 belongs to a family of solutions. Indeed, this
set of parameters forms a surface in the parameter space
(γ,η,f ), which we call the “invariant surface” hereafter and
characterizes the resonance condition. Equation (36) gives a
definite cyclic trajectory (θ,φ) with the period 2π/f on the
parameter space (Poincaré sphere).

Following the general formula given in the previous section,
(20) and (27), � and � are evaluated as follows, namely, for a
closed loop with the period, T = 2π

f
:

�(C) =
∮

Sh̄(1 − cos θ )dφ = 2Sπh̄(1 − cos θ0), (38)

which is nothing but the solid angle subtended by curve C at
the origin of S2 as the space (Fig. 2). On the other hand, the
dynamical (Hamiltonian) phase � is given by

�(C) = 2S

f
π (η sin θ0 − γ cos θ0). (39)

The crucial point is that the phase � depends only on θ0.
Therefore any point lying on the “invariant surface” gives
the same �. This fact plays a crucial role for extracting the
geometric part � from the total phase, as will be explained
below. On the other hand, the dynamical phase is not
determined solely by θ0.
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θ0

A B

N

O

FIG. 2. The orbit on the Poincarè sphere, a circle traced by an
arrow with the latitude θ0. The endpoints, A and B, of two arrows
represent the coordinates z and z′. When it holds that z = z′, the orbit
is a closed orbit, resulting in the geometric phase that gives rise to
interference.

B. Arrangement to detect the geometric phase

We now examine the way to extract the geometric phase
in a pure manner, namely, we arrange the way such that
the dynamical phase � vanishes (� = 0). Then we have the
relation cot θ0 = η

γ
, which turns out to be the relation between

f and ω: cot θ0 = d
κ

. By combining this with the relation of
“invariant surface” (37), we get

h̄f = η2 + γ 2

γ
. (40)

This relation is a constraint to be imposed for the parame-
ters which are controlled from the external conditions. The
geometric phase � thus becomes

�(C) = 2Sπ

(
1 − η√

η2 + γ 2

)
. (41)

The phase factor obtained by exponentiation turns out to be
exp[i�(C)] = ± exp[�̃(C)], with

�̃ ≡ − 2Sπη√
η2 + γ 2

. (42)

Then, going back to the starting formula (20), the interfer-
ence pattern turns out to be

〈ψ |ψ〉 = 1

2

[
1 ± cos �̃(C)

] =
{

cos2 �̃(C)
2

sin2 �̃(C)
2 ,

(43)

according to the ± sign. The sign depends on whether 2S is
even or odd, respectively. This feature may be called the “even-
odd” effect, which could be discriminated experimentally in
principle.

The form of this reduced phase (42) is significant, because
it indicates that the photon number N = 2S appears as a
multiplicative factor which plays the role of an enhancement
factor for the tiny value of the parameter η. Thus if we arrange
the number of photons such that it is extremely large, we expect
that the magnitude of � is enhanced.

Now, following the schematic AB-type device discussed in
Sec. III A, we can propose a way to reveal the interference
that is performed at junction B (Fig. 1). The point to be noted
here is that the device is arranged such that the interference
occurs only for the case that the pseudospin figures a closed

circle on the Poincarè sphere starting from point z and ending
at the same point z, leading to the phase �(C) (see Fig. 2). If
there does not form a closed loop, we do not have interference.
Furthermore, the basic period of the closed path is T (= 2π

f
),

which is the period of pseudomagnetic field. Actually, besides
the basic period, we have a multiple period nT (n = 1, . . .),
resulting in the geometric phase n�̃(C), which leads to a
sequence of the interference pattern 1

2 [1 ± cos n�̃(C)](n =
1,2, . . .).

