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We develop a Hamiltonian that describes the time-dependent formation of a molecular Bose-Einstein
condensate from a Bardeen-Cooper-Schrieffer state of fermionic atoms as a result of slowly sweeping through
a Feshbach resonance. In contrast to many other calculations in the field, our Hamiltonian includes the
leading postadiabatic effects that arise because the crossover proceeds at a nonzero sweep rate. We apply a
path-integral approach and a stationary phase approximation for the molecular k = 0 background, which is a
good approximation for narrow resonances [see, e.g., Diehl and Wetterich, Phys. Rev. A 73, 033615 (2006)
as well as Diehl, Gies, Pawlowski, and Wetterich, Phys. Rev. A 76, 053627 (2007)]. We use two-body adiabatic
approximations to solve the atomic evolution within this background. The dynamics of the k �= 0 molecular
modes is solved within a dilute gas approximation and by mapping it onto a purely bosonic Hamiltonian. Our
main result is a postadiabatic effective Hamiltonian in terms of the instantaneous bosonic (Anderson-)Bogoliubov
modes, which holds throughout the whole resonance, as long as the Feshbach sweep is slow enough to avoid
breaking Cooper pairs.
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I. THE BCS-BEC CROSSOVER PROBLEM

The ground state of a gas of weakly attractively interacting
fermions is a BCS state, in which most of the fermions
behave ideally, but some of those near the Fermi surface
form something like a Bose-Einstein condensate (BEC) of
Cooper pairs. As the extreme example of a gas of protons
and electrons shows, however, stronger attractions instead
produce a true condensate of tightly bound composite bosons.
Current laboratory techniques exploit the atomic physics of
collisional Feshbach resonances [1] to produce real ultracold
gases in which attractions can be varied dramatically, admitting
experimental study of the entire BCS-BEC crossover [2–5].
Several labs can now produce molecular condensates from
weakly interacting degenerate Fermi gases, by adiabatically
changing a control parameter (typically a magnetic field).
Prospects for more precise and detailed measurements of this
process and its products are good.

Theoretical studies of this problem have so far focused
mainly on equilibrium properties of systems with various fixed
(instantaneous) values of the interaction parameter [6–9]. Up-
to-date reviews can be found, for example, in [4,10,11]. Along
with wide tunability of equilibrium parameters, however,
controllable and observable nonequilibrium dynamics are a
major advantage of cold quantum gases as experimental
systems.

The dynamics of cold, dilute quantum gases are, of course,
comparatively simple. On the one hand, this dynamical
simplicity may ultimately allow mesoscopic quantum gas
systems to shed light on problems, such as the emergences of
irreversibility and classicality, that are even more fundamental
than the issue of which effective Hamiltonian is correct. On
the other hand, even for cold dilute gases, quantum many-body
theory can be difficult enough that understanding will require
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comparisons among experiments, phenomenological models,
and first-principles calculations for simple cases.

In the present work we therefore develop a rigorous theory
for weakly nonadiabatic evolution of a dilute quantum gas
from BCS to BEC regimes, via a time-dependent Feshbach
resonance, in the tractable limit of a narrow resonance. We
show that for a finite effective resonance width (e.g., created by
a sufficiently large background scattering length), adiabaticity
can, in principle, be maintained, as far as two-body dynamics
are concerned, through the entire evolution. Long-wavelength
collective excitations will still be generated, as perfect many-
body adiabaticity is not expected to be possible in an infinite
system. Our main result is a postadiabatic Hamiltonian that
can describe the excitation of the (Anderson-)Bogoliubov
modes: Anderson-Bogoliubov excitations on the BCS side and
Bogoliubov excitations on the BEC side.

Excitation of these modes in a time-dependent BCS-BEC
crossover is an example of the general phenomenon of
(quasi-)particle production in a time-dependent background.
Similar situations can also be found in quite different contexts
as, e.g., in cosmology, where Hawking radiation [12] is
produced in the classical space-time background of a star
collapsing into a black hole. We describe the former effect
in our context with a postadiabatic effective Hamiltonian.
Postadiabatic effective Hamiltonians are also common in other
physical contexts. Perhaps the best known example describes
the effect of “geometric magnetism” [13–15] and its higher
order corrections [15–17]. The present paper may thus also be
of value in expanding the application of postadiabatic concepts
to experimentally tractable many-body systems.

