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We compute spin diffusion in a dilute Fermi gas at arbitrary temperature, polarization, and strong interaction in
the normal phase using kinetic theory. While the longitudinal spin diffusivity D‖ depends weakly on polarization
and diverges for small temperatures, the transverse spin diffusivity D⊥ has a strong polarization dependence
and approaches a finite value for T → 0 in the Fermi liquid phase. For a 3D unitary Fermi gas at infinite
scattering length, the diffusivities reach a minimum near the quantum limit of diffusion h̄/m in the quantum
degenerate regime and are strongly suppressed by medium scattering, and we discuss the importance of the
spin-rotation effect. In two dimensions, D⊥ attains a minimum at strong coupling −1 � ln(kF a2D) � 1 and
reaches D⊥ ∼ 0.2 . . . 0.3 h̄/m at large polarization. These values are consistent with recent measurements of
two-dimensional ultracold atomic gases in the strong coupling regime.
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I. INTRODUCTION

Spin diffusion is one of the basic transport processes which
tends to compensate an imbalance of magnetization between
regions of a sample. It has been studied, e.g., in liquid helium
[1], spintronics [2], and recently in ultracold atomic gases
[3,4]. If one writes the local magnetization vector as M =
Mê, the magnetization gradient ∇M = (∇M)ê + M∇ê
has two contributions: longitudinal diffusion acts between
regions of different magnitude of magnetization M, i.e.,
different polarization. Second, transverse spin diffusion arises
for spins of the same magnitude M but different orientation
ê, and determines the damping of transverse spin waves.
The diffusivities associated with both channels have equal
magnitude at high temperatures in the nondegenerate regime
(Boltzmann limit), as well as for an unpolarized gas. However,
they differ for the most interesting case of a polarized gas at low
temperature in the quantum degenerate regime, since different
scattering processes are responsible for the two channels.
While the longitudinal spin diffusivity D‖ grows as T −2 for a
Fermi liquid at low temperature T due to Pauli blocking, the
transverse spin diffusivity D⊥ is much lower—corresponding
to larger spin drag—and reaches a constant value as T → 0 in
the normal phase, i.e., in the absence of a phase transition.

Experiments in dilute solutions of 3He in liquid 4He can
be understood essentially within kinetic theory and the Born
approximation for weakly interacting quasiparticles. Kinetic
equations for transverse spin transport were derived by Landau
and Silin [5] and applied to degenerate and/or polarized
gases [1,6–14]. Transverse diffusion is influenced by the
spin-rotation effect by which the spin current precesses around
the molecular field of a polarized gas [1]; a similar effect
of identical particle spin rotation occurs when two scattering
spins rotate around the common axis given by the sum of the
two spins [6].

Still, in dilute solutions of 3He strong magnetic fields are
required to reach a fully polarized state. The advent of ultracold
atomic gases [15] provides new experimental opportunities:
one can selectively drive radio frequency transitions between
atomic hyperfine levels and coherently control the population
of different “spin” states. In this way, both longitudinal [3] and
transverse [4] spin transport have recently been measured.

Crucially, in ultracold atomic gases the scattering length can
be tuned to become much larger than the particle spacing. In
such strongly interacting Fermi gases new transport phenom-
ena arise, for instance, almost perfect fluidity [16–18], where
the ratio of shear viscosity to entropy density η/s � h̄/kB

is bounded from below by quantum mechanics. The related
question of whether quantum mechanics provides a bound
D � h̄/m for spin diffusion has recently been studied in the
normal Fermi liquid phase for longitudinal [3,19–24] and
transverse [4] spin diffusion; a sum rule for the spin con-
ductivity is derived in [25]. In current experiments interactions
become as strong as allowed by quantum mechanical unitarity,
and the Born approximation is not applicable. In this work we
develop a kinetic theory based on the many-body T matrix,
building on previous works using the T matrix [11–13], and
we find a substantial suppression of the diffusivity by medium
scattering beyond the Born approximation. The values we
obtain for the transverse spin diffusivity D⊥ are consistent
with the recent spin-echo measurements of a two-dimensional
Fermi gas at strong interaction [4].

This paper is organized as follows: In Sec. II we introduce
the model of strongly interacting fermions and their scattering
in the T -matrix approximation, while Sec. III explains the
derivation of kinetic theory for transverse and longitudinal
spin diffusion. In Sec. IV we present and discuss our results
and conclude in Sec. V.

II. MODEL AND T MATRIX

We consider a two-component Fermi gas with contact
interactions described by the grand canonical Hamiltonian,

H =
∑
kσ

(εk − μσ )c†kσ ckσ + g0

V

∑
kk′q

c
†
k+c

†
k′−ck′−q,−ck+q,+,

(1)

with the free-particle dispersion relation εk = k2/2m for
particles of mass m. We work in units where h̄ = 1 = kB . In a
polarized gas the spin species σ = ±1 have different chemical
potentials μσ , and we define the effective magnetic field
h = (μ+ − μ−)/2 conjugate to the spin imbalance. Motivated
by experiments with ultracold atomic gases, we consider only
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s-wave scattering, which acts between different spin species
by the Pauli principle. The contact interaction g0 needs to be
regularized in the ultraviolet both in two and three dimensions,
which is done using the T matrix.