The interference pattern (43) may be rewritten in a refined
form by noting the constraint (40) that holds among (η,γ,f ).
Let us consider a specific case that the frequency f is fixed.
Then we have only one free parameter instead of (η,γ ), and if
we choose the angular parametrization such that

η = h̄f

2
sin x, γ = h̄f

2
(1 + cos x),

then we have an alternative form of the interference pattern,

〈ψ |ψ〉 = 1

2

{
1 ± cos

(
2Sπ cos

x

2

)}
. (44)

With this equation, the interference pattern is calibrated by
the parameter x. In this way, the problem is reduced to the
modulation of the parameters that are built in the Faraday and
(external) Kerr effects. The former is induced by a uniform
magnetic field, whereas the latter comes from an externally
driven sinusoidal electric field. This feature may form the basis
of designing an experimental means to detect the geometric
phase.

Remarks (i). Here we examine the case that the reso-
nance condition is satisfied, namely, γ = h̄f , which leads to
cos θ0 = 0; hence it follows that exp[ i

h̄
�] = exp[2Sπi] = ±1.

From this we see that the interference pattern is given as

1

2
(1 ± cos �) =

{
cos2 �(C)

2

sin2 �(C)
2 ,

with � = 2Sπη

f
. In this way, the resonance condition does not

bring about any explicit effect of the geometric phase on the
interference pattern.

Remarks (ii). The whole scheme of extracting the geometric
phase developed in the above is based on the SU(2) coherent
state starting from the state with fixed photon number.

Actually, we have to check the effect of fluctuation
(uncertainty) on the geometric phase that is inherent in the
deviation from the fixed number constraint. Let |ψ ′〉 be the
small deviation of order ρ from the (un-normalized) coherent
state with the fixed number of photon; ˜|z〉; ˜|ψ〉 = ˜|z〉 + |ψ ′〉.
|ψ ′〉 may cause the renormalized values of the parameters
appearing in the geometric phase. In particular, we try to find a
renormalization for the spin magnitude S. A first aid procedure
of the renormalization may be given by the following ansatz
for the norm:

〈ψ̃ |ψ̃〉 = (1 + zz∗)2S ′
, (45)

where S ′ = S + ε, with ε being small of the same order
as ρ. In what follows, it is sufficient to restrict our ar-
gument to the state accompanying the classical orbit (36)
for which z = z0 ≡ tan(θ0/2) exp[−iφ]. Thus ε is estimated

033801-6



GEOMETRIC PHASE ACCOMPANYING SU(2) COHERENT . . . PHYSICAL REVIEW A 88, 033801 (2013)

to be [34]

ε = 〈z0|ψ ′〉 + c.c.

|z0|2(1 + |z0|2)2S
.

The factor f (z0) = 〈z0|ψ ′〉 can be expanded in power series
of z0:

f (z0) = ρ(C0 + C1z0 + · · · + C2z
2
0 + · · ·).

Hence ρ has the dependence on φ. This dependence is
eliminated by integrating with respect to φ to average out,
so we get

ε̄ = 1

2π

∫ 2π

0

〈z0|ψ ′〉 + c.c.

|z0|2(1 + |z0|2)2S
dφ = ρC0

|z0|2(1 + |z0|2)2S
.

Thus we have obtained a crude estimation for the shift of S,
which leads to the fluctuation in the geometric phase.

V. SUMMARY

The geometric phase has been investigated for quantum
polarized light described by the SU(2) coherent state. This
study may enable us to explore the geometric structure inherent
in the quantum polarized light [35].

The main consequence is that the geometric phase can be
discriminated from the dynamical phase by using the specific
feature of the resonant Hamiltonian. The most appealing point
of the present theory is that the geometric phase is controlled
by the external conditions [36]. This is due to the structure
of the resonant Hamiltonian, as has been suggested in the
previous section. We have also examined the fluctuation effect
caused by the uncertainty of photon numbers, which is indeed
required actually, because one has to check the accuracy in
case of experimental tests of geometric phase.