A. Structure of this paper

This paper is organized as follows. In Sec. II we introduce
the BCS-BEC crossover model and explain how we model
the background scattering differently from the standard BCS
theory approach. In order to simplify our analysis we introduce
Fermi units and work in momentum space.
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It is important to keep in mind that we deliberately use path-
integral language in Secs. III and IV, but only as a convenient
tool to show the equivalence of two systems before we revert
to operator language.

In Sec. III we consider molecules and atoms as inter-
acting subsystems. The molecular subsystem is treated by
a path-integral approach, whereas the atomic part is treated
algebraically by means of a dilute gas approximation. In this
context, the choice of initial and final conditions has to be
addressed. After solving the atomic dynamics, the results for
the molecular dynamics are nonlocal in time and inconvenient
for practical calculations.

Therefore, they are mapped onto a familiar quadratic
bosonic system in Sec. IV. This is achieved by introducing
new virtual bosons which mimic the fermionic subsystem.
Afterwards we can leave the path-integral language for the
molecular subsystem in favor of an effective Hamiltonian
operator.

The newly obtained dummy Hamiltonian is then diago-
nalized instantaneously in Sec. V by means of a Bogoliubov
transformation. We discuss the properties of mode functions
and mode frequencies in general and especially in the case of
low-energy excitations and show some numerical results.

In Sec. VI we then use the mode functions and mode
frequencies to rewrite the dummy Hamiltonian in terms
of instantaneous eigenmodes (normal modes). The coupling
between these eigenmodes is the leading postadiabatic effect,
and constitutes the main result of this paper. Finally, we address
the validity and consequences of our results in Sec. VII.

The Appendix contains a detailed derivation of the classical
molecular background that populates the k = 0 Fourier mode
in the adiabatic limit we assume for it. All our results explicitly
depend on this classical molecular background.

II. A BCS-BEC CROSSOVER MODEL

A. The model Hamiltonian

We use here a Hamiltonian similar to those described in
[7,8,18–23], which is based on a δ-like pseudopotential for a
collisional interaction in which two fermionic atoms unite into
a bosonic molecule (or conversely, in which a molecule splits
into two atoms). So our many-body Hamiltonian appears in
second-quantized notation as

Ĥ =
∫

V

d3x

{
h̄2

2 M
[∇ĉ

†
↑(x) · ∇ĉ↑(x) + ∇ĉ

†
↓(x) · ∇ĉ↓(x)]

+ g ĉ↑(x)ĉ↓(x)ĉ†↓(x)ĉ†↑(x) + h̄2

2(2 M)
∇â

†(x) · ∇â(x)

+ �

2
[ĉ†↑(x)ĉ↑(x) + ĉ

†
↓(x)ĉ↓(x)]

+ h̄ γ [ĉ↑(x)ĉ↓(x)â†(x) + â(x)ĉ†↓(x)ĉ†↑(x)]

− h̄ ω

2
[ĉ†↑(x)ĉ↑(x) + ĉ

†
↓(x)ĉ↓(x) + 2 â

†(x)â(x)]

}
, (1)

where M is the fermion mass, �(t) is the external control
parameter that is slowly ramped up in time [usually linearly
as �(t) := h̄ ν2t for some slow rate ν], and γ is an interaction
strength, determined by atomic collision physics, and indicat-
ing the width of the Feshbach resonance. Finally, g > 0 is the

strength of the scattering among the fermions, defining the
BCS ground state as � → −∞. It is important to state at this
point that it is not crucial for our calculations that γ and g

are time independent or that � has a linear behavior. Instead,
these could all be functions depending adiabatically slowly on
time, as long as the first two can be approximated as constant,
and the last as linearly time dependent, within the period of
significant nonadiabatic excitation.

The annihilation and creation field operators â(x) and â
†(x),

respectively, are bosonic, whereas ĉ↑↓(x) and ĉ
†
↑↓(x) are the

respective field operators of the fermions, with two spin states
denoted by ↑, ↓. Although the last term proportional to ω(t)
makes the Hamiltonian look similar to a free energy, we still
have the Hamiltonian dynamics of a closed system. This term
commutes with the rest of the Hamiltonian at any time and
does not affect the dynamics of the initial states considered
here, apart from a trivial global phase.

