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Zero sound in a two-dimensional dipolar Fermi gas
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We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles
(polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational
motion. It is shown that the propagation of zero sound is provided by both mean-field and many-body (beyond
mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The
damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One
thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles,
although the zero sound peak in the structure function is very close to the particle-hole continuum.
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I. INTRODUCTION

The creation of quantum gases of atoms with large magnetic
moments [1–4] and ultracold clouds of ground-state diatomic
polar molecules [5,6] strongly stimulated the work in the do-
main of dipolar cold gases, because the long-range anisotropic
dipole-dipole interaction drastically changes the nature of
quantum degenerate regimes. Presently, there is a growing
number of proposals to study new classes of many-body
states in these systems [7–9]. A serious difficulty for studying
many-body physics with polar molecules is related to ultracold
chemical reactions, such as KRb + KRb ⇒ K2 + Rb2 observed
in the JILA experiments [10,11], which lead to a rapid decay
of the system at required densities. Therefore, the attention
is now shifted to nonreactive molecules, in particular RbCs,
NaK, and KCs, for which the ultracold chemistry is expected to
be energetically unfavorable [12]. Another route assumes the
suppression of chemical reactions for reactive molecules by
confining them to the (quasi)two-dimensional (2D) geometry
and orienting their dipole moments (by a strong electric field)
perpendicularly to the plane of the 2D translational motion
[13,14]. This induces a strong intermolecular repulsion, and
the suppression of chemical reactions by two orders of
magnitude has been already demonstrated [15].

Therefore, 2D gases of polar molecules attract a special
attention, in particular when the molecules are fermionic
and they are in the same internal state. One then has an
additional reduction of chemical reactions. Various aspects
have been discussed regarding this system in literature, in
particular the emergence and beyond-mean-field description
of the topological px + ipy phase for microwave-dressed
polar molecules [16,17], interlayer superfluids in bilayer and
multilayer systems [18–21], the emergence of density-wave
phases [22–25,27,52], and superfluid pairing for tilted dipoles
[26,27]. The Fermi liquid behavior of this system has been
addressed by using the Fourier transform of the dipole-dipole
interaction potential (see [27] and references therein). The
many-body theory (beyond mean field) describing Fermi liquid
properties of a weakly interacting 2D gas of identical fermionic
dipoles with dipole moments d oriented perpendicularly to

the plane of their translational motion, has been developed in
Ref. [28]. The theory relies on the presence of a small parame-
ter pF r∗, where pF is the Fermi momentum, and r∗ = md2/h̄2

is the dipole-dipole length, with m being the molecule mass.
With the use of the low-momentum solution of the scattering
problem up to terms ∼(pr∗)2, thermodynamic quantities were
obtained as a series of expansion up to the second order in pF r∗.
Recent Monte Carlo calculations [29] confirmed the findings
of Ref. [28] in the low-density limit (pF r∗ < 1) and studied a
quantum transition to the crystalline phase at high densities.

In some sense, the 2D gas of identical fermionic dipoles
perpendicular to the plane of their translational motion,
constitutes a novel Fermi liquid because the existence of
zero sound in this system is provided only by many-body
effects [28]. Zero sound modes represent collective oscillations
related to deformations of the Fermi surface and are important
characteristics of Fermi liquids and gases in the collisionless
regime [41,42]. This stimulates an interest to zero sound for
tilted dipoles and to possibilities for the observation of zero
sound modes in experiments. In the present paper we show
that in the 2D gas of identical fermionic tilted dipoles the
propagation of zero sound is due to both mean-field and
many-body effects. The sound modes are anisotropic, and the
anisotropy of the sound velocity is the same as the one of the
Fermi velocity. Importantly, the damping rate of zero sound can
be much lower compared to the damping rate of quasiparticle
excitations with the same energy. This is different from the
situation in 3He [30], where these damping rates are of the
same order of magnitude. The small damping rate of zero
sound in the 2D dipolar Fermi gas opens wide possibilities
for the observation of the sound modes in experiments, in
spite of the fact that the zero sound peak is very close to the
particle-hole continuum in the structure function.

The paper is organized as follows. In Sec. II we give general
relations for various quantities of the 2D gas of tilted fermionic
dipoles and in Sec. III we derive the many-body contribution
to the interaction function of quasiparticles in this system.
Section IV is dedicated to the derivation of our results for
the dynamical structure factor and zero sound velocity. It is
in particular shown that for tilted dipoles the second-order
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mean-field contribution to this quantity and the many-body
contribution are of the same order of magnitude. In Secs. V
and VI we calculate the relaxation rate of quasiparticles and the
damping rate of zero sound, showing that the latter can be much
smaller at the same excitation energy. We conclude in Sec. VII,
emphasizing that the slow damping of zero sound provides
wide possibilities for the measurement of zero sound modes.
Aside from the observation of the surface modes in trapped
samples, which in the collisionless regime are analogous to
zero sound and have been observed in the 2D atomic Fermi gas
[31], one should be able to observe zero sound in the response
to small modulations of the density in (quasi)uniform gases
like those created in the recent experiment [32]. In contrast
to experiments in liquid 3He, where the observation of zero
sound is based on the difference between the zero sound and
Fermi velocities [33], in ultracold gases the zero sound can be
observed through the measurement of the dynamical structure
factor in two-photon Bragg spectroscopy experiments. This
method was successfully developed for Bose-condensed gases
[34,35] and then used for ultracold fermions [36]. Although
the zero sound peak in the structure function is located very
close to the particle-hole continuum, it can be visible as it may
be higher than the maximum of the continuum due to slow
damping of the zero sound.

II. GENERAL RELATIONS. ANISOTROPY
OF THE FERMI SURFACE

We consider a 2D gas of single-component fermionic
dipoles tilted by an angle θ0 with respect to the plane of
their translational motion (see Fig. 1). These dipolar particles
interact with each other via the potential which at large
separations r is

U (r) = d2

r3
(1 − 3 sin2 θ0 cos2 θ ), (1)

where θ is the angle between the vector r and the x axis in
which the dipoles are tilted. The Hamiltonian of the system
reads

Ĥ =
∑

p

ξpâ†
pâp + 1

2S

∑
p1,p2,q

U (q)â†
p1+qâ

†
p2−qâp2 âp1 , (2)

where S is the surface area, ξp = h̄2p2/2m − μ with μ being
the chemical potential, â†

p and âp are creation and annihilation
operators of fermionic dipoles with momentum p, and U (q) is

FIG. 1. (Color online) 2D gas of dipoles tilted by an angle θ0 in
the x,z plane.

the Fourier transform of the interaction potential U (r):

U (q) =
∫

d2rU (r)e−iq·r. (3)

We focus on the weakly interacting regime, where the
interaction energy per particle is much smaller than the Fermi
energy and the inequality,

pF r∗ � 1, (4)

is satisfied.
The potential U (r) becomes partially attractive at suf-

ficiently large tilting angles θ0, providing a possibility of
superfluid pairing. This occurs at θ0 exceeding a critical value
0.72 [27]. Assuming the absence of superfluid pairing the
ground state of the system is a Fermi liquid and one may use the
Landau theory relying on the existence of “dressed particles,”
or quasiparticles. At T = 0 the momentum distribution of free
quasiparticles is the step function,

n(p) = θ (pF − p), (5)

i.e., n(p) = 1 for p < pF and zero otherwise. The chemical
potential is equal to the boundary energy at the Fermi circle,
μ = εF ≡ ε(pF ). The quasiparticle energy ε(p) is a variational
derivative of the total energy with respect to the distribution
function n(p). Due to the interaction between quasiparticles,
the deviation δn of this distribution from the step function (5)
results in a change of the quasiparticle energy:

δε(p) =
∫

F (p,p′)δn(p′)
d2p′

(2π )2
. (6)

The interaction function of quasiparticles F (p,p′) is thus the
second variational derivative of the total energy with regard
to n(p). The quantity δn(p) is significantly different from zero
only near the Fermi surface, so that one may put p = pF n and
p′ = pF n′ in the arguments of F in Eq. (6), where n and n′
are unit vectors in the directions of p and p′.