The geometric phase is regarded as a manifestation of the
“holonomy” in quantum mechanics [37]. This implies that the
geometric phase is relevant only for the case of a nonstationary
problem, namely, the time-dependent Hamiltonian, a sharp
contrast to the time-independent Hamiltonian. For the latter
case, we note a conventional aspect of the eigenvalue problem
for a pseudospin system [38]. For example, the eigenvalue
problem, which is relevant to the present subject, might relate
to a problem of quasistationary state in birefringent materials,
specifically a case that reveals the nonlinear birefringence. The
details of this will be investigated elsewhere.
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APPENDIX A: THE FORM OF THE LINEAR
BIREFRINGENCE

In what follows we give a sketch for the birefringence
that leads to the medium in the presence of the external
electromagnetic field, which is used in the Sec. III A.

a. Birefringence caused by the Faraday effect. It is known
that an external magnetic field gives rise to optical activity
in materials. We start with the relation between the quantum
electric and dielectric field in the linear polarization basis [2]:

D = ε̂0E + iE × κ = ε̂E. (A1)

Here the dielectric tensor is expressed as

ε̂ =
(

ε0 iκ

−iκ ε0

)
= ε01 + iσy. (A2)

This form is based on the symmetry law of kinetic coefficients
[2]; that is, the dielectric tensor under a magnetic field should
be Hemitian. The first term in (A1) is a contribution from the
vacuum that is absorbed in the H0, and so is omitted here. The
second term is dominant, where the vector κ = (κ1,κ2,κ3) is
known as the gyration vector, which indicates an axial-vector
nature of the Faraday effect. κ is expressed as κ = vH for a
transparent medium in an external magnetic field H. Here v

is known as the Verde constant. The second term of (A2) is
written in terms of the circular polarization basis e±:

ε̂ = κσz =
(

κ 0
0 −κ

)
. (A3)

The corresponding pseudomagnetic field, i.e., G, is written as
Gax = (0,0,κ).

b. Birefringence caused by the external Kerr effect. This
case is considered to be of nonaxial nature. The dielectric
tensor is expressed in terms of the external electric field εij =
kE(e)iE(e)j (see, e.g., Ref. [2]), where i and j take the x and
y, and k is proportional to the Kerr constant. Hence this can be
written in the linear polarization basis as ε̂ = (scalarmatrix) +
ε̄, with ⎧⎪⎨

⎪⎩
ε̄11 = 1

2k
(
E(e)2

x − E(e)2
y

) = α,

ε̄22 = − 1
2k

(
E(e)2

x − E(e)2
y

) = −α,

ε̄12 = kE(e)xE(e)y = β.

(A4)

The components E(e)x , E(e)y represent the two compo-
nents perpendicular to the propagation direction. [E(e) stands
for the externally applied field.] Note that the scalar (isotropic)
term is also discarded as in the case of the Faraday effect,
because this term does not contribute to the birefringence. If
writing the above tensor in terms of the circular basis, we have
the pseudomagnetic field which is written as Gna = (α,β,0).

APPENDIX B: ANALOGY WITH NMR

We here derive the the rotating solutions in analogy with the
procedure adopted in NMR [39]. Let us consider the unitary
transformation to the frame rotating around the z axis with the
constant angular velocity f , namely, R(t) = exp[− i

h̄
f tSz].

With this transformation we have the relation S = R†S′R,
where S and S′ are the polarization spin operators for the
rest and rotating frame. Substituting the Heisenberg equation
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of motion in the rest frame, it follows that

ih̄
dS
dt

= ih̄R†f (SzS′ − S′Sz)R + R†ih̄
dS′

dt
R, (B1)

and noting that [S,Ĥ ] = R†[S′,Ĥ ]R, we obtain the equation
of motion in the rotating frame,

ih̄
dS′

dt
= [S′,H̃ ], (B2)

with H̃ = H ′ − f Sz = ηSx + (γ − h̄f )Sz, where use is made
of the relation R†ĤR = H ′ = ηSx + γ Sz. The above equation
of motion turns out to be

dS′

dt
= S′ × B′ (B3)

with B′ = (η,0,h̄f − γ ). This is written in the components,

dSx

dt
= γ̃ Sy,

dSy

dt
= ηγ Sz − γ̃ Sx

and dSz

dt
= −ηSy , with γ̃ = γ − h̄f . This can be treated in

the semiclassical manner. We immediately have the constant
of motion S ′′

z = ηSx + γ̃ Sz = C. Using this, the equation
of motion for Sy is obtained, d2Sy/dt2 = −(γ̃ 2 + η2)Sy ,
leading to Sy = S sin(�t) with � =