Note that the Hamiltonian (1) is an example of an effective
field theory and, as such, has to be understood as correctly
renormalized. As always, the logic behind renormalization is
the following: The Hamiltonian is a model, anyway; it must be
tuned to yield the correct energy shifts. Since these include
higher order corrections, the bare Hamiltonian parameters
need counterterms. These sometimes (as in our case) turn out to
be infinite. The only quantity which needs to be renormalized
here in order to avoid an ultraviolet divergence is �. We always
assume that an extra counterterm �ct has been added to �;
i.e., the substitution � → � + �ct has been done in order to
maintain the physical meaning of �/2 as the fermionic energy
shift compared to a free fermion. This is a standard procedure
in field theories. In our calculations, we usually transform the
fermionic energy shift resulting from the counterterm into a
purely bosonic energy shift by adding a term proportional to
the conserved total number of particles to the Hamiltonian.
This is the same as replacing ω → ω + �ct/h̄.

For large negative �, the ground state consists mainly
of the standard BCS ground state; for large positive �,
bosons dominate low-energy states. For small �, however, the
mediated interactions of either species alone formally diverge
in strength. What this means is that the dynamics involves
both species nontrivially; if γ is small enough, no truly strong
interactions are necessarily involved. We therefore consider
this small-γ limit, which is not typical for experiments so
far conducted, but is also attainable with current techniques.
(Many different atomic species are trappable today, and each
typically has several collisional Feshbach resonances, some of
which are very narrow.)

B. Modeling background scattering

1. The Hubbard-Stratonovich transformation in BCS theory

The fermionic background scattering is the crucial in-
gredient in the conventional BCS theory, which is also the
� → −∞ limit of our model. In derivations of the BCS
theory, the dynamics is often described within a Grassmann
variables path integral. In this framework, the interaction
among fermions is mimicked by the interaction with a
Hubbard-Stratonovich field, introduced by the Hubbard-
Stratonovich transformation.
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2. An alternative approach: Adiabatic elimination

Rather than reviewing the Hubbard-Stratonovich approach,
we emphasize that we take a somewhat different approach
here which leads to the same kind of simplifications. We
mimic the fermionic background scattering with interaction
with an off-resonant bosonic dummy field which can always
be adiabatically eliminated. The fermion-fermion interaction
term of the Hamiltonian is then equivalent to

lim
ε→0

∫
V

d3x

{
h̄ γ

ε
[ĉ↑(x)ĉ↓(x)b̂†(x) + b̂(x)ĉ†↓(x)ĉ†↑(x)]

+
(

h̄2γ 2

g ε2
− h̄ ω

)
b̂
†(x)b̂(x) + h̄2

2(2M)
∇b̂

†(x) · ∇b̂(x)

}
.

(2)

This approach has an especially nice physical interpretation:
The background scattering originates from the interaction of
the fermions with a second Feshbach resonance that would cre-
ate molecules in the b̂(x) modes. This second resonance, how-
ever, remains detuned during the whole BCS-BEC crossover.
For ε → 0, the leading order effect of this interaction is just
the fermion-fermion interaction in the Hamiltonian (1). Note
that this leading order behavior mimicked by just one extra
resonance could actually originate from a superposition of the
leading order behavior of many different resonances, which
would have the same effect.

Considering only the ε → 0 limit, the kinetic term and the
finite energy shift − h̄ ω in Eq. (2) become so small compared
to the detuning that they could be neglected completely in
the following, making the whole procedure fully equivalent
to the usual Hubbard-Stratonovich approach. However, it is
useful to maintain the finite energy shift formally, since all
terms proportional to ω reflect the gauge freedom due to
the conservation of the total boson number plus one-half
the fermion number. In contrast, keeping the kinetic term
of the b̂(x) modes would lead to unnecessary complications,
so we neglect it, henceforth, as being small compared to the
h̄2γ 2/(g ε2) term.

3. Connection of the two approaches

The connection to the Hubbard-Stratonovich field is seen
in the coherent-state path-integral representation for b̂(x) and
b̂
†(x): Let us introduce new fields that are proportional to the

c-number fields for b̂(x) and b̂
†(x) by a prefactor of order ε−1

and let us perform the limit ε → 0 afterwards. The resulting
action of the path integral would now show the familiar
Hubbard-Stratonovich field terms of the BCS action, but
written in terms of our newly defined fields. This rescaling is
the reason why the operators b̂(x) and b̂

†(x) can be interpreted
as physical bosonic modes whereas the Hubbard-Stratonovich
field cannot.