The knowledge of the interaction function of quasiparticles
allows one to calculate the compressibility relying only on the
integration on the Fermi surface. One then obtains straightfor-
wardly the chemical potential, ground-state energy, and other
thermodynamic quantities. This idea belongs to Landau [37]
and it was pushed forward by Abrikosov and Khalatnikov [38]
and implemented for a two-component three-dimensional (3D)
Fermi gas with a weak contact repulsion, revealing many-body
(beyond mean field) effects and reproducing the results of
an earlier (direct) calculation of Lee-Huang-Yang [39,40].
The many-body theory relying on the Abrikosov-Khalatnikov
approach has been developed in Ref. [28] for 2D fermionic
single-component dipoles perpendicular to the plane of their
translational motion (θ0 = 0). This theory accounts for the
short-range physics in the scattering properties and represents
thermodynamic quantities as a series of expansion in the small
parameter pF r∗ up to the second order. The construction
of a similar theory for tilted dipoles requires extremely
cumbersome calculations and is beyond the scope of the
present paper. Instead, we intend to reveal the properties of
zero sound.

A distinguished feature of tilted 2D fermionic dipoles
is a small anisotropy of the Fermi surface. The related
corrections to the Fermi momentum, chemical potential, etc.,
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are proportional to pF r∗, and we omit higher order corrections.
Relations for these quantities have been derived in Ref. [27],
and we present them here for completeness without going
into detailed calculations. In contrast to strongly interacting
systems, in the weakly interacting regime the quasiparticle
energy is well defined at any momenta, not only near the
Fermi surface. One may write

ε(p) = h̄2p2

2m
− μ +

∫
F (p,p′)n(p′)

d2p′

(2π )2
, (7)

and take into account that exactly on the Fermi surface the
quasiparticle energy is zero:

ε(pF) = h̄2p2
F

2m
− μ +

∫
F (pF,p′)n(p′)

d2p′

(2π )2
= 0. (8)

In order to express the Fermi momentum through the density
n and the interaction strength, one has to solve Eqs. (7) and
(8) self-consistently with the particle number equation,

n =
∫

d2p

(2π )2
n(p). (9)

Integrating the right-hand side of this equation one has∫
p2

F (φ)dφ

2π
= p2

F0 = 4πn, (10)

where φ is the angle between the vector pF and the x axis.
Turning back to Eq. (8) we notice that to linear order in pF r∗
one may use the distribution function of a noninteracting Fermi
gas n(p′) = θ (pF0 − p′) and put the interaction function of
quasiparticles expressed through the Fourier transforms of the
interaction potential U (r) [27,28]:

F1(p,p′) = [U (0) − U (p − p′)]
= 2πd2|p − p′|(cos2 θ0 − sin2 θ0 cos2 φp−p′), (11)

where φp−p′ is the angle between the vector p − p′ and the x

axis. Then, integrating Eq. (8) over dφ and using Eq. (10) we
have

μ = εF0

(
1 + 32

9π
pF r∗P2(cos θ0)

)
, (12)

with εF0 = h̄2p2
F0/2m, and P2(cos θ0) = (3 cos2 θ0 − 1)/2 be-

ing the second-order Legendre polynomial. Equation (8)
immediately gives the anisotropic Fermi momentum:

pF (φ) = pF0

(
1 + 8

15π
pF r∗ sin2 θ0 cos 2φ

)
. (13)

For the quasiparticle energy near the Fermi surface, from
Eq. (7) we have

ε(p) = vF (φ)(p − pF (φ)), (14)

where

vF (φ) = vF0

(
1 + 4

3π
pF r∗P2(cos θ0)

− 2

5π
pF r∗ sin2 θ0 cos 2φ

)
(15)

is the radial component of the Fermi velocity, and vF0 =
h̄pF0/m.

III. INTERACTION FUNCTION OF QUASIPARTICLES

The interaction function of quasiparticles F (p,p′) consists
of two parts: the mean-field part and the many-body one,
and we need to know this function on the Fermi surface
(|p| = |p′| = pF ). The mean-field term is expressed through
the scattering amplitude [28], and the contribution linear in
pr∗ and p′r∗ is given by Eq. (11). The contribution F2(p,p′)
which is quadratic in pr∗ and p′r∗, depends on the short-range
physics. It is obtained from the solution of the 2D scattering
problem, and we omit terms which are proportional to higher
powers of pr∗ and p′r∗ (see [28] for θ0 = 0). Thus, the
mean-field contribution to the interaction function can be
written as

Fmf (p,p′) = F1(p,p′) + F2(p,p′), (16)

with F1(p,p′) from Eq. (11). We do not specify the expression
for F2(p,p′) and only mention that F2 = 0 for p = p′.

The many-body part of the interaction function is obtained
as the second variational derivative of the many-body (beyond
mean field) contribution to the total energy. This contribution is
expressed in terms of the off-shell scattering amplitude f (p′,p)
[28]:

Ẽmb = − 1

2S2

∑
p1,p2,p′

1

2m|f (p′,p) − f (p′,−p)|2
h̄2

(
p2

1 + p2
2 − p′2

1 − p′2
2

)
× n(p1)n(p2)n(p′

1)δp1+p2−p′
1−p′

2
, (17)

where p = (p1 − p2)/2 and p′ = (p′
1 − p′

2)/2. As we are
interested only in the powers of pr∗ and p′r∗ not larger than
two, the small anisotropy of the Fermi surface can be omitted.
For the off-shell amplitudes in Eq. (17) we may take the result
of the first Born approximation which is linear in pr∗ and p′r∗:

f (p′,p) − f (p′,−p)

= 2πd2{|p′ + p|(cos2 θ0 − sin2 θ0 cos2 φp+p′)

− |p − p′|(cos2 θ0 − sin2 θ0 cos2 φp−p′)}. (18)

We then obtain the many-body contribution to the interaction
function:

Fmb(p,p′) = F̃1(p,p′) + F̃2(p,p′); (19)

F̃1(p,p′) = −4h̄2

m
(pF0r∗)2

∫
p1<pF0

d2p1

p2
F0

δp+p1−p′−p2

p2
1 − p2

2

{
cos2 θ0(|p′ − p| − |p′ − p1|)

+ sin2 θ0

[
(p′ cos φp′ − p1 cos φp1 )2

|p′ − p1| − (p′ cos φp′ − p cos φp)2

|p − p′|
]}2

; (20)
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F̃2(p,p′) = −2h̄2

m
(pF0r∗)2

∫
p1<pF0

d2p1

p2
F0

δp+p′−p1−p2

2p2
F0 − p2

1 − p2
2

{
cos2 θ0(|p1 − p| − |p′ − p1|)

+ sin2 θ0

[
(p′ cos φp′ − p1 cos φp1 )2

|p′ − p1| − (p1 cos φp1 − p cos φp)2

|p − p1|
]}2

, (21)

where we have used the step function (5) for the distribution function of quasiparticles when integrating over p1, p2, and p′
1.