√
γ̃ 2 + η2 and hence Sz =

− ηS

�
cos(�t),Sx = γ̃ S

�
cos(�t), which represents the preces-

sion around the S ′′
z axis introduced in the above. As a special

case, we consider the stationary solution, dS′
dt

= 0, which leads
to S′ = S(0) = (S sin θ0,0,−S cos θ0). Noting that S′//B′, we
have cot θ0 = ( h̄f −γ

η
), which is nothing but the relation (37).

[1] P. Jordan, Eur. Phys. J. A 44, 292 (1927); see also,
J. Oppenheimer, Phys. Rev. 38, 725 (1931).

[2] L. D. Landau and I. Lifschitz, Electrodynamics in Continuous
Media, Course of Theoretical Physics, 2nd ed. (Butterworth-
Heinemann, Oxford, 1983), Vol. 8.

[3] M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford,
1975).

[4] K. L. Sala, Phys. Rev. A 29, 1944 (1984).
[5] M. V. Tratnik and J. E. Sipe, Phys. Rev. A 35, 2965 (1987).
[6] C. Brosseau, Statistical Theory of Light Polarization (Academic

Press, New York, 1998).
[7] H. Kuratsuji and S. Kakigi, Phys. Rev. Lett. 80, 1888 (1998).
[8] L. D. Landau and I. M. Lifschitz, Quantum Mechanics: Non-

Relativistic Theory,3rd ed. (Pergamon, Oxford, 1977), Vol. 3.
[9] See, e.g., R. Glauber, Phys. Rev. 130, 2529 (1963).

[10] V. P. Karasev, J. Sov. Laser Res. 12, 431 (1991).
[11] V. P. Karassiov and A. V. Masalov, Laser Physics 12, 948 (2002).
[12] H. Prakash and N. Chandra, Phys. Rev. A 4, 796 (1971).
[13] G. S. Agarwal, Lett. Nuovo Cimento 1, 53 (1971); G. S. Agarwal,

J. Lehler, and H. Paul, Opt. Commun. 129, 369 (1996); J. Lehler,
H. Paul, and G. S. Agarwal, ibid. 139, 262 (1997).

[14] A. Sehat, J. Soderholm, G. Bjork, P. Espinoza, A. B. Klimov,
and L. L. Sanchez-Soto, Phys. Rev. A 71, 033818 (2005).

[15] A. B. Klimov et al., Phys. Rev. Lett. 105, 153602 (2010).
[16] T. Tsegaye, J. Soderholm, M. Atature, A. Trifonov, G. Bjork,

A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev.
Lett. 85, 5013 (2000).

[17] Geometric Phases in Physics, edited by A. Shapere and
F. Wilzcek (World Scientific, Singapore, 1989).

[18] J. M. Radcliffe, J. Phys. A 4, 313 (1971).
[19] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.

Rev. A 6, 2211 (1972).
[20] A. M. Perelomov, Generalized Coherent States (Springer Verlag,

Berlin, 1986).
[21] H. Kuratsuji, Phys. Rev. Lett. 61, 1687 (1988) , and references

cited therein.
[22] A primitive idea was suggested in our previous paper with-

out reference to actual physical situations; H. Kuratsuji and
M. Matsumoto, Phys. Lett. A 155, 99 (1991).

[23] K. Gottfried, Quantum Mechanics, Fundamentals (Benjamin,
New York, 1966), Vol. 1.

[24] J. J. Sakurai, Advanced Quantum Mechanics (Wiley, New York,
1967).

[25] See, e.g., S. Brattke, B. T. H. Varcoe, and H. Walther, Phys.
Rev. Lett. 86, 3534 (2001), and references cited therein.
Actually, the Fock state realized in this paper is restricted
to the single photon. However, the Fock state consisting of
arbitrary number of photons may be achieved in principle. Our
argument is based on such a Fock state of multiple number of
photons.