The Hubbard-Stratonovich field thus corresponds to
ε−1b̂(x), up to a finite prefactor, as ε → 0. In this limit, the
expectation value of b̂

†(x)b̂(x) tends to 0, whereas that of
ε−2b̂

†(x)b̂(x) remains finite.

C. Momentum space representation

Since we deal with fermions in the absence of an external
spatial potential, it is very convenient to change into momen-
tum space where the description of the fermions simplifies
significantly.

1. Momentum space operators

We transform to k space using periodic boundary conditions
in a symmetric cube of volume V , k V

1
3 = 2 π z with z ∈ Z

by replacing

â(x) =
∑

k

âk√
V

eik·x, ĉ↑↓(x) =
∑

k

ĉ↑↓,k√
V

eik·x, (3)

and by replacing b̂(x) following the same logic. The volume V

is assumed to tend to infinity. The resulting momentum space
Hamiltonian reads now

Ĥ
(

t
tF

)
EF

=
∑

q

(
q2

k2
F

+ �F

2
− ωF

2

)
(ĉ†↑,qĉ↑,q + ĉ

†
↓,qĉ↓,q)

+ γF√
Nm

∑
q,k

[
ĉ↑,qĉ↓,k−q

(
â
†
k + b̂

†
k

εF

)
+ H.c.

]

+
∑

k

(
1

2

k2

k2
F

− ωF

)
â
†
kâk

+
∑

k

(
γ 2

F

gF

1

ε2
F

− ωF

)
b̂
†
kb̂k. (4)

We use the Fermi momentum kF := (6 π2Nm/V )1/3,
the Fermi energy EF := h̄2k2

F /(2 M) as well as
the Fermi time tF := h̄/EF in order to define
γF (t/tF ) := √

Nm/V h̄ γ (t)/EF , gF (t/tF ) := √
Nm/V g(t)/

EF , ωF (t/tF ) := tF ω(t), �F (t/tF ) := �(t)/EF , and
εF (t/tF ) := ε(t). In general, we consider here most of these
quantities as time independent. The conserved quantity Nm

is the total number of bosons, plus one-half the total number
of fermions. In the case of a linear time dependence as
described in the beginning, we have �F (t/tF ) = ν2

F t/tF , with
νF := h̄ ν/EF .

2. Fermi units

The Fermi momentum kF , the Fermi energy EF and the
corresponding Fermi time tF are natural scales of the system.
From now on, we therefore use the dimensionless quantities
k/kF , E/EF , Ĥ /EF , and t/tF , and relabel them as k, E, Ĥ ,
and t , respectively. Furthermore, we will relabel again ωF as
ω, �F as �, γF as γ , νF as ν, gF as g, and εF as ε.

III. MOLECULES AND ATOMS AS
INTERACTING SUBSYSTEMS

Our Hamiltonian involves two different interacting species,
molecules and atoms. This suggests that we consider these as
two subsystems, each of which can be treated with a different
approach. This picture is especially useful since we can also
adopt it in Sec. IV where the fermionic subsystem is replaced
with a subsystem of virtual bosons.
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A. Molecular subsystem: A path-integral approach

Apart from their interaction, the molecular and the atomic
subsystems both have quadratic Hamiltonians. Furthermore,
even the interaction term would be quadratic as well if the
molecular operators were replaced with classical fields. Since
path integrals treat quantum fields as classical fields, this
suggests a convenient hybrid approach to the problem, in which
the molecule dynamics is described with a path integral over
classical molecular fields, while the quadratic Hamiltonian
for the fermionic atoms is treated with canonical operator
methods.

1. The coherent-state path integral

We formulate the time evolution of the molecules in terms
of a coherent-state path integral, which we only begin to
evaluate after solving the atomic problem with canonical
operator methods. This offers us an effective description of
the molecular subsystem:

〈ᾱf ,β̄f ,F̄f |Û (tf ,ti)|αi ,β i ,Fi〉

=
∫ ᾱ(tf ) = ᾱf

β̄(tf ) = β̄f

α(ti ) = αi

β(ti ) = β i

∏
k

DαkDᾱkDβkDβ̄k
[
eᾱ(ti )αi+β̄(ti )β i

·e
∫ tf
ti

˙̄α(τ )α(τ )+ ˙̄β(τ )β(τ )dτ e−i
∫ tf
ti

HMO dτ 〈F̄f |ÛAT |Fi〉
]
. (5)

With Û we always denote the time evolution operator of the
corresponding Hamiltonian Ĥ . The atomic initial and final
states at ti and tf are denoted as |Fi〉 and 〈F̄f |, respectively. The
bar ¯ denotes complex conjugation. We use here un-normalized
coherent states in a notation that highlights the property of the
bra and ket states as eigenstates of the creation and annihilation
operator, respectively:

|α〉 :=
∞∑

n=0

αn

√
n!

|n〉 and 〈ᾱ| :=
∞∑

n=0

ᾱn

√
n!