A. Scattering cross sections

In three dimensions (3D) the vacuum, or two-body T

matrix, reads

T0(E) = 4π/m

a−1 − √−mE
(2)

in terms of the s-wave scattering length a. In the center-of-mass
frame, the kinetic energy of two particles with momenta k
and −k is ω = 2εk, and T0(ω + i0) = (4π/m)/(a−1 + ik)
is proportional to the Landau scattering amplitude f (k) =
−1/(a−1 + ik). The differential cross section in vacuum

dσ

d�
= 1

a−2 + k2
(3)

reaches a finite value a2 at low energy k → 0, or diverges as
k−2 at unitarity a−1 = 0. At finite density two particles scatter
in the presence of a medium which blocks scattering into
intermediate states that are already occupied (Pauli blocking),
and one has to use the many-body T matrix T (q,ω) for total
momentum q and frequency ω. While the exact T matrix for
our model (1) is not known, at sufficiently high temperatures
or in a 1/N expansion (see below) it is very well approximated
by summing up the particle-particle ladder diagrams [26],

T −1(q,ω) = T −1
0 (E = ω + μ+ + μ− − εq/2 + i0)

+
∫

ddk

(2π )d
nk,+ + nk+q,−

ω + μ+ + μ− − εk − εk+q + i0
,

(4)

where nkσ = {exp[β(εk − μσ )] + 1}−1 is the Fermi distribu-
tion. In the general case, the scattering cross section is given
in terms of the many-body T matrix as

dσ

d�
= m2

(4π )2
|T (q,ω)|2, (5)

where the kinetic energy is ω = εp1 + εp2 − μ+ − μ− =
εq/2 + 2εk − μ+ − μ− for incoming particles with momenta
p1,2 = q/2 ± k.

In two dimensions (2D) the vacuum T matrix is [27]

T0(E) = 4π/m

ln(εB/E) + iπ
, (6)

where εB ≡ h̄2/ma2
2D is the binding energy of the two-body

bound state. In experiments a quasi-2D geometry is realized by
a strong confinement of the three-dimensional system in one
direction; well below the confinement energy, εB is replaced
by the exact quasi-2D binding energy, which is given in terms
of the 3D scattering length a and the confinement length [28].
The T matrix is related to the 2D scattering amplitude in
vacuum as f (k) = mT0(2εk + i0) = 4π/[ln(1/k2a2

2D) + iπ ],
and the corresponding differential cross section is

dσ

d�
= 2π

k

1

ln2
(
k2a2

2D

) + π2
. (7)

In the general case of the 2D many-body T matrix (4),

dσ

d�
= m2

8πk
|T (q,ω)|2. (8)

In both 2D and 3D, the scattering cross section does not depend
on the orientation of outgoing momenta p3,4 = q/2 ± k′; this
simplifies the angular averages in the collision integral and
precludes lateral spin rotation.

In the Boltzmann limit far above the Fermi temperature
TF , the medium corrections are small and one may use
the vacuum T matrix. In the quantum degenerate regime,
however, medium effects become large, and the system
undergoes a phase transition toward s-wave superfluidity at
Tc 	 0.16 TF in the 3D unpolarized unitary Fermi gas [29].
In order to include strong coupling effects systematically
in a diagrammatic approach, one option is to use a 1/N

expansion in the number of fermion flavors N to compute
the thermodynamics above and below Tc [30] as well as
transport [31]. Eventually, the results are extrapolated to the
physical case N = 1. For large N scattering is weak even at
unitarity and it is justified to compute transport properties using
kinetic theory consistently up to a certain order in 1/N ; for
obtaining transport coefficients to leading order one should use
the many-body T matrix in the collision integral but the free
Fermi gas for the thermodynamic quantities (pressure, density,
susceptibility) that appear in transport [31]. Interaction or
mean-field corrections to the quasiparticle dispersion relation
as well as to the thermodynamic properties [26] appear only
at subleading order in the 1/N expansion and are therefore
neglected in this work; their importance is discussed, for
instance, in Ref. [32].

B. Thermodynamics

We perform the transport calculation in a grand canonical
setting in terms of the dimensionless chemical potentials βμ±
and interaction parameter βεB , where β = 1/kBT . In order
to compare our results with experiments for a fixed reduced
temperature T/TF , magnetic field h/EF , and interaction
parameter kF a, one needs to know the equation of state
n(βμ+,βμ−,βεB ). For the unpolarized unitary Fermi gas in
3D this has been measured recently [29], but it is not available
with comparable accuracy for the polarized gas. We therefore
substitute the equation of state of the free Fermi gas, which
is readily available and consistent with a 1/N expansion.
Indeed, at large polarization close to the polaron limit [33,34]
where the diffusivity has the most interesting behavior, the
majority species behaves almost as a free Fermi gas, and
possible phase transitions are shifted to temperatures below
the experimentally accessible range (T � 0.1 TF ).

The chemical potentials μσ for species σ determine the
fugacities zσ = exp(βμσ ), and hence the pressure Pσ , density
nσ , and susceptibility χσ of the free Fermi gas:

Pσ = − Lid/2+1(−zσ )β−1λ−d
T , (9)

nσ = − Lid/2(−zσ )λ−d
T , (10)

χσ = − Lid/2−1(−zσ )βλ−d
T , (11)

in terms of the thermal length λT = √
2πβ/m and

the polylogarithm Lis(z). The (kinetic) energy density
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εσ = ∫
ddp/(2π )d εpnpσ = (d/2)Pσ by scale invariance for

the free Fermi gas. The total density n = n+ + n− and
magnetizationM = n+ − n− determine the polarization M =
M/n. The characteristic degeneracy temperature is the Fermi
temperature TF = k2

F /2m associated with the total density of
both spin species, n = k3

F /3π2 (3D) and n = k2
F /2π (2D),

respectively.
For a typical experimental setup where the reduced temper-

ature T/TF and the polarization M are given, we first compute
the total density as

nλ3
T = 8

3
√

π
(T/TF )−3/2 (3D), (12)

nλ2
T = 2(T/TF )−1 (2D), (13)

and then the component densities n± = (1 ± M)n/2. Inverting
Eq. (10) gives the chemical potentials μ±, which are the
starting point for the grand canonical calculation. In two
dimensions, z± = exp[(1 ± M)/(T/TF )] − 1.