[26] J. J. Sakurai, Modern Quantum Mechanics (Addison Wesley,
New York, 1994).

[27] H. Kuratsuji and T. Suzuki, J. Math. Phys. 21, 472 (1980).
[28] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[29] M. V. Berry, J. Mod. Opt. 34, 1401 (1987).
[30] P. D. Drummond and D. F. Walls, J. Phys. A 13, 725 (1980).
[31] R. Loudon, Quantum Theory of Light (Pergamon, Oxford,

1973).
[32] H. Kuratsuji, R. Botet, and R. Seto, Prog. Theor. Phys. 117, 195

(2007).
[33] The equation of motion is explicitly written as ih̄gzz̄

dz

dt
=

∂H

∂z∗ ,ih̄gzz̄
dz∗
dt

= ∂H

∂z
, where gzz̄ = ∂2 ln F

∂z∂z∗ , which denotes the met-
ric of the generalized phase space—the so-called Kaehher
metric.

[34] Use is made of an approximation, 〈ψ |ψ〉 
 (1 + zz∗)2S +
〈z|ψ ′〉, together with the expansion, (1 + zz∗)2S′ 
 (1 +
zz∗)2S + εzz∗(1 + zz∗)2S , up to the order of ε2.

[35] Here we mention the other kind of geometric phase accompa-
nying the polarized light, which is known as Pancharatnam’s
phase: S. Pancharatnam, Proc. Ind. Acad. Sci. Ser. A 44, 247
(1956), (see the reprint volume [17]). This object, however, is
understood by purely classical wave theory, whereas the present
one is genuinely quantum mechanical.

[36] The idea of separation of the geometric phase from the dynamical
phase has been suggested in another context, e.g., a design to
detect very tiny gravitational effects; E. M. Martinez, I. Fuentes,
and R. B. Mann, Phys. Rev. Lett. 107, 131301 (2011) , and
references cited therein.

[37] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
[38] H. Kuratsuji and Y. Mizobuchi, Phys. Lett. A 82, 279 (1981).
[39] I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod. Phys. 26,

167 (1954).

033801-8

http://dx.doi.org/10.1007/BF01391197
http://dx.doi.org/10.1103/PhysRev.38.725
http://dx.doi.org/10.1103/PhysRevA.29.1944
http://dx.doi.org/10.1103/PhysRevA.35.2965
http://dx.doi.org/10.1103/PhysRevLett.80.1888
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1007/BF01120269
http://dx.doi.org/10.1103/PhysRevA.4.796
http://dx.doi.org/10.1007/BF02774060
http://dx.doi.org/10.1016/0030-4018(96)00199-X
http://dx.doi.org/10.1016/S0030-4018(97)00104-1
http://dx.doi.org/10.1103/PhysRevA.71.033818
http://dx.doi.org/10.1103/PhysRevLett.105.153602
http://dx.doi.org/10.1103/PhysRevLett.85.5013
http://dx.doi.org/10.1103/PhysRevLett.85.5013
http://dx.doi.org/10.1088/0305-4470/4/3/009
http://dx.doi.org/10.1103/PhysRevA.6.2211
http://dx.doi.org/10.1103/PhysRevA.6.2211
http://dx.doi.org/10.1103/PhysRevLett.61.1687
http://dx.doi.org/10.1016/0375-9601(91)90572-P
http://dx.doi.org/10.1103/PhysRevLett.86.3534
http://dx.doi.org/10.1103/PhysRevLett.86.3534
http://dx.doi.org/10.1063/1.524444
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1080/09500348714551321
http://dx.doi.org/10.1088/0305-4470/13/2/034
http://dx.doi.org/10.1143/PTP.117.195
http://dx.doi.org/10.1143/PTP.117.195
http://dx.doi.org/10.1103/PhysRevLett.107.131301
http://dx.doi.org/10.1103/PhysRevLett.51.2167
http://dx.doi.org/10.1016/0375-9601(81)90645-9
http://dx.doi.org/10.1103/RevModPhys.26.167
http://dx.doi.org/10.1103/RevModPhys.26.167