For the analysis of the zero sound modes we will need the p2 terms of the interaction function only at p = p′. One can easily
check that in this case the integral in Eq. (21) is equal to zero. In the integral of Eq. (20) we use the following notations:

p + p′

2pF0
= w;

p − p′

2pF0
= b;

p1 + p2

2pF0
= y. (22)

Then we have p1/pF0 = y − b; (p1 − p′)/pF0 = y − w, and Eqs. (19)–(21) are reduced to

Fmb(p,p′) = F̃1(p,p′)

= h̄2

m
(pF0r∗)2

∫ ymax

0

d2y

by cos φyb

{
cos2 θ0(2b − |y − w|) + sin2 θ0

[
(y cos φy − w cos φw)2

|y − w| − 2b cos2 φb

]}2

, (23)

where φy, φw, φb are the angles between the vectors y, w, b, and the x axis, and φyb is the angle between y and b. The variable
y changes from 0 to ymax = b cos φyb + √

1 − b2 sin2 φyb. For p′ → p we have b → 0, and omitting the terms proportional to
b2 and higher powers of b, we may write ymax = 1 + b cos φyb. We now recall that F (p,p′) = F (p′,p). It is easy to check that
F (p′,p) is given by the same Eq. (23), but with a different sign and ymax = 1 − b cos φyb. Then, for p′ → p (b → 0) we have

F (p,p′) + F (p′,p)

2
= F (p,p) = 2h̄2

m
(pF0r∗)2

∫ 1+b cos φyb

1−b cos φyb

dy

∫ 2π

0

dφy

4b cos φyb

{
cos2 θ0(2b − |y − w|)

+ sin2 θ0

[
(y cos φy − w cos φw)2

|y − w| − 2b cos2 φb

]}2

. (24)

For b → 0 the result of the integration over dy in Eq. (24) is simply obtained by putting y = 1 in the integrand and multiplying
it by 2b cos φyb. Then, omitting the terms proportional to b and putting w = 1 we obtain

F (p,p) = h̄2

m
(pF0r∗)2

∫ 2π

0
dφy

{
2(1 − cos φyw) cos4 θ0 − 2 sin2 θ0 cos2 θ0(cos φy − cos φw)2 + sin4 θ0

(cos φy − cos φw)4

2(1 − cos φyw)

}
.

(25)

The integration in Eq. (25) is straightforward and it gives

F (p,p) = 4πh̄2

m
(pF0r∗)2

{
cos4 θ0 − sin2 θ0 cos2 θ0

(
1

2
+ cos2 φp

)
+ sin4 θ0

(
1

8
+ 1

2
cos2 φp

)}
. (26)

For dipoles perpendicular to the plane of their translational motion (θ0 = 0) Eq. (26) reproduces the result of Ref. [28].

IV. DYNAMICAL STRUCTURE FACTOR
AND ZERO SOUND MODES

We now calculate the dynamical structure factor and
analyze zero sound modes. Consider a small scalar potential,

�(r,t) = �(k,ω) exp(ikr − iωt), (27)

acting on the system via the interaction Hamiltonian,

Ĥe =
∫

ρ̂(r,t)�(r,t)d2r, (28)

where ρ̂(r,t) is the operator of the particle density. The linear
density response function of the system, which is the density-
density correlation function, is defined as

χ (k,ω) = d〈ρ(k,ω)〉
d�(k,ω)

∣∣∣
�→0

, (29)

with the symbol 〈· · ·〉 standing for the statistical average. The
dynamical structure factor S(k,ω) is related to the imaginary

part of the response function:

−π [S(k,ω) − S(k,−ω)] = Imχ (k,ω). (30)

In the collisionless regime, where the frequency ω of vari-
ations of the momentum distribution function greatly exceeds
the relaxation rate, the distribution variations δn(p,r,t) are
related to deformations of the Fermi surface. Omitting the
collisional integral, the kinetic equation in the presence of an
external force reads [41]

∂δn

∂t
+ ∂ε(p)

∂h̄p
· ∂δn

∂r
− ∂n(p)

∂h̄p
·
{

∂δε(p)

∂r
+ ∂�(r,t)

∂r

}
= 0,

(31)

where n(p) is the equilibrium distribution function, ε(p) is the
quasiparticle energy at equilibrium, and its variations δε(p,r,t)
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are related to the variations of the distribution function through
the interaction function of quasiparticles:

∂δε(p,r,t)
∂r

=
∫

F (p,p′)
∂δn(p′,r,t)

∂r
d2p′

(2π )2
. (32)

Relying on Eq. (27) we represent the variations of the distri-
bution function in the form δn(p,r,t) = δn(p,k,ω) exp(ikr −
iωt) and transform Eq. (31) to

(kvp − ω − iη)δn(p,k,ω) − kvp
∂n(p)

∂ε(p)

×
{∫

F (p,p′)δn(p′,k,ω)
d2p′

(2π )2
+ �(k,ω)

}
= 0,

(33)

with η → +0 and vp = ∂ε(p)/∂h̄p, and we also took into
account that ∂n(p)/∂h̄p = vp∂n(p)/∂ε(p).

The distribution variations δn(p,k,ω) are different from
zero only for momenta p near the Fermi surface, where vp =
vF (p). Putting �(k,ω) = 0 in Eq. (33) one finds a dispersion
relation for the excitation modes. In the limit of interactions
tending to zero (F → 0) we immediately obtain particle-hole
modes near the Fermi surface, ω = kvF (p). Collective zero
sound modes will be obtained below in this section.

We first note that the quantity 〈ρ(k,ω)〉 entering Eq. (29)
for the density response function, is given by

〈ρ(k,ω)〉 =
∫

δn(p,k,ω)
d2p

(2π )2
, (34)

and we calculate δn(p,k,ω). Introducing the function ν̃(p̂):

δn(p,k,ω) = − kvF (p)

kvF (p) − ω − iη

∂n(p)

∂ε(p)
ν̃(p̂), (35)

Eq. (33) is reduced to

ν̃(p̂) + 1

h̄

∫ 2π

0
F (pF (φp)n,pF (φp′)n′)

× kvF (p′)
kvF (p′) − ω − iη

pF (φp′)

p̂′vF (p′)
ν̃(p̂′)

dφp′

(2π )2
+ �(k,ω) = 0,

(36)

where n and n′ are unit vectors in the directions of p and p′,
respectively.

Due to the anisotropy of the Fermi surface, the vectors p
and vF (p) are not parallel to each other and both pF and vF

depend on the angle φp between p̂ and the x axis. However,
the anisotropy is small and it only leads to a small correction
to the term pF (φp′)/p̂′vF (p′) in the integrand of Eq. (36), so
that this term can be put equal to m/h̄. We will also represent
the scalar product kvF (p) as kvF (φp) cos(φp − φk). We thus
write Eq. (36) as

ν(φp) − m

h̄2

∫ 2π

0
F (φp,φp′)

ν(φp′) cos(φp′ − φk)

s(φp′) − cos(φp′ − φk) + iη

× dφp′

4π2
+ �(k,ω) = 0, (37)

where s(φp) = ω/kvF (φp). Assuming |s − 1| � 1 we inte-
grate in Eq. (37) singling out the contribution from φp′ near φk

and denoting the rest of the integration as C(φp). This yields

ν̃(φp) − C(φp) + �(k,ω) − mF (φp,φk)ν̃(φk)

2πh̄2
√

s2(φk) − 1
= 0. (38)

Substituting the obtained ν̃(φp) into Eq. (37) we find a relation:

ν̃(φp) − mF (φp,φk)[C(φk) − �(k,ω)]

2πh̄2
√

s2(φk) − 1
− m2

8π3h̄4

∫ 2π

0

F (φp,φp′ )F (φp′,φk) cos(φp′ − φk)ν̃(φk)√
s2(φk) − 1 [s(φp′) − cos(φp′ − φk)]

dφp′ + �(k,ω) = 0. (39)

Here we omitted the unimportant contribution of φp′ away from φk in the integral,

m

4π2h̄2

∫ 2π

0

F (φp,φp′ )[C(φp′) − �(k,ω)] cos(φp′ − φk)

s(φp′) − cos(φp′ − φk)
dφp′ .