〈n|. (6)

Moreover, this notation makes it possible to read off the
amplitudes for a creation and annihilation of excitations
directly from an expansion of the transition matrix element
in powers of α and ᾱ.

2. The coherent-state Hamiltonian

Within the path integral, the Hamiltonian Ĥ contains the
molecules merely as driving fields αk(t), ᾱk(t) and βk(t),
β̄k(t). The Hamiltonian can then be split into two parts: The
atomic part ĤAT , which contains fermionic operators, and the
molecular part HMO , which is a c-number whose nontrivial
effect will be in the path integral:

ĤAT := ĤT L + ĤPT , (7)

HMO :=
∑

k

[(
1

2
k2 − ω

)
ᾱkαk +

(
γ 2

g

1

ε2
− ω

)
β̄kβk

]
.

(8)

Note that the fermionic operators make the construction of the
path integral slightly more involved: Unlike for the molecular
mode path integration variables, for the fermionic operators
the time ordering within the path integral really matters. This

makes it necessary to calculate the time evolution operator ÛAT

as seen in Eq. (5). The atomic Hamiltonian splits again into
two parts of different character: The part ĤT L, which describes
atoms that couple just to k = 0 molecular modes, and the part
ĤPT , which describes the coupling between atoms and all
k �= 0 molecular modes:

ĤT L :=
∑

q

Ĥq, (9)

ĤPT := γ√
Nm

∑
k �= 0

q

[ĉ↑,qĉ↓,k−q(ᾱk + ε−1β̄k) + H.c.]. (10)

As the label PT suggests ĤPT will turn out to be only a
relatively small perturbation compared to other terms in Ĥ .
This is understandable if one considers slower and slower
sweep rates: The small k molecular modes will become
more and more dominant, whereas the higher k modes will
become less and less populated. Thus, the Hamiltonian ĤT L,
containing the k = 0 molecular modes, is the important part
for slow sweep rates. This Hamiltonian ĤT L has a special
feature: It can be decomposed into infinitely many two-level
systems Ĥq, as indicated by the label T L. The Hamiltonians
of these two-level systems are defined by

Ĥq :=
(

q2 + �

2
− ω

2

)
(ĉ†↑,qĉ↑,q + ĉ

†
↓,−qĉ↓,−q)

+ γ√
Nm

[ĉ↑,qĉ↓,−q(ᾱ0 + ε−1β̄0) + H.c.] (11)

and fulfill the commutation relation

[Ĥq(t),Ĥq′(t ′)] = 0 for q �= q′. (12)

The latter is a sufficient condition for the dynamics to factorize
and ensures that our decomposition is meaningful.

B. Initial and final states of the coupled subsystems

At this point, we have to address the choice of the initial
and final bosonic and fermionic states in (5): We are interested
in transition amplitudes of the full system between the ground
state at t = ti and some arbitrary low-energy state at t = tf . As
�(ti) → −∞ the ground state tends to the purely fermionic
BCS state as defined in the Appendix. Note that despite β i → 0
as ε → 0, the value of ε−1β i tends to its self-consistent value
proportional to the BCS order parameter.

Up to a global phase, the instantaneous ground state at
t = ti follows from the BCS ground state with � = −∞ by
an infinitely slow adiabatic � sweep up to ti . Therefore, it is
sufficient to calculate the transition amplitude from ti = −∞
with �(ti) = −∞ to some arbitrary low-energy state at tf .