III. KINETIC THEORY

The kinetic equation for particles with internal states can be
written as a matrix equation for the occupation number matrix
np in internal space. In the case of spin-1/2 fermions, np is a
2 × 2 matrix which satisfies the kinetic equation [10]

Dnp

Dt
≡ ∂np

∂t
+ 1

2
[∇pεp,∇rnp]+ − 1

2
[∇rεp,∇pnp]+

+ i

h̄
[εp,np]− =

(
∂np

∂t

)
coll

. (14)

The left-hand side is the drift term, where the energy matrix

εp = εpI + hp · σ (15)

is given in terms of the bare dispersion relation εp and
hp = − 1

2h̄�, where � = �0 + �mf is the effective Larmor
frequency and σ are the Pauli matrices. The bare Larmor
frequency is �0 = γ B in an external magnetic field B, and
�mf is the Larmor frequency due to the molecular field
of surrounding spins. The drift term resembles that of the
Landau-Silin equation [5], where the anticommutators [,]+
also include mean-field terms and the commutator [,]− is
responsible for the spin-rotation effect of spins precessing
about the effective magnetic field. To leading order in a
1/N expansion we may neglect the mean-field corrections
in the anticommutators because they are small compared to
the bare dispersion εp, but the mean-field term is the leading
contribution in the spin-rotation term.

The right-hand side of Eq. (14) is the collision integral(
∂np1

∂t

)
coll

= 1

(2π )2d−1

∫
ddp2 ddp3 ddp4 |T ( p1 + p2,ω)|2

× δ( p1 + p2 − p3 − p4) δ(εp1 + εp2 − εp3 − εp4 )

× 1

4
{[ñ1,ñ

±
2 ]+ Tr(n3n

±
4 ) − [n1,n

±
2 ]+ Tr(ñ3ñ

±
4 )} (16)

for incoming particles ( p1,+) and ( p2,−) and outgoing
particles ( p3,+) and ( p4,−). This expression for the collision

integral is identical to Eq. (2.31) of Ref. [12] specialized to
fermions and using the fact that the many-body T matrix (4) in
the ladder approximation does not depend on the direction of
outgoing momenta in the center-of-mass frame. For atomic
gases at low temperatures the s-wave channel becomes
dominant and only scattering between + and − particles
occurs; consequently, the T matrix T ( p1 + p2,ω) only has
components for unlike spins. This is reflected by the trace over
spin indices Tr(n3n

±
4 ), where n±

p = Tr(np)I − np: in n±
p , the

diagonal + and − elements of np are interchanged, and the
trace runs over unlike spins 3 and 4. Furthermore, the fermionic
states are unoccupied with probability ñp = I − np, and
the notation n1 stands for np1

, etc. In the case of longitudinal
spin diffusion the collision integral becomes diagonal in
the spin indices. However, for transverse spin diffusion the
collision integral acquires off-diagonal terms and the full
occupation matrix np needs to be kept.

One may parametrize the occupation matrix np in terms of
particle fp and spin σ p variables,

np = 1
2 (fpI + σ p · σ ), (17)

and the kinetic equation (14) may be written in components

Dfp

Dt
≡ ∂fp

∂t
+

∑
i

[
∂εp

∂pi

∂fp

∂ri

− ∂εp

∂ri

∂fp

∂pi

+∂hp

∂pi

· ∂σ p

∂ri

− ∂hp

∂ri

· ∂σp

∂pi

]
=

(
∂fp

∂t

)
coll

(18)

and

Dσ p

Dt
≡ ∂σp

∂t
+

∑
i

[
∂εp

∂pi

∂σ p

∂ri

− ∂εp

∂ri

∂σ p

∂pi

+∂hp

∂pi

∂fp

∂ri

− ∂hp

∂ri

∂fp

∂pi

]
− 2

h̄
hp × σ p =

(
∂σ p

∂t

)
coll

. (19)

The local magnetization is M(r,t) = ∫
ddp σ p/(2π )d =

M(r,t)ê(r,t) and we choose the local magnetization direction
ê(r,t) as the spin quantization axis, such that the local
equilibrium distribution matrix n0

p is diagonal with entries
np+ and np−. Note that M need not be parallel to an external
magnetic field B. According to Eq. (17), f 0

p = np+ + np−
and σ 0

p = (np+ − np−)ê. The gradient of the magnetization
has two contributions, the longitudinal and transverse parts:

∂M
∂ri

= ∂M
∂ri

ê + M ∂ ê
∂ri

. (20)

We linearize the kinetic equations (18) and (19) around the
local equilibrium distribution, np = n0

p + δnp, and write the
drift terms as

Dfp

Dt
≡ ∂fp

∂t
−

∑
i

vpi

∂M
∂ri

∑
σ

σ tσ
∂npσ

∂εp

=
(

∂fp

∂t

)
coll

(21)

and
Dσ p

Dt
≡ ∂σ p

∂t
−

∑
i

vpi

∂M
∂ri

ê
∑

σ

tσ
∂npσ

∂εp

+
∑

i

vpi

∂ ê
∂ri

(np+ − np−) + � × σ p =
(

∂σp

∂t

)
coll

,

(22)
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up to corrections of order O(δnp). The second (longitudinal)
and third (transverse) terms in Eq. (22) result from the gradient
of the local magnetization (20). The derivative ∂npσ /∂εp in
the longitudinal term restricts the momentum integrals in the
degenerate regime to a neighborhood of the Fermi surface.
In contrast, in the transverse term np+ − np− is nonzero
everywhere between the majority and minority Fermi surfaces;
hence the phase space for scattering at low temperature and the
transverse scattering rate τ−1

⊥ are larger than in the longitudinal
case [7].