From Eq. (38) we immediately see that C(φk) − �(k,ω) = ν̃(φk)[1 − mF (φk,φk)/(2πh̄2
√

s2(φk) − 1)]. Then, putting φp = φk

in Eq. (39) gives

ν̃(φk) = −�(k,ω)

[
1 − mF (φk,φk)

2πh̄2
√

s2(φk) − 1
+

(
mF (φk,φk)

2πh̄2
√

s2(φk) − 1

)2

− m2

8π3h̄4

∫ 2π

0

F 2(φk,φp′ ) cos(φp′ − φk)dφp′√
s2(φk) − 1 [s(φp′) − cos(φp′ − φk)]

]−1

.

(40)

The mean-field contribution to F (φk,φk) is equal to zero, and hence in the second and third terms in the square brackets
in Eq. (40) we have to use the many-body interaction function F (φk,φk) given by Eq. (26). The third term is exactly canceled
by the contribution of φp′ near φk to the integral in the fourth term. For φp′ away from φk in this integral, we should use the
mean-field contribution to the interaction function given by Eq. (11), which is linear in pF0r∗. This is because the use of quadratic
contributions to the interaction function would lead to terms proportional to cubic or higher order powers of pF0r∗, which are
much smaller than the second term in the square brackets. Representing Eq. (11) on the Fermi surface in the form:

F1(φk,φp′ ) = 4πd2pF0 sin
|φk − φp′ |

2

{
P2(cos θ0) + 1

2
sin2 θ0 cos(φk + φp′ )

}
, (41)
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and putting s(φp′) = 1, the integration of the fourth term in the square brackets in Eq. (40) yields

m2

8π3h̄4

∫ 2π

0

F 2(φk,φp′) cos(φp′ − φk)dφp′√
s2(φk) − 1 [s(φp′) − cos(φp′ − φk)]

= (pF0r∗)2P2(cos θ0) sin2 θ0(2 cos2 φk − 1)√
s2(φk) − 1

. (42)

In Eqs. (41) and (42) we omitted the anisotropy of the Fermi surface as it leads to corrections which contain higher orders of
pF0r∗. As a result, Eq. (40) transforms to

ν̃(φk) = −�(k,ω)

[
1 − 2(pF0r∗)2

{
P 2

2 (cos θ0) + 1
8 sin4 θ0

}
√

s2(φk) − 1

]−1

. (43)

The pole of ν̃(φk) corresponds to the solution of Eq. (37)
with �(k,ω) = 0, i.e., to the eigenmodes of zero sound. In the
expression for s0(φk) the anisotropy due to mean-field effects
and the anisotropy due to the many-body contribution cancel
each other, and s0 becomes independent of φk:

s0 = 1 + 2(pF0r∗)4

{
P 2

2 (cos θ0) + 1

8
sin4 θ0

}2

. (44)

For θ0 = 0 Eq. (44) reproduces the result of Ref. [28]. The
zero sound velocity in the dispersion relation ω = v0k is

v0 = vF (φk)s0. (45)

Thus, the zero sound modes exist at any tilting angle θ0

(for θ0 > θc � 0.72 this is true at temperatures exceeding
the critical temperature of the superfluid transition). The
anisotropy of the zero sound is practically the same as
the anisotropy of the Fermi velocity [omitting corrections
to vF which are ∝(pF0r∗)2]. Equation (42) clearly shows
that in contrast to perpendicular dipoles (θ0 = 0), for tilted
dipoles the mean-field contribution is nonzero in the second
order. This is related to the angular dependence of the
interaction function F (p,p′) of quasiparticles, which in the
tilted case depends on both angles φp and φp′ , not only on
the difference between them. The mean-field contribution
for perpendicular dipoles appears only in higher orders of
perturbation theory. It is proportional to higher powers of pF0

and therefore is omitted. Note that without the many-body
contribution to the interaction function we would obtain that
the propagation of zero sound is possible only when the
result of Eq. (42) is positive. Namely, the zero sound exists
for θ0 < arccos(1/

√
3) � 0.96 and is anisotropic requiring

φk < π/4, or it exists for θ0 > 0.96 and φk > π/4. This is
consistent with numerical calculations of Ref. [27]. As we see,
the many-body contribution drastically changes the result.

We now return to Eq. (43) and use it for obtaining the linear
response function on the basis of Eqs. (29), (34), and (35).
Integrating in Eq. (34) and dividing the result by �(k,ω) we
obtain

χ (k,ω)

=
∫

d2p

(2π )2

cos(φp − φk)

s(φp) − cos(φp − φk) + iη

∂n(p)

∂ε(p)

ν̃(φp)

�(k,ω)

= − ms

2πh̄2
√

s2 − 1

ν̃(φk)

�(k,ω)

= m

2πh̄2

s
√

s2 − 1 −
√

s2
0 (φk) − 1

, (46)

where s ≡ s(φk). Actually, we should have put s = 1 in the
numerator of Eq. (46). However, keeping s in the numerator of
the expression for χ (k,ω) makes it consistent with the result
for a noninteracting 2D gas, which corresponds to s0 = 1 and
is valid for any s < 1. Thus, Eq. (46) becomes also valid for
any s significantly smaller than unity, where the interaction
between particles is not important. Relying on Eqs. (30) and
(46) we straightforwardly calculate the dynamical structure
factor. For s < 1 we have

S(k,ω) = m

(2πh̄)2

s
√

1 − s2

s2
0 − s2

; s < 1. (47)

For s > 1 there is only a δ-functional contribution of the zero
sound:

S(k,ω) = m

(2πh̄)2
s

√
s2

0 − 1 δ(s − s0); s > 1. (48)

The obtained dynamical structure factor is shown in
Fig. 2. Note that for a noninteracting 2D Fermi gas one
obtains a square root singularity in S for ω/kvF → 1. The
interaction between particles eliminates this singularity and
we have S vanishing as

√
1 − (ω/kvF )2 for ω/kvF → 1,

which is different from the 3D unpolarized interacting Fermi
gas where S vanishes logarithmically for ω/kvF → 1.

V. RELAXATION RATE OF QUASIPARTICLES

The conditions of the collisionless regime, required for the
existence of zero sound, are easily achievable in experiments
with polar molecules or magnetic atoms. This is seen from the
dimensional estimate of the relaxation rate of quasiparticles.
At temperatures T � εF the relaxation of a nonequilibrium

S

ω/k vF

0.2 0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

FIG. 2. (Color online) Dynamical structure factor [in units of
m/(2πh̄2)2] as a function of ω/kvF for s0 = 1.05.
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distribution of quasiparticles occurs due to binary collisions of
quasiparticles which have energies in a narrow interval near the
Fermi surface. The width of this interval is ∼T and, hence, the
relaxation rate contains a small factor (T/εF )2 (see, e.g., [42]).
The rate is also proportional to the 2D density n and to the
density of states on the Fermi surface, which is ∼m/h̄2. Using
the Fermi golden rule we may write a dimensional estimate for
the inverse relaxation time as τ−1 ∼ (g2

eff/h̄)(m/h̄2)n(T/εF )2,
where the quantity geff is the effective interaction strength.
Confining ourselves to the leading part of this quantity,
from Eq. (11) we have geff ∼ pF d2 ∼ h̄2pF r∗/m. We thus
obtain

1

τ
∼ h̄n

m
(pF r∗)2

(
T

εF

)2

∼ mT 2r2
∗

h̄3 . (49)

Interestingly, for considered temperatures T � εF the relax-
ation time τ is density independent. Excitations with fre-
quencies ω � 1/τ are in the collisionless regime. Assuming
T ∼ 10 nK, for dysprosium atoms which have magnetic
moment 10 μB equivalent to the dipole moment d � 0.1 D,
we find that τ is on the level of tenths of a second. The
required condition T � εF is satisfied for εF � 50 nK,
which corresponds to n � 3 × 108 cm−2. In such conditions
excitations with frequencies of the order of a hertz or higher
will be in the collisionless regime.