As � → ∞, all low-energy states turn into purely bosonic
free molecules due to the high detuning of the fermions. This
means a low-energy state at tf can be evolved adiabatically
by an infinitely slow adiabatic � sweep into a state without
fermions at t = ∞. Since the calculation of adiabatic time evo-
lution is straightforward, we choose tf = ∞ with �(∞) = ∞
for convenience, such that the low-energy states are, in fact,
bosonic.
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Note that the coherent states (6) are an overcomplete basis:
The coherent states |α〉 = |r ei ϕ〉 with fixed r > 0 but arbitrary
phase ϕ are sufficient to represent any number state |n〉 by
means of the identity

1

2π

√
n!

rn

∫ 2π

0
eiϕn|re−iϕ〉dϕ = |n〉. (13)

It is therefore sufficient to choose an in-principle arbitrary
modulus |ᾱf | for our final state. However, we make the choice
|ᾱf | = √

Nm since this is also the mean field value one would
expect if all fermions have been converted into Nm molecules.
This choice will let the dominant transition amplitudes be
given in a simple semiclassical approximation, rather than
as high-order corrections after many cancellations of detuned
path-integral paths.

In summary, we have |αi ,β i ,Fi〉= |0,0,BCS〉 and �(ti) =
−∞ at ti = −∞, as well as 〈ᾱf ,β̄f ,F̄f | = 〈ᾱf ,0,vac|, with
|ᾱf | = √

Nm and �(tf ) = ∞ at tf = ∞.

C. Atomic subsystem: An algebraic solution

Our strategy here is to solve the fermionic dynamics first,
before we start to evaluate the bosonic path integral. To this
end, the atomic Hamiltonians ĤT L and ĤPT deserve different
treatments, as explained in the following paragraphs.

1. Procedure for ĤT L: Fermionic two-level systems
in a bosonic background

As mentioned before, the general time evolution of a
balanced mixture of fermions evolving under ĤT L factorizes
into a commuting product of the evolution of two-level systems
Ûq. If we had no terms involving k �= 0 molecules in the
Hamiltonian, we would have the same situation as described in
[24] apart from our current inclusion of background scattering.
In this case the classical path for α0, ᾱ0 and β0, β̄0 shows a total
conversion from the BCS state at ti = −∞ into molecules
at tf = ∞ as long as the sweep rate ν2 is small enough to
avoid leaving fermionic excitations at tf = ∞. As we will
see, this adiabaticity condition requires only that ν be small
compared to the BCS gap; it is the condition for adiabaticity of
the two-body problem of resonant association into molecules.
Our focus in this paper, in contrast, is on nonadiabaticity
of low-frequency collective excitations in the time-dependent
many-body system. We therefore assume that the two-body
dynamics is indeed perfectly adiabatic, so that the final state
contains no fermions.

We denote the classical path of the scenario without k �= 0
molecular terms in the Hamiltonian by αcl , ᾱcl and βcl , β̄cl .
Since the k = 0 molecular modes are the ones which will
mainly be occupied even for the Hamiltonian including the full
k �= 0 molecular terms, we actually do not evaluate the path
integral for them. Instead, we evaluate the integrand on αcl , ᾱcl

and βcl , β̄cl , as a kind of classical approximation. Although αcl ,
ᾱcl and βcl , β̄cl are not the exact saddle-point paths of the full
system (including k �= 0 molecular terms), they are a good and
self-consistent approximation to it, since the depletion into the
other molecular modes turns out to be very small compared to
this adiabatic classical background [25].

Note that, because of analytic continuation of the path-
integral variables, for the classical path the bar ¯ does not, in
general, denote complex conjugation anymore, but instead de-
notes independent functions (see the Appendix). Nevertheless,
the classical paths we find in the Appendix for |ᾱ0,f | = √

Nm

are indeed still complex conjugate pairs. This means, for the
class of classical paths considered in this paper, we can still
use the bar ¯ as complex conjugation. Similar statements hold
for all quantities which depend on the classical path.

Hence, the time evolution of a general balanced fermionic
state |F 〉 and of its dual 〈F̄ | under ĤT L,cl (ĤT L on the classical
path) are, in general, not the Hermitian conjugate of each other
anymore, but they are for our class of classical paths. The
general time evolution along them can be written as

|F (t)〉 := ÛT L,cl(t,ti)|F 〉
=

∏
q

(y|q|ĉ
†
↓,−qĉ

†
↑,q + z|q|)|vac〉, (14)

where y|q|, ȳ|q| and z|q|, z̄|q| are general solutions to the
fermionic two-level problems Ĥq,cl (Ĥq on the classical path).
The factors of the product in brackets are the Ûq,cl (Ûq on
the classical path) of the single two-level systems. The initial
conditions at t = ti = −∞ of the atomic two-level systems
in our specific case follow immediately from the foregoing
discussion in Sec. III B. In order to meet |F 〉 = |Fi〉 = |BCS〉,
we need

|F 〉 = ei π Nmei θ Nm

∏
q

[Y|q|(ti) ĉ
†
↓,−qĉ

†
↑,q + Z|q|(ti)]|vac〉,

(15)

with the instantaneous eigenstate of the two-state system
Y|q|, Z|q| (A35) and the phase θ (A27) of the molecular
classical path. These quantities are defined in the Appendix.
The fermionic ground state (15) still holds for finite ti when
imposing also the self-consistent molecular initial conditions