In the derivation we have used the Gibbs-Duhem relation∑
σ nσ (∂μσ/∂ri) = 0 and

∂nσ

∂ri

= χσ

∂μσ

∂ri

, χσ = ∂nσ

∂μσ

, (23)

∂μσ

∂ri

= σ tσ
∂M
∂ri

, tσ = 1/nσ

χ+/n+ + χ−/n−
. (24)

It then follows that

∂εp

∂pi

= pi

m
= vpi, (25)

∂f 0
p

∂ri

= −
∑

σ

∂npσ

∂εp

∂μσ

∂ri

= −∂M
∂ri

∑
σ

σ tσ
∂npσ

∂εp

, (26)

∂σ 0
p

∂ri

= ∂(np+ − np−)

∂ri

ê + (np+ − np−)
∂ ê
∂ri

= −∂M
∂ri

ê
∑

σ

tσ
∂npσ

∂εp

+ ∂ ê
∂ri

(np+ − np−), (27)

and we have assumed a constant hp.
The particle and spin currents are defined as the velocity

weighted by the distribution functions,

Jj =
∫

ddp

(2π )d
vpjfp, (28)

J j =
∫

ddp

(2π )d
vpjσ p, (29)

for a magnetization gradient in direction j = x,y,z. We shall
not consider the particle current further and instead concentrate
on the spin current. The continuity equation for the spin density
(magnetization) is

∂M
∂t

+
∑

j

∂ J j

∂rj

+ �0 × M = 0. (30)

The momentum integral over the Boltzmann equation (22)
weighted by the velocity vpj yields the time evolution of the
spin current,

D J j

Dt
≡ ∂ J j

∂t
+ α‖

∂M
∂rj

ê + α⊥M
∂ ê
∂rj

+ (�0 + �mf) × J j

=
∫

ddp

(2π )d
vpj

(
∂σp

∂t

)
coll

, (31)

with coefficients

α‖ =
∫

ddp

(2π )d
∑

i

vpivpj

∑
σ

tσ
∂npσ

∂εp

= 2/m

χ+/n+ + χ−/n−
,

(32)

α⊥ = 1

M

∫
ddp

(2π )d
∑

i

vpivpj (np+ − np−) = P+ − P−
mM ,

(33)

for a free Fermi gas. Both α‖ and α⊥ approach 1/mβ in the
Boltzmann limit and n/mχ for the unpolarized gas.

The collision integral on the right-hand side of Eq. (31)
determines how the spin current relaxes by collisions, and one
has to parametrize the decay by separate time constants τ‖ and
τ⊥ for longitudinal and transverse relaxation [9],∫

ddp

(2π )d
vpj

(
∂σp

∂t

)
coll

= − 1

τ‖
( J j · ê)ê − 1

τ⊥
( J j · ĝj ) ĝj .

(34)

The unit vector

ĝj = x
∂ ê
∂rj

+ y ê × ∂ ê
∂rj

(35)

lies in the plane perpendicular to the local magnetization
direction ê, at an angle determined by the coefficients x and y.

In order to solve Eq. (31), consider first the rotation term
(�0 + �mf) × J j , where the molecular field �mf = �mf ê is
parallel to the local magnetization M. Hence, M in Eq. (30)
precesses only about the external magnetic field �0 but not
about �mf. In contrast, the spin current J j is in general not
parallel to M and can precess also about the molecular field
�mf. It is convenient to work in a frame rotating with the
external field �0 in spin space such that the time evolution of
M approaches a quasisteady state [1]. In the same rotating
frame, ∂ J j /∂t = −�0 × J j cancels the free precession of
J j in Eq. (31), but the spin current still precesses about �mf.
This causes the spin-rotation effect in transverse diffusion,
in contrast to longitudinal diffusion where J j ‖ M and spin
rotation is absent. Via the continuity equation (30) for the
spin density, spin rotation in J j causes a similar effect in M.
Equations (31) and (34) are solved by the spin current [9,12]

J j = −D‖
∂M
∂rj

ê − D0
⊥

1 + μ2
M

[
∂ ê
∂rj

+ μê × ∂ ê
∂rj

]
, (36)

with diffusion coefficients D‖ = α‖τ‖ and D0
⊥ = α⊥τ⊥. The

full transverse diffusion coefficient, including the spin-rotation
effect, is given by

D⊥ = D0
⊥

1 + μ2
, (37)

where the spin-rotation parameter

μ = −�mf τ⊥ (38)

determines how the spin current is rotated in the plane
perpendicular to the local magnetization. (This parameter is
denoted as μM in other works [1,9,12], but we have included
the polarization M in the definition of μ.) An example of
how the spin-rotation effect lowers the transverse diffusivity

033630-4



TRANSVERSE SPIN DIFFUSION IN STRONGLY . . . PHYSICAL REVIEW A 88, 033630 (2013)

is shown in Sec. IV. Without molecular field there is no
spin-rotation effect, μ = 0 and D⊥ = α⊥τ⊥.

One may parametrize the deviation from local equilibrium
as

δnp = 1
2 (δfp I + δσ p · σ ). (39)

The deviations δfp and δσ p should overlap with the drift
terms in Eqs. (21) and (22), and we choose the variational
trial functions [9]

δfp = c
∑

i

vpi

∂M
∂ri

∑
σ

σ tσ
∂npσ

∂εp

,

(40)
δσ p = δσ ‖

p + δσ⊥
p ,

with the longitudinal part

δσ ‖
p = c‖

∑
i

vpi

∂M
∂ri

ê
∑

σ

tσ
∂npσ

∂εp

(41)

and transverse part

δσ⊥
p = c⊥

∑
i

vpi ĝi(np+ − np−). (42)

In the following we shall linearize the collision integral (16)
for these small deviations from the equilibrium distribution,
first in the transverse and then in the longitudinal channel.

Let us briefly discuss the assumptions and approximations
involved in the derivation of kinetic theory: we assume
(i) applicability of the general hypotheses of Fermi liquid
theory and the quasiparticle picture; this condition is met
in the normal phase sufficiently far above a possible phase
transition to a low-temperature symmetry broken phase;
(ii) total spin conservation; (iii) hydrodynamic conditions,
i.e., slow variations in time and space; (iv) linearization of
the Boltzmann equation, i.e., a small departure from the
local equilibrium distribution; (v) ladder approximation for
the many-body T matrix (4); consequently, the T matrix
does not depend on the direction of outgoing particles in the
center-of-mass frame; (vi) no mean-field drift terms except
for the spin-rotation term; (vii) the variational ansatz for the
deviation from equilibrium, Eqs. (41) and (42); and (viii) no
off-energy shell terms in the collision integral [12]. Both the
ladder approximation and the absence of mean-field drift terms
are justified as the leading order of a low-density expansion
[11] or of a systematic 1/N expansion in the number of fermion
flavors [31]. Once these assumptions are made, the kinetic
theory applies to arbitrary temperature from the Boltzmann
to the degenerate limit, arbitrary polarization, anisotropic
spin-current relaxation times τ‖ and τ⊥, and arbitrary s-wave
scattering lengths a beyond the Born approximation, as long
as the quasiparticle picture remains valid.