The occurrence of relaxation of excitations in the collision-
less regime is important for understanding the visibility of zero
sound. The dynamical structure factor S(k,ω) characterizes the
scattering process in which the momentum k and energy h̄ω

are transferred to the system. The visibility of the zero sound
peak in the structure factor can be smeared out by the fact
that it is very close to the particle-hole continuum (see Fig. 2).
The related distance is ∼(pF0r∗)4 in units of ω/vF k. In order

to make sure that this is not the case one has to find the
actual height and width of the zero sound peak. Also, one
can think of observing the oscillations of the cloud induced
by small modulations of the density, with a time delay after
switching off the driving force perturbing the density. In both
cases the picture is determined by the damping of zero sound
and quasiparticle excitations.

Thus, we should compare the relaxation rate of quasi-
particles near the Fermi surface with the damping rate of
zero sound. First, we calculate the rate of relaxation of a
quasiparticle near the Fermi surface, with a given energy
ε(p) � εF0 at T → 0. The relaxation mechanism involves
the interaction of this quasiparticle with the filled Fermi
sphere, which annihilates the quasiparticle, creates a hole with
momentum p1 (annihilates a particle with momentum p1 inside
the Fermi sphere), and creates quasiparticles with momenta
p2 and p3. As the relaxation rate τ−1 is small, we use the
first-order perturbation theory (Fermi golden rule) relying on
the interaction Hamiltonian Ĥint given by the second term of
Eq. (2). We then have

1

τ
= 2π

h̄

∑
p1,p2,p3

|〈â†
p1

âp2 âp3Ĥintâ
†
p〉|2

× δ(ε(p) + ε(p1) − ε(p2) − ε(p3)), (50)

where the symbol 〈· · ·〉 stands for the average over the
equilibrium state, and

Ĥint = 1

2S

∑
p1,p2,p3

U (p1 − p3)â†
p3

â†
p4

âp2 âp1 .

Using the Wick theorem and the relations 〈â†
pi

âp′
i
〉 =

n(pi)δpip′
i
, 〈âpi

â
†
p′

i
〉 = [1 − n(pi)]δpip′

i
, we reduce Eq. (50) to

1

τ
= 2π

h̄

∫ ∞

0

p1dp1

(2π )2

∫ ∞

0

p2dp2

(2π )2

∫ 2π

0
dφ1

∫ 2π

0
dφ2 n(p1)[1 − n(p2)][1 − n(p3)][U (p − p2) − U (p1 − p2)]2

× δ(ε(p) + ε(p1) − ε(p2) − ε(p3))δp+p1, p2+p3 , (51)

where φ1 (φ2) are the angles between the vectors p1 (p2) and the
x axis, and the presence of the Kronecker symbol δp+p1, p2+p3

reflects the momentum conservation law.
We omit the small anisotropy of the Fermi surface in the

δ function and occupation numbers. Since the anisotropy is
omitted in all derivations below, we will use the notations
vF and pF for the Fermi velocity vF and Fermi momentum
pF . As all involved quasiparticle states are near the Fermi
surface, we represent the energies of these states in the
form ε(pi) = h̄vF qi , where qi = pi − pF and |qi | � pF .
The particle that undergoes the relaxation is certainly above
the Fermi surface, and q = p − pF > 0. We first integrate
in Eq. (51) over the angles φ2 and φ1. The dependence of
the integrand on these angles is contained in the δ function
and in the Fourier transforms U (p − p2) and U (p1 − p2).
From the energy and momentum conservation laws we have

p3 = p + p1 − p2 = |p + p1 − p2|, which gives a relation,

pp1[(1 − cos(φ1 − φ)]

= pp2[1 − cos(φ2 − φ)] + p1p2[1 − cos(φ2 − φ1)], (52)

with φ being an angle between the vector p and x axis.
The calculation of the integral in Eq. (51) is presented in

the Appendix and it gives the following result for the inverse
relaxation time:

1

τ
= 4h̄

πm
(pF r∗)2q2

{(
3

4
ln

p2
F

q2
+ 3

4
+ 3

2
ln 2

)

× (cos2 θ0 − sin2 θ0 cos2 φ)2 + F(θ0,φ) + F̃(θ0,φ)

}
,

(53)
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where

F(θ0,φ) = sin2 θ0 cos2 θ0(2 cos2 φ − 1)

+ sin4 θ0

(
1

4
+ cos2 φ − 2 cos4 φ

)
, (54)

F̃(θ0,φ) = F(θ0,φ)

− π

2

(
cos4 θ0 − cos2 θ0 sin2 θ0 + 1

8
sin4 θ0

)
.

(55)

Recalling that the quasiparticle energy is ε(q) = h̄vF q and
p2

F = 4πn, we represent Eq. (53) in the form,

1

τ
= 6h̄

m
n(pF r∗)2

(
ε(q)

εF

)2

A(q,θ0,φ), (56)

where

A = (cos2 θ0 − sin2 θ0 cos2 φ)2 ln

[
4e1/2εF

ε(q)

]

+ 2

3
(F(θ0,φ) + F̃(θ0,φ)). (57)

The dependence τ−1 ∝ q2 is generic for Fermi liquids [42],
and the appearance of the logarithmic factor in Eq. (56) is due
to the 2D geometry of the system.

The obtained relaxation rate strongly depends on the tilting
angle θ0 and on the angle φ of the quasiparticle wave vector p
with respect to the tilting direction. The rate reaches maximum
when the dipoles are perpendicular to the plane of their
translational motion (θ0 = 0). In this case,

Amax = ln

[
4e1/2εF

ε(q)

]
.

The minimum value of τ−1 is achieved for the dipoles lying in
the plane of their translational motion (θ0 = π/2) at the angle
φ equal to π/2. We then have

Amin = 1

3
− π

24
� 0.2.

The absolute value of the relaxation time of an excitation
of a given frequency (in units of the Fermi energy) at a given
density, strongly depends on a particular system. For example,
in the case of dysprosium atoms (d � 0.1 D and r∗ � 25 nm) at
a density n ∼ 109 cm−2 we have the Fermi energy approaching
200 nK (5 kHz), and Eq. (56) gives the relaxation time τ

of the order of a second or higher for the excitation energy
of 10−2εF (50 Hz). At the same time for NaK molecules,
selecting the electric field that provides d � 0.4 D (r∗ �
100 nm), for ε(q) � 10−2εF (which is 150 Hz as we now
have εF � 15 kHz) we obtain τ ≈ 20 ms at the same density
of 109 cm−2 and θ0 = 0.