α0,i = αcl(ti) =
√

Nm re−i θ , (16)

β0,i = βcl(ti) = − g ε ω

γ 2 − g ε2 ω

√
Nm re−i θ , (17)

with θ , r , and ω as defined in the Appendix and evaluated
at ti . For ti → −∞ the values α0,i and β0,i both tend to
zero, while ε−1β0,i becomes proportional to the usual BCS
order parameter as explained before. If one would turn off the
interaction among the fermions, i.e., g → 0, the state |F 〉 (15)
would asymptotically approach a noninteracting Fermi gas.

There is a nonarbitrary parameter θ appearing in the initial
state |F 〉 (15), which is the initial phase of the specific classical
path considered. This is due to the fact that, in general, the
number conserving ground state |NCGS〉 of the system would
look like

|NCGS〉 ∝
∫ 2π

0
eiθNm

∏
q

(Y|q|ĉ
†
↓,−qĉ

†
↑,q + Z|q|)

× |αcl,βcl,vac〉dθ, (18)

with θ , αcl , and βcl as defined in the Appendix. Thus, the
phase of the fermionic state and the phase of the coherent state
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are necessarily related to ensure number conservation. Con-
sequently, when the stationary phase approximation chooses
the phase of the classical path giving the main contribution
to the transition amplitude, it also chooses automatically the
fermionic phases within the BCS state.

In the Appendix we compute the classical path for αcl , ᾱcl

and βcl , β̄cl as well as the adiabatic solution of the atomic
two-level systems on the classical path. The reasoning why
the general solutions y|q|, ȳ|q| and z|q|, z̄|q| depend only on the
modulus of q can also be found there.

2. Procedure for ĤPT : A dilute gas approximation

As explained before, we are interested here in the scenario
that avoids fermionic excitations at tf = ∞. This means
〈F̄f | ∝ 〈F̄ (tf )|, because in the adiabatic solution under ĤT L,cl

no fermions remain. To include the k �= 0 molecular modes,
we have to include ĤPT . However, it would be very hard to
treat ĤPT analytically exactly. To simplify our calculations,
we will perform a dilute gas approximation (DGA).

The idea behind the DGA is the following. Up to a prefactor
(irrelevant for the argumentation), the transition amplitude
we calculate can be written as an exponential function. The
function in the exponent is a power series in terms of molecular
modes with k �= 0. Since the occupation of all k �= 0 molecular
modes is expected to be small, we can stop this series at the
leading order, which is the quadratic one in our case. It is thus
the diluteness of the gas and the weak occupation of modes
that makes the approximation good. After the approximation,
the exponent is equivalent to the term one would obtain by
a second-order time-dependent perturbation theory. This is
just because the powers of an expansion must naturally agree.
However, the DGA is by far better than the second-order time-
dependent perturbation theory, since there are no restrictions
on the time interval in which it is valid. Note that the DGA is
especially more than just putting the second-order perturbation
theory into the exponent: All the extra terms that the DGA
contains compared to the time-dependent perturbation theory
are actually there; its just that some other terms have been
neglected. In this sense the DGA is the resummation of a
perturbation series.

One can also take another point of view in order to see why
the DGA works so well: At late times, the Dyson series of the
system’s time evolution operator might actually involve large
contributions from terms of high order in k �= 0 molecular
fields. However, among these, by far the largest contributions
are those in which many different modes are each occupied
only slightly, because there are very many ways to distribute
a few particles over many modes. Including all of these
large contributions, and neglecting all the ones that have the
same order in occupation number, but are smaller by a factor
of the order of the number of modes, we find we have written
nothing but the exponential of the quadratic result.