Note that the lateral spin-rotation term in the collision
integral [6,12] only appears if the T matrix is complex and
depends on direction; it vanishes in our case for a direction-
independent T matrix, just as it does for a real effective
potential [12].

A. Transverse diffusion

The linearized form of the collision integral (16) for the
T matrix (4) differs from the Born approximation in that only

+ and − particles can scatter,(
∂δnp1

∂t

)
coll

= 1

(2π )2d−1

∫
ddp2 ddp3 ddp4 |T ( p1 + p2,ω)|2

×δ( p1 + p2 − p3 − p4) δ(εp1 + εp2 − εp3 − εp4 )

×1

4
{[δñ±

2 ñ1 + ñ±
2 δñ1 + ñ1δñ

±
2 + δñ1ñ

±
2 ] Tr(n±

4 n3)

− [δn±
2 n1 + n±

2 δn1 + n1δn
±
2 + δn1n

±
2 ] Tr(ñ±

4 ñ3)}.
(43)

On the right-hand side a transverse variation of the distribution
matrix is inserted using the variational ansatz in Eq. (42):

δn⊥
p = 1

2
δσ⊥

p · σ = c⊥
2

(np+ − np−)
∑

i

vpi ĝi · σ

= (np+ − np−)

(
0 s∗

p

sp 0

)
, (44)

with sp = spx + ispy and sp = (c⊥/2)(vpx ĝx + vpy ĝy). A
typical term in the collision integral (43) has the form [9]

δn1n
±
2 = (n1+ − n1−)

(
0 s∗

1n2−
s1n2+ 0

)
, (45)

[δn1,n
±
2 ]+ = (n1+ − n1−)(n2+ + n2−)

(
0 s∗

1
s1 0

)
. (46)

From (δn⊥
p )± = Tr(δn⊥

p )I − δn⊥
p follows δσ⊥±

p = −δσ⊥
p , and

the matrix product in the curly brackets in Eq. (43) becomes

c⊥
2

∑
i

{[(ñ1+ − ñ1−)(ñ2+ + ñ2−)v1i − (ñ1+ + ñ1−)

× (ñ2+ − ñ2−)v2i](n3+n4− + n3−n4+) − [(n1+ − n1−)

× (n2+ + n2−)v1i − (n1+ + n1−)(n2+ − n2−)v2i]

× (ñ3+ñ4− + ñ3−ñ4+)} ĝi · σ . (47)

Using ñ1+ñ2−n3+n4− = n1+n2−ñ3+ñ4− from energy conser-
vation and

np+ñp−
np−ñp+

= exp(2βh), (48)

one may rewrite Eq. (47) as

−2c⊥ sinh(βh)
∑

i

[e−βhn1+n2+ + eβhn1−n2−]

× ñ3+ñ4−(v1i − v2i) ĝi · σ . (49)

The unusual occupation factors n1±n2± are characteristic of
transverse spin diffusion and appear, even though spin is
conserved during scattering.

The collision integral determines the relaxation of the
transverse current according to Eq. (34) with the variational
form (42) also on the right-hand side,

D J⊥
j

Dt
=

∫
ddp

(2π )d
vpj Tr

[
σ

(
∂δn⊥

p

∂t

)
coll

]

= −c⊥α⊥M
τ⊥

ĝj = − J⊥
j

τ⊥
, (50)
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and hence the transverse scattering rate is given by

1

τ⊥
= sinh(βh)

α⊥M
1

(2π )3d−1

∫
ddp1 . . . ddp4

× δ( p1 + p2 − p3 − p4) δ(εp1 + εp2 − εp3 − εp4 )

× |T ( p1 + p2,ω)|2 [e−βhn1+n2+ + eβhn1−n2−]

× ñ3+ñ4−v1j (v1j − v2j ). (51)

The integral over outgoing momenta yields

1

τ⊥
= sinh(βh)

(2π )2dα⊥M

∫
ddp1 ddp2 d�

| p1 − p2|
m

dσ

d�

× [e−βhn1+n2+ + eβhn1−n2−]ñ3+ñ4−v1j (v1j − v2j ),

(52)

or in center-of-mass coordinates p1,2 = q/2 ± k, p3,4 =
q/2 ± k′,

1

τ⊥
= sinh(βh)

(2π )2dα⊥M

∫
ddq ddk d�

2k

m

dσ

d�

× [e−βhn1+n2+ + eβhn1−n2−]ñ3+ñ4−
2k2

j

m2
. (53)

For T -matrix scattering the cross section does not depend on
the angle � between k and k′, so one can perform the angular
integrations explicitly for the Fermi distribution npσ and obtain
(no summation over j )∫

d�q d�k d� [e−βhn1+n2+ + eβhn1−n2−]

× (1 − n3+)(1 − n4−)k2
j

= S3
d

d
k2[I�=0(a − c,b,0) + I�=0(a + c,b,0)]I�=0(a,b,c),

(54)

with a = β[εq/2 + εk − (μ+ + μ−)/2], b = β
√

εqεk , c = βh,
and solid angle Sd in d dimensions. The �-wave angular
averages are given by [31]

I� = 1

4

∫ 1

−1
dx

P�(x)

cosh(a) + cosh(bx + c)
(3D), (55)

I� = 1

4π

∫ 2π

0
dφ

P�(cos φ)

cosh(a) + cosh(b cos φ + c)
(2D),

(56)

with Legendre polynomials P�(x). In three dimensions these
integrals are known analytically, in particular,

I�=0(a,b,c) = 1

4b sinh(a)
ln

cosh(a + b) + cosh(c)

cosh(a − b) + cosh(c)
, (57)

and analytical expressions involving polylogarithms for � > 0
[31], while in two dimensions the I� are readily evaluated
numerically. This leads to the transverse scattering time

1

τ⊥
= 4S3

d sinh(βh)

d(2π )2dm2(P+ − P−)

∫ ∞

0
dq qd−1

∫ ∞

0
dk kd+2

× dσ

d�
[I0(a − c,b,0) + I0(a + c,b,0)]I0(a,b,c),

using α⊥ from Eq. (33). Finally, the diffusion coefficient is
given by D0

⊥ = α⊥τ⊥.