VI. DAMPING OF ZERO SOUND

The calculation of the damping rate of zero sound modes
is more involved. It has to include the zero sound through
the nonequilibrium character of the distribution function. The
discussion of this topic has been initiated by Landau [44] who
assumed that the transition probability for the scattering of
quasiparticles with given momenta in the wave of zero sound
is the same at temperatures T � h̄ω, where ω is the frequency
of the zero sound, and at T = 0. He then established a relation
between the damping of zero sound at T � h̄ω and at zero
temperature [30,44]. In a later stage, theoretical studies of
the attenuation of zero sound in liquid 3He were based on
microscopic considerations [45,46].

Following the idea of Landau we first consider the attenua-
tion of zero sound at temperatures T � h̄ω and start with the
kinetic Eq. (31) in which we include the collisional integral
I(n) and put the external potential � → 0:

∂δn

∂t
+ ∂ε(p)

∂h̄p
· ∂δn

∂r
− ∂n(p)

∂h̄p
· ∂δε(p)

∂r
= I(n), (58)

where n(p) is the equilibrium distribution function, δn(p,r,t) is
the deviation of the distribution function from the equilibrium
value, and variations of the quasiparticle energy are expressed
through δn by Eq. (32). In the presence of zero sound,
variations of the distribution function follow from Eq. (35).
Omitting the small anisotropy of the Fermi surface, δn can be
written as [see Eq. (35)]

δn(p,r,t) = −∂n(p)

∂ε(p)
ν(φ) exp{ikr − iωt}, (59)

where the function ν(φ) has a sharp peak for φ → φk , with
φ ≡ φp and φk being the angle between the wave vector of the
zero sound k and the tilting direction.

At temperatures T � h̄ω one may omit the frequency and
momentum of the zero sound in the energy and momentum
conservation laws. Then the collisional integral reduces to the
form [47],

I(n) = 1

T

∫
Wn[ε(q)]n1(1 − n2)(1 − n3)(ζ2 + ζ3 − ζ1 − ζ )δ[ε(q) + ε1 − ε2 − ε3]

d2p1d
2p2

(2π )4
, (60)

where εi = ε(qi), ni = n(ε(qi)), and ζi = ν(φi) + (m/2πh̄2)
∫

ν(φ′
i)F (φi,φ

′
i)dφ′

i . The momentum conservation law reads
p + p1 = p2 + p3.

The quantity W is given by

W = 2π

h̄
[U (p − p2) − U (p1 − p2)]2, (61)

and the notations are the same as in Sec. V.
The functions ζi are taken on the Fermi surface, and we can do the same with respect to U (p − p2) and U (p1 − p2). The only

way to satisfy the momentum conservation on the Fermi surface and get a nonzero quantity [ζ (φ) + ζ (φ1) − ζ (φ2) − ζ (φ3)] is
to put φ1 = φ + π (and, hence, φ3 = φ2 + π ). We then have W (φ2,φ) following from Eq. (61) with [U (p − p2) − U (p1 − p2)]
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from Eq. (A7), and the collisional integral becomes

I(n) = m

h̄2T

∫ 2π

0

dφ2

(2π )4

∫ ∞

−∞
dq1

∫ ∞

−∞
dq2

W (φ2,φ)

| sin(φ2 − φ)| [ζ (φ2) + ζ (φ2 + π ) − ζ (φ) − ζ (φ + π )]n[ε(q)]n1(1 − n2)(1 − n3).

(62)

Assuming εq � T and using the finite temperature Fermi-Dirac distribution for n1, n2, and n3 we then obtain

I(n) = π2mT 2

2(h̄2vF )2

∫ 2π

0

dφ2

(2π )4

W (φ2,φ)

| sin(φ2 − φ)| [ζ (φ) + ζ (φ + π ) − ζ (φ2) − ζ (φ2 + π )]
∂n[ε(q)]

∂ε(q)
. (63)

We now set

ν(φ) = ν̄(φ)

s0(φk) − cos(φ − φk)
, (64)

where ν̄(φ) is a smooth function, and s0 is given by Eq. (44). To zero order in pF r∗ we omit the second term in the expression
for ζ (φi) and then obtain∫ 2π

0

π2W (φ2,φ)

2| sin(φ2 − φ)|
dφ2

(2π )4
[ζ (φ) + ζ (φ + π ) − ζ (φ2) − ζ (φ2 + π )] = πh̄3

m2
(pF r∗)2B(φ), (65)

where

B(φ) =
∫ 2π

0

(
ν̄(φ)

s0 − cos(φ − φk)
+ ν̄(φ + π )

s0 + cos(φ − φk)
− ν̄(φ2)

s0 − cos(φ2 − φk)
− ν̄(φ2 + π )

s0 + cos(φ2 − φk)

)

×
{∣∣∣∣sin

(
φ2 − φ

2

)∣∣∣∣
[

cos2 θ0 − sin2 θ0 sin2

(
φ2 + φ

2

)]
−

∣∣∣∣cos

(
φ2 − φ

2

)∣∣∣∣
[

cos2 θ0 − sin2 θ0 cos2

(
φ2 + φ

2

)]}2

× dφ2

| sin(φ2 − φ)| . (66)

To zero order in pF r∗ we may put all ν̄ functions in Eq. (66) equal to ν̄(φk). This, in particular, yields

B(φk) = 4ν̄(φk)

s2
0 − 1

{
(cos2 θ0 − sin2 θ0 cos2 φk)2 ln

[
s0 + 1

s0 − 1

]
+ 2F̃(θ0,φk)

}
, (67)

where the function F̃(θ0,φk) has been introduced in Eq. (55).
Using Eq. (65) the collisional integral (63) reduces to

I(n) = 1

τT

∂n

∂ε(q)
B(φ), (68)

with
1

τT

= πT 2

2h̄εF

(pF r∗)2, (69)

and making use of Eqs. (59) and (68) the kinetic Eq. (58) takes the form,

[ω − kvF cos(φ − φk)]ν(φ) − mkvF

4π2h̄2 cos(φ − φk)
∫ 2π

0
dφ′F (φ,φ′)ν(φ′) = − iB(φ)

τT

. (70)

In the presence of damping, the zero sound frequency ω is complex for real k. We will use the notation ω/kvF = s, where the
real part of s is equal to s0 and the imaginary part is related to the attenuation of zero sound. We also assume that the damping
rate is much smaller than the shift of the frequency ω from kvF , given by kvF (s0 − 1). This means that (s0 − 1) greatly exceeds
the imaginary part of s. We thus may first proceed with Eq. (70) in the same way as we did in Sec. IV [see Eqs. (36)–(39)] and
represent (70) in the form similar to Eq. (39). The difference is that now we replace �(k,ω) by the term iB(φ)/τT . We have

ν̃(φ) − mF (φ,φk)ν̃(φk)

2πh̄2
√

s2(φk) − 1
+ m2F (φk,φk)F (φ,φk)ν̃(φk)

4π2h̄4[s2(φk) − 1]
− m2

8π3h̄4

∫ 2π

0

F (φ,φ′)F (φ′,φk)ν̃(φk) cos(φ′ − φk)dφ′√
s2(φk) − 1 [s(φ′) − cos(φ′ − φk)]

= −iB(φ)

kvF τT

,

(71)

where the function ν̃ has been introduced in Eq. (35) and it is related to ν as ν(φ) = ν̃(φ) cos(φ − φk)/(s − cos(φ − φk)). The
contribution of φ′ close to φk in the integral over dφ′ in the last term of the left-hand side of Eq. (71) and the third term of the
left-hand side cancel each other, and Eq. (71) reduces to

ν̃(φ) − mF (φ,φk)ν̃(φk)