1. Limiting cases

The expression for the scattering rate simplifies in two
limits: the Boltzmann limit T � TF and the unpolarized limit
βh → 0. In the Boltzmann limit,

I�(a,b,c) → δ�,0 exp(−a), (58)

and the angular average 2 sinh(βh)[I−
0 + I+

0 ]I0/(P+ −
P−) → βλ2d

T n exp(−βεq/2) exp(−2βεk) such that

1

τ⊥
= 2S3

dβλ2d
T n

d(2π )2dm2

∫ ∞

0
dq qd−1 exp

( − q2λ2
T /8π

)

×
∫ ∞

0
dk kd+2 exp

( − k2λ2
T /2π

) dσ

d�
. (59)

In the Boltzmann limit the medium effect on scattering
becomes small and one may use the vacuum scattering cross
section (3), which depends only on the relative momentum k

but not on the center-of-mass momentum q, and the integrals
are readily performed in 3D to yield

1

τ⊥
= 2

√
2nλ7

T

3π3β

∫ ∞

0
dk k5 exp

( − k2λ2
T /2π

)
a−2 + k2

= 4
√

2nλ3
T

3πβ
[1 − βεB − (βεB )2 exp(βεB ) Ei(−βεB )],

(60)

where Ei(x) is the exponential integral, and we have defined
a “binding energy” εB = h̄2/ma2 also on the BCS side for
negative a, where there is no two-body bound state. For the
unitary gas βεB = 0 and the expression in brackets is unity,
corresponding to an effective cross section σ = λ2

T , and we
obtain the transverse scattering time and diffusivity (with
α⊥ = 1/mβ):

τ⊥ = 9π3/2h̄

32
√

2kBTF

(
T

TF

)1/2

, (61)

D0
⊥ = 9π3/2h̄

32
√

2m

(
T

TF

)3/2

(3D). (62)

These results coincide with the longitudinal scattering time
and diffusivity in the Boltzmann limit [3,20]. In the weak-
coupling limit the scattering cross section is 4πa2 and the
term in parentheses in Eq. (60) approaches 4πa2/λ2

T .
In two dimensions we find in the Boltzmann limit

1

τ⊥
= nλ2

T

πβ
λ4

T

∫
dk k3 exp

( − k2λ2
T /2π

)
ln2

(
k2a2

2D

) + π2
(63)

= 2πnλ2
T

βQ
= 4πkBTF

Q
,

with

Q = ln2(2βεB/3) + π2 (64)

evaluated at the saddle point of the k integral [35]. The
scattering time and diffusivity

τ⊥ = h̄Q

4πkBTF

, D0
⊥ = h̄Q

4πm

T

TF

(2D) (65)

again agree with the longitudinal scattering time and diffusivity
in the Boltzmann limit [21,22].
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The second limit where τ⊥ simplifies is the unpolarized
limit βh → 0 at arbitrary temperature in the normal phase
T > Tc. The prefactor sinh(βh)/(P+ − P−) → β/n, and the
angular average becomes [I−

0 + I+
0 ]I0 → 2I 2

0 (a,b,c = 0):

1

τ⊥
= 8S3

dβ

d(2π )2dm2n

∫
dq qd−1

∫
dk kd+2 dσ

d�
I 2

0 . (66)

We shall see below in Sec. III B that this coincides with the
longitudinal scattering rate in the unpolarized limit.

2. Spin rotation

The transverse diffusivity D⊥ is modified by the spin-
rotation effect where the spin current J j precesses around
the molecular field �mf = �mf ê. The field acting on spin 1
due to interaction with surrounding spins 2 reads

�1 =
∫

ddp2

(2π )d
Re T ( p1 + p2,ω)σ 2, (67)

with ω = εp1 + εp2 − μ+ − μ−. The resulting spin-rotation
term in the time evolution of σ 1 (22) is then

Dσ 1

Dt

∣∣∣
spinrot

= �1 × σ 1

=
∫

ddp2

(2π )d
Re T ( p1 + p2,ω)[σ 2 × σ 1]. (68)

We expand σ p = σ 0
p + δσ⊥

p with local equilibrium distribu-
tion σ 0

p = (np+ − np−)ê and small deviation (42) to linear
order,

σ 2 × σ 1 = σ 0
2 × δσ⊥

1 + δσ⊥
2 × σ 0

1

=
∑

i

(v1i − v2i)(n1+ − n1−)(n2+ − n2−)ê × ĝi .

(69)

The time evolution of the transverse spin current

D J⊥
j

Dt

∣∣∣
spinrot

=
∫

ddp1

(2π )d
v1j

Dσ 1

Dt

∣∣∣
spinrot

(70)

can then be written using J⊥
j = c⊥α⊥M ĝj from Eq. (50) as

D J⊥
j

Dt

∣∣∣
spinrot

= �mf ê × J⊥
j . (71)

The spin current precesses around the molecular field with
frequency [12]

�mf = 1

α⊥M

∫
ddp1

(2π )d
ddp2

(2π )d
v1j (v1j − v2j )(n1+ − n1−)

× (n2+ − n2−) Re T ( p1 + p2,ω), (72)

which then determines the spin-rotation parameter μ =
−�mf τ⊥. For a momentum-independent interaction Re T =
2V0 this reduces to �mf = 2V0M/h̄ [9].

B. Longitudinal diffusion

For longitudinal spin diffusion one may linearize the dis-
tribution matrix with a variation (41) that remains diagonal in
the spin indices. Then also the linearized collision integral (16)

is diagonal, and following the standard derivation one obtains
the longitudinal scattering rate [8,20–22]:

1

τ‖
= 2βn

(2π )2dm2n+n−

∫
ddq ddk d� k

dσ

d�

×n1+n2−ñ3+ñ4−kj (kj − k′
j ). (73)

The angular average yields∫
d�q d�k d�n1+n2−ñ3+ñ4−kj (kj − k′

j )

= S3
d

d
k2[I 2

�=0(a,b,c) − I 2
�=1(a,b,c)

]
(74)

in terms of the functions I�(a,b,c) defined in Eqs. (55) and
(56), and

1

τ‖
= 2S3

dβn

d(2π )2dm2n+n−

∫ ∞

0
dq qd−1

∫ ∞

0
dk kd+2

× dσ

d�

[
I 2

0 − I 2
1

]
. (75)

In the Boltzmann limit T � TF one finds I 2
�=0 →

z+z− exp(−βεq/2) exp(−2βεk) and I�=1 → 0; hence (75)
converges toward the transverse scattering rate (59) inde-
pendent of polarization. Likewise, in the unpolarized case
n/n+n− → 4/n and I1 → 0, and the longitudinal scattering
time converges toward the transverse scattering time (66) for
all temperatures.

IV. RESULTS

A. Three dimensions

Figure 1 shows the transverse and longitudinal spin dif-
fusivity D⊥ and D‖ vs reduced temperature T/TF in three
dimensions. Within kinetic theory the transverse and longi-
tudinal diffusivities are equal in two limits: for unpolarized
gases (M = 0) at arbitrary temperature, and in the Boltzmann
limit T � TF for arbitrary polarization. We therefore focus our
study on the polarized gas in the quantum degenerate regime
where D⊥ and D‖ differ: as the polarization increases the
transverse diffusivity D⊥ decreases at low temperatures and
reaches a finite value as T → 0. This is in marked contrast

m
D

⊥
/− h 

(3
D

)

T/TF

long/trans M=0  
trans M=0.1
trans M=0.3
trans M=0.6
trans M=0.9

1

 10

 100

 1000

 0.01  0.1 1  10  100

FIG. 1. (Color online) Transverse and longitudinal spin diffu-
sivities D⊥ and D‖ vs reduced temperature T/TF for different
polarizations M (top M = 0 to bottom M = 0.9) for the unitary
Fermi gas in three dimensions. The collision integral is computed
using the vacuum T matrix.
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m
D

⊥
/− h 

(3
D

)

T/TF

M=0.999, no med.
M=0.999, medium
M=0.99, medium 
M=0.9, medium   
M=0, LuttWard    

.5

2

5

 20

1

 10

 0.01  0.1 1  10

FIG. 2. (Color online) Transverse spin diffusivity D⊥ vs reduced
temperature T/TF including medium scattering (solid lines: top
M = 0.999 to bottom M = 0.9). Due to increased scattering the
medium diffusivity D⊥ is lower than the vacuum diffusivity (dashed).
For comparison, the Luttinger-Ward curve (with circle) for the
unpolarized gas [23] above Tc 	 0.16 TF includes not only medium
scattering but also the renormalization of the fermionic spectral
function.

to the longitudinal diffusivity, which due to Pauli blocking
diverges as D‖ ∼ T −2 for a normal Fermi liquid.

In Fig. 1 the diffusivities have been computed with the
vacuum scattering cross section, and the behavior agrees qual-
itatively with that in the Born approximation [10]. However,
as explained in Sec. II A, in a systematic 1/N expansion
to leading order one has to use the medium scattering cross
section in combination with the thermodynamic functions of
the free Fermi gas [31]. The many-body T matrix (4) has to be
computed numerically with one integral; hence the solution
of the Boltzmann equation requires a three-dimensional
integral. The resulting diffusivity D⊥ is shown in Fig. 2.
In the nondegenerate regime T � TF the effect of medium
scattering is still small. However, at lower temperatures the
medium strongly enhances scattering and leads to a substantial
suppression of the diffusivity, even more so away from the
fully polarized limit. At the lowest temperatures T → 0 the
medium diffusivity still converges toward a finite value, as in
the vacuum scattering case.

For large polarization above the Clogston-Chandrasekhar
limit [33], the Fermi gas remains normal and the T ma-
trix is well defined down to zero temperature. For smaller
polarization the T matrix develops a pole associated with the
phase transition, and the many-body T matrix is reliable in
the normal Fermi liquid phase above the phase transition. In
the vicinity of the phase transition kinetic theory becomes
inaccurate and one has to resort to more elaborate transport
calculations using, for instance, the Luttinger-Ward framework
based on the self-consistent T matrix. For comparison, we
plot the longitudinal spin diffusivity D‖(M = 0) (curve with
circle) from a Luttinger-Ward calculation [23], which includes
not only medium scattering but also the renormalization of
spectral functions on equal footing, remaining regular down
to Tc 	 0.16 TF .

Figure 3 shows the effect of spin rotation [1,12]: the spin
current precesses around the effective molecular field with
frequency �mf, which results in a lower transverse diffusivity
D⊥. The molecular field frequency (72) of the unitary Fermi
gas in the polaron limit M → 1 reaches �mf ≈ −1.2 EF for
T = 0, which is twice the value of the chemical potential

m
D

⊥
/− h 

(3
D

) 
at

 M
=

0.
99

9

T/TF

no medium
with medium

medium & spin rotation
.1

.2

.5

2

5

1

 10

 0.01  0.1 1  10

FIG. 3. (Color online) Spin-rotation effect on the transverse spin
diffusivity D⊥ vs reduced temperature T/TF for large polarization
M = 0.999. Dashed line without medium scattering, solid line with
medium effects, and dash-dotted line including the spin-rotation
effect Eq. (37) with spin-rotation parameter μ = −�mf τ⊥, which
further suppresses the diffusivity.

shift [34]. At large temperature, �mf decays as T −2; hence
μ = −�mf τ⊥ ∼ T −3/2 and there is no spin rotation in the
Boltzmann limit. Note that for the 3D unitary Fermi gas
the vacuum T matrix is purely imaginary at a−1 = 0 and
leads to a vanishing molecular field; �mf is nonzero only
for the medium T matrix, which is used in Fig. 3. The full
transverse spin diffusivity D⊥ (dash-dotted line) is strongly
suppressed at low temperatures but converges to the Boltzmann
result at large temperature where the molecular field vanishes.
This temperature dependence provides an experimentally
accessible signature of the spin-rotation effect. Note that the
external magnetic field γB does not affect the dynamics in the
corotating frame [1].