2πh̄2
√

s2(φk) − 1
− m2

8π3h̄4

∫ 2π

0

F1(φ,φ′)F1(φ′,φk)ν̃(φk) cos(φ′ − φk)dφ′√
s2(φk) − 1 [s(φ′) − cos(φ′ − φk)]

= −iB(φ)

kvF τT

, (72)

with the mean-field interaction function F1 given by Eq. (41).
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We now take the limit φ → φk and note that then the left-hand side of Eq. (72) can be conveniently expressed in terms of s0

and s, which leads to the relation,

ν̃(φk)

(
1 −

√
s2

0 − 1

s2 − 1

)
= − iB(φk)

kvF τT

. (73)

In Eq. (67) for B(φk) we may replace ν̄(φk) with ν̃(φk) and thus obtain from Eq. (73),

Ims = − 8

kvF τT

D(θ0,φk), (74)

with

D(θ0,φk) = 1

2
(cos2 θ0 − sin2 θ0 cos2 φk)2 ln

[
s0 + 1

s0 − 1

]
+ F̃(θ0,φk). (75)

Writing the zero sound frequency as ω = s0kvF − i/2τ0T , for the damping rate τ−1
0T we find

1

τ0T

= 16D(θ0,φk)

τT

. (76)

We now proceed in the same way as has been done in Ref. [46] for the attenuation of zero sound in 3He and as described in
Ref. [47]. In the regime where the zero sound frequency ω is comparable with T or exceeds it, the reduction of the number of
the zero sound quanta per unit time due to quasiparticle collisions is given by∫

W̄ ({pi})[n1n2(1 − n3)(1 − n4) − n3n4(1 − n1)(1 − n2)]δ(p1 + p2 − p3 − p4 − p)δ(ε1 + ε2 − ε3 − ε4 − h̄ω)
∏

dpi . (77)

The quantity W̄ is not necessarily the same as W . However, assuming that the angular integrations are the same at an arbitrary
ratio h̄ω/T and in the classical limit T � h̄ω, we may proceed with the integration over the energies. This gives∫

[n1n2(1 − n3)(1 − n4) − n3n4(1 − n1)(1 − n2)]δ(p1 + p2 − p3 − p4 − p)δ(ε1 + ε2 − ε3 − ε4 − h̄ω)
∏

dεi

∝ T 2ω

[
1 + ω2

4π2T 2

]
. (78)

The absorption coefficient is proportional to this integral, and the proportionality coefficient (which depends only on ω) can be
found from the limiting case of T � h̄ω. So, the quantity in the square brackets in the right-hand side of Eq. (78) represents the
ratio of the damping rate of zero sound at an arbitrary value of h̄ω/T to the damping rate at T � h̄ω. Using Eq. (69) for τT we
thus obtain the following damping rate at T = 0:

1

τ0
= ω2

8πT 2

1

τ0T

= 2εF

πh̄

(
h̄ω

εF

)2

(pF r∗)2D(θ0,φk) = 4h̄

m
n

(
h̄ω

εF

)2

(pF r∗)2D(θ0,φk), (79)

and using Eq. (44) for s0 we rewrite D(θ0,φk) in the form,

D(θ0,φk) = 2(cos2 θ0 − sin2 θ0 cos2 φk)2 ln

(
1

pF r∗

)
+ F̃(θ0,φk) − (cos2 θ0 − sin2 θ0 cos2 φk)2 ln

(
P 2

2 (cos θ0) + 1

8
sin2 θ0

)
.

The condition that the damping rate is much smaller than (s0 − 1)ω requires the inequality,

h̄ω

εF

� (pF r∗)2, (80)

which is important for the visibility of the zero sound in the dynamical structure factor.
The damping rate of zero sound is strongly anisotropic, and the anisotropy is similar to that of the relaxation rate of

quasiparticles. The rate reaches maximum for dipoles perpendicular to the plane of their translational motion. We then have

Dmax = 2 ln

(
1

pF r∗

)
,

and for pF r∗ ≈ 0.5 and εF /h̄ω ∼ 100 the damping time τ0 is by an order of magnitude larger than the relaxation time of
quasiparticles with energy equal to h̄ω. The damping rate is minimal for dipoles lying in the plane of translational motion and
the angle φk = π/2. Then we obtain

Dmin = 4 − π

16
� 0.05.
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VII. CONCLUDING REMARKS

The obtained results draw promising prospects for the
observation of zero sound in 2D gases of polar molecules
or magnetic atoms in the two-photon Bragg spectroscopy
experiments by measuring the dynamical structure factor. This
becomes especially feasible in view of the recent success
in creating spatially uniform ultracold quantum gases [32].
The distance of the zero sound peak from the border of the
particle-hole continuum (see Fig. 2) is ∼ω(pF r∗)4. Comparing
it with the damping rate of the zero sound given by Eq. (79)
we see that the latter is much smaller if the condition (80)
is satisfied. This condition is easily fulfilled even for rather
small pF r∗. For realistic systems one can think of the zero
sound frequency of the order of a few tens or hundreds of
hertz, whereas the Fermi energy can easily be a few kilohertz
(a few hundreds of nanokelvins), so that the ratio εF /h̄ω

exceeds 10. Under the condition (80) the height of the zero
sound peak in the structure function (2πh̄)2S/m is ∼εF /h̄ω,
which is simply obtained replacing the δ function in Eq. (47)
by τ0kvF . The maximum of the particle-hole continuum
following from Eq. (48) is ∼(pF r∗)−2 and it is much lower
under the condition (80). Thus, the zero sound peak is not
smeared out by the particle-hole continuum and can be visible
in the dynamical structure factor. For example, if pF r∗ ≈ 0.5,
then the separation between the border of the particle-hole
continuum and the zero sound peak is ∼ω(pF r∗)4 ∼ 20 Hz for
the sound frequency of a few hundred hertz. It can be easily
resolved as the relative frequency of the two Bragg beams can
be controlled on the level of a hertz.

Owing to a remarkable progress in experiments with
ultracold quantum gases, it is also promising to directly
observe the propagation of zero sound in the 2D dipolar
Fermi gas. Using a tightly focused and far detuned laser beam

one can create a potential to introduce a localized density
modulation in the gas, without heating it. This technique
has been used to directly study the propagation of sound in
Bose-Einstein condensates [48] and in resonantly interacting
Fermi gases [49–51]. In our system, the far detuned laser can
be focused to the center of the 2D sample, and one can choose
a proper power and shape of the excitation pulse to resonantly
drive the desired zero sound mode (see, e.g., [51]). After the
zero sound mode is excited, one can observe the time evolution
of the density profile and thus extract the information on the
propagation of the mode.

Incoherent particle-hole excitations will also be excited
during the pulse. However, as we have shown above, the decay
of the zero sound is slower than that of particle-hole excitation.
After a time of the order of a fraction of the zero sound damping
time τ0, let say 0.2τ0 or 0.3τ0, quasiparticle excitations are
damped out and one is expected to see only the zero sound
contribution to modulations of the density. The time τ0 can
be easily made on the level of a second. For example, this
is the case for NaK molecules in the electric field providing
d � 0.3 D (r∗ � 50 nm). Then, at the 2D density n ∼ 109 cm−2

we have the Fermi energy approaching 1 μK and pF r∗ ≈ 0.5,
and Eq. (79) gives τ0 ∼ 0.2 s for dipoles perpendicular to the
plane of their translational motion.
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APPENDIX: CALCULATION OF THE INTEGRAL FOR THE RELAXATION RATE OF QUASIPARTICLES

It is convenient to represent Eq. (52) in the form,

sin(φ2 − φ1 − φ̃) = pp1[1 − cos(φ1 − φ)] − (p2p1 + pp2)√
[p2p1 + pp2 cos(φ1 − φ)]2 + p2p2

2 sin2(φ1 − φ)
, (A1)

where

sin φ̃ = p2p1 + pp2 cos(φ1 − φ)√
[p2p1 + pp2 cos(φ1 − φ)]2 + p2p2

2 sin2(φ1 − φ)
; cos φ̃ = pp2 sin(φ1 − φ)√

[p2p1 + pp2 cos(φ1 − φ)]2 + p2p2
2 sin2(φ1 − φ)

.