In Fig. 4 the longitudinal spin diffusivity D‖ is plotted vs
polarization. At small polarization up to about 50% the diffu-
sivity changes only slightly: it first increases and then drops
for larger polarization. At very large polarization above 98%,
it eventually saturates to a finite value in the limit M → 1.
This final value still depends on the temperature, roughly as
D‖ ∼ 0.37(h̄/m) (T/TF )−1.

B. Two dimensions

The spin diffusivity in 2D has recently attracted interest
after spin-echo measurements in a transversely polarized spin

m
D

||/
− h 

(3
D

)

1-M

T=0.01
T=0.03
T=0.1 

1

 10

 100

 1000

 0.001 0.01 0.11

FIG. 4. (Color online) Longitudinal spin diffusivity D‖ vs
polarization M at different temperatures T/TF (top T/TF = 0.01 to
bottom T/TF = 0.1) for the 3D unitary Fermi gas (without medium
scattering).
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FIG. 5. (Color online) Transverse spin diffusivity D⊥ vs reduced
temperature T/TF for different polarizations M (top M = 0 to bottom
M = 0.9) for a strongly interacting 2D Fermi gas with interaction
parameter ln(kF a2D) = 0 (without medium scattering).

state in an ultracold gas of fermionic atoms [4]. The decay of
magnetization over time allows one to infer the spin diffusivity,
and very low values for D⊥ have been found in the strongly
interacting regime. In order to understand these results, we first
compute the transverse and longitudinal spin diffusivities in
2D without medium scattering and find that they exhibit a qual-
itatively similar behavior as in the 3D case, as shown in Fig. 5.

However, the effect of medium scattering is even more
pronounced in 2D than in 3D and can suppress the diffusivity
by more than 1 order of magnitude at low temperature (see
Fig. 6). For very large polarization M = 0.999 the diffusivity
appears to saturate around T/TF = 0.1 near D⊥ ≈ 5 h̄/m

without medium scattering, and near D⊥ ≈ 0.1 h̄/m if the
medium is included in the calculation. While Pauli blocking
alone increases D⊥ (dashed curve), the medium compensates
this effect and leads to values of D⊥ closer to the classical
result (65) (dotted curve). The suppression of the diffusivity for
smaller polarization signals the appearance of a superfluid den-
sity at low temperature, which would lead to a pole in the non-
self-consistent T matrix and a diverging collision integral [22].

The interaction dependence of the transverse diffusivity
is shown in Fig. 7 for two values of the temperature in the
quantum degenerate regime. At fixed polarization M = 0.999,
the suppression by medium effects (solid vs dashed lines)
is most pronounced in the strongly interacting region −1 �
ln(kF a2D) � 1, while at weak coupling the medium effects

m
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M=0.9,     med
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FIG. 6. (Color online) Transverse spin diffusivity D⊥ vs reduced
temperature T/TF in 2D, including medium scattering at strong
interaction ln(kF a2D) = 0 (solid lines: top M = 0.999 to bottom
M = 0.9). The dashed line is for vacuum scattering, while the dotted
curve illustrates the classical result (65) in the Boltzmann limit.
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FIG. 7. (Color online) Transverse spin diffusivity D⊥ vs
interaction strength ln(kF a2D) at fixed polarization M = 0.999 and
temperatures T/TF = 1 (blue/square), T/TF = 0.5 (red/circle). The
dashed lines denote the diffusivity without medium effects, while the
solid lines include medium scattering.

lower the diffusivity only slightly. The values of D⊥ in Fig. 7
come close to D⊥ = 0.25(3) h̄/m, measured in a recent 2D
spin-echo experiment [4], although the measured minimum
around ln(kF a2D) = 0 is more shallow than in our calculation.

In order to make a detailed comparison of our transport
calculation for the homogeneous system with experiments in
a trap geometry, it would be useful to measure the diffusivity
for evolution times shorter than the trap period in order to
minimize the effects of the trap. Measuring the temperature
dependence of the diffusivity would also provide a much more
sensitive comparison of theory and experiment, in particular,
regarding the spin-rotation effect displayed in Fig. 3.

V. CONCLUSION

We have presented a kinetic theory for transverse and
longitudinal spin diffusion in strongly interacting Fermi gases
in two and three dimensions based on the many-body T matrix.
We find a significant suppression of the spin diffusivities at low
temperatures and strong coupling due to medium scattering
beyond the Born approximation. The results are consistent
with the very low transverse spin diffusivity D⊥ observed in
a recent 2D spin-echo experiment [4] at strong interaction.
Our analysis includes the Leggett-Rice effect of spin rotation
by a molecular field [1], which further lowers the transverse
diffusion coefficient of a polarized gas. It will be interesting
to study the role of mean-field corrections to the quasiparticle
dispersion relation [32] in a future work.

For small polarization below the Clogston-Chandrasekhar
limit, the interacting Fermi gas exhibits a phase transition
toward superfluidity and the ladder approximation for the T

matrix may have to be amended by particle-hole fluctuations
near the transition. In this case it would be worthwhile to
compute transverse spin transport also using other theoretical
approaches which go beyond a quasiparticle description, such
as the Luttinger-Ward [23] or Monte Carlo methods [24], but
we expect that the qualitative features will be similar.
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