For the derivative dp3/dφ2 we have

∣∣∣∣dp3

dφ2

∣∣∣∣ =
√

[p2p1 + pp2 cos(φ1 − φ)]2 + p2p2
2 sin2(φ1 − φ)

p3
| cos(φ2 − φ1 − φ̃)|

= 2pF

∣∣∣∣sin

(
φ1 − φ

2

)∣∣∣∣
√

cos2

(
φ1 − φ

2

)
+ (q − q2)(q2 − q1)/p2

F .

In the Fourier transforms U (p − p2) and U (p1 − p2) we may put |p| = |p1| = |p2| = pF . Then Eq. (52) gives either φ2 = φ1 or
φ2 = φ. In both cases, using Eq. (11) we obtain

U (p − p2) − U (p1 − p2) = ±4πd2pF

∣∣∣∣sin

(
φ1 − φ

2

)∣∣∣∣
{

cos2 θ0 − sin2 θ0 sin2

(
φ1 + φ

2

)}
. (A2)
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Integrating over φ2 in Eq. (51) we then have∫ 2π

0
dφ1

∫ 2π

0
dφ2[U (p − p2) − U (p1 − p2)]2δ(ε(p) + ε(p1) − ε(p2) − ε(p3))δp+p1, p2+p3 = 16π2md4

h̄2 I (q1,q2), (A3)

where the quantity I (q1,q2) also depends on q, θ0, φ and is given by

I (q1,q2) =
∫ 2π

0
dφ1

∣∣sin
(

φ1−φ

2

)∣∣ [cos2 θ0 − sin2 θ0 sin2
(

φ1+φ

2

)]2√
cos2

(
φ1−φ

2

) + (q − q2)(q2 − q1)/p2
F

. (A4)

Formally, when integrating over φ1 one should put a constraint cos2[(φ1 − φ)/2] � (q2 − q)(q2 − q1)/p2
F in order to satisfy

the inequality sin2(φ2 − φ1 − φ̃) � 1. However, at T = 0 the created particles are above the Fermi surface, so that q2 > 0 and
q3 = q + q1 − q2 > 0. The annihilated particle is below the Fermi surface and, hence, q1 < 0. We thus have q > q2 and q2 > q1,
and the inequality cos2[(φ1 − φ)/2] � (q2 − q)(q2 − q1)/p2

F is satisfied for any φ1. Putting n(p1) = 1, n(p2) = n(p3) = 0 in
Eq. (51) and writing pidpi = pF dqi we set the following limits of integration over q1 and q2:

−q � q1 � 0; (A5)

0 � q2 � q + q1. (A6)

Equations (A3) and (A4) describe the contributions which correspond to φ2 close to φ1 or to φ. Another contribution comes
from φ1 close to φ + π . In this case we may put φ1 = φ + π in the Fourier transform U (p1 − p2), which gives

|U (p − p2) − U (p1 − p2)| = 4πd2pF

[∣∣∣∣sin

(
φ1 − φ

2

)∣∣∣∣
{

cos2 θ0 − sin2 θ0 sin2

(
φ1 + φ

2

)}

−
∣∣∣∣cos

(
φ1 − φ

2

)∣∣∣∣
{

cos2 θ0 − sin2 θ0 cos2

(
φ1 + φ

2

)}]
. (A7)

Performing similar calculations as above we obtain Eq. (A3) in which the function I (q1,q2) is replaced with Ĩ (q1,q2) given by
(see [43])

Ĩ (q1,q2) =
∫ 2π

0
dφ2

{∣∣sin
(

φ2−φ

2

)∣∣ [cos2 θ0 − sin2 θ0 sin2
(

φ2+φ

2

)]2

2
√

cos2
(

φ2−φ

2

) − 2(q2 − q1)/pF

−
[

cos2 θ0 − sin2 θ0 sin2

(
φ2 + φ

2

)]

×
[

cos2 θ0 − sin2 θ0 cos2

(
φ2 + φ

2

)]
+ 2

∣∣sin
(

φ2−φ

2

)∣∣ ∣∣cos
(

φ2−φ

2

)∣∣
4 sin2

(
φ2−φ

2

) + (q − q2)2/p2
F

[
cos2 θ0 − sin2 θ0 cos2

(
φ2 + φ

2

)]2
}

,

(A8)

where we keep only leading powers of q,q1,q2. Note that when integrating the first term in the curly brackets we have a constraint
that the argument of the square root in the denominator is positive.

With both contributions taken into account, Eq. (51) reduces to

1

τ
= 2h̄

πm
(pF r∗)2

∫ 0

−q

dq1

∫ q1+q

0
dq2(I (q1,q2) + Ĩ (q1,q2)). (A9)

The integrals (A4) and (A8) take the forms

I (q1,q2) = 4
∫ 1

0

dx√
x2 + (q − q2)(q2 − q1)/p2

F

{(cos2 θ0 − sin2 θ0 cos2 φ)2 + 2x2 sin2 θ0 cos2 θ0(2 cos2 φ − 1)

+ sin4 θ0[x4(sin4 φ + cos4 φ − 6 sin2 φ cos2 φ) + x2(6 cos2 φ sin2 φ − 2 cos4 φ)]}
= 2(cos2 θ0 − sin2 θ0 cos2 φ)2 ln

(
4p2

F

(q − q2)(q2 − q1)

)
+ 4F(θ0,φ); (A10)

Ĩ (q1,q2) = 2
∫ 1

0
dx

[
1√

x2 + 2(q2 − q1)/pF

+ 4x

4x2 + (q − q2)2/p2
F

]
{(cos2 θ0 − sin2 θ0 cos2 φ)2

+ 2x2 sin2 θ0 cos2 θ0(2 cos2 φ − 1) + sin4 θ0[x4(sin4 φ + cos4 φ − 6 sin2 φ cos2 φ)

+ x2(6 cos2 φ sin2 φ − 2 cos4 φ)]} − 2π

(
cos4 θ0 − cos2 θ0 sin2 θ0 + 1

8
sin4 θ0

)

= (cos2 θ0 − sin2 θ0 cos2 φ)2 ln

(
8p3

F

(q − q2)2(q2 − q1)

)
+ 4F̃(θ0,φ), (A11)
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where we omitted higher powers of q, q1, and q2 and introduced the functions:

F(θ0,φ) = sin2 θ0 cos2 θ0(2 cos2 φ − 1) + sin4 θ0

(
1

4
+ cos2 φ − 2 cos4 φ

)
,

F̃(θ0,φ) = F(θ0,φ) − π

2

(
cos4 θ0 − cos2 θ0 sin2 θ0 + 1

8
sin4 θ0

)
.

Substituting the results of Eqs. (A10) and (A11) into Eq. (A9) and integrating over q1 and q2 we obtain

1

τ
= 4h̄

πm
(pF r∗)2q2

{(
3

4
ln

p2
F

q2
+ 3

4
+ 3

2
ln 2

)
(cos2 θ0 − sin2 θ0 cos2 φ)2 + F(θ0,φ) + F̃(θ0,φ)

}
.
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