For the time evolution operator ÛAT , the identity

i
d

dt
[Û †

T L,cl ÛAT ] = [Û †
T L,cl ĤPT ÛT L,cl][Û

†
T L,cl ÛAT ] (19)

enables us to write a Dyson series for Û
†
T L,cl ÛAT . The

resummation of this series in the way described above leads
then to the DGA in ĤPT . Finally, the atomic time evolution

under ĤAT reads

〈F̄f |ÛAT |Fi〉
DGA≈ F exp

[
−

∫ tf

ti

dt2

∫ t2

ti

dt1〈F̄ (t2)|

× ĤPT (t2) ÛT L,cl(t2,t1) ĤPT (t1)|F (t1)〉
]
,

(20)

where

F := 〈F̄f |F (tf )〉 = ei π Nm ei θ Nm (21)

is the semiclassical amplitude of the fermions evolving under
the k = 0 adiabatic, classical molecular background. It is just
a phase factor for self-adjoint Hamiltonians, reflecting the
creation of Nm molecules. The transition amplitude in the
exponent is computed with the atomic states given in Eq. (14):

〈F (t2)|ĤPT (t2) ÛT L,cl(t2,t1) ĤPT (t1)|F (t1)〉

= γ 2

Nm

∑
k �= 0

q

{ȳ|q|(t2)ȳ|k−q|(t2)[α−k(t2) + ε−1β−k(t2)]

− z̄|q| (t2)z̄|k−q|(t2)[ᾱk(t2) + ε−1β̄k(t2)]}
· {y|q|(t1)y|k−q|(t1)[ᾱ−k(t1) + ε−1β̄−k(t1)]

− z|q|(t1)z|k−q|(t1)[αk(t1) + ε−1βk(t1)]}
· e

−i
∫ t2
t1

q2+(k−q)2+� dτ
. (22)

Later on, we use the adiabatic solutions for y|q|, ȳ|q| and z|q|,
z̄|q| as derived in the Appendix.

Note that effects of backreaction onto the classical path have
been ignored here, since the k = 0 molecular mode has not
been included in the DGA. This is justified, since the depletion
into k �= 0 molecular modes turns out to be small [25].

In summary, we have formally solved the atomic subsys-
tem’s dynamics in this section by means of a DGA. The point
of our exercise has been to show that, for slow but not perfectly
adiabatic sweeps through the Feshbach resonance, the leading
order effect of the fermionic sector on the molecular modes
is an effective action that is nonlocal in time, but quadratic in
molecular fields. Since Eq. (20) is nonlocal in time, it needs
to be simplified. The idea is to find a transition amplitude,
calculated with a simple Hamiltonian, but matching Eq. (20).
Since it is only the transition amplitude which matters, we
can actually replace the fermionic, atomic subsystem with a
different, even bosonic one. The following Sec. IV is devoted
to this subject: The form of influence functional in (20) is, in
general, equivalent to that induced by an array of harmonic
oscillators, linearly coupled. We can therefore use this result
to construct an effective bosonic quadratic Hamiltonian, i.e., a
linear system that will reproduce the leading nonadiabatic ef-
fects of the slow Feshbach sweep on the final molecular modes.

IV. MAPPING TO A FAMILIAR SYSTEM: MOLECULES
AND VIRTUAL BOSONS AS INTERACTING

LINEAR SUBSYSTEMS

In the previous section we solved the fermionic sub-
system (20): By perturbing around the nontrivially time-
dependent mean-field solution for k = 0 and applying the
DGA, we have obtained an effective action that describes the
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quantum dynamics of the molecular field under driving by the
associating fermions. The essential feature is that this effective
action is quadratic, and its effective quantum dynamics is
linear. We are therefore able to solve this dynamics without
assuming equilibrium. The assumptions that have justified
our linearization are self-consistent in the limit of a slow
crossing of the Feshbach resonance: The variation in time of
the molecular path-integral variables is either slow, compared
to the BCS gap time scale, or else small, compared to the
nonlinearity, on all paths that contribute significantly to the
path integral.

By not assuming equilibrium, however, we have acquired
one significant complication in our linear dynamics. Our
effective action is nonlocal in time, in the sense that it is a
double time integral. The saddle points of such actions are
determined by integro-differential equations, and these bring
many technical difficulties.

We therefore return to the more familiar context of purely
differential equations by deliberately undoing some steps we
have so far done, except for our linearization. The fermionic
subsystem of the previous section is, however, replaced by
a new subsystem, which yields the same effect due to its
linear coupling to the actual molecular bosons. Maintaining
the effective linear dynamics that we have derived, we restore
the eliminated fermionic subsystem, in an alternative but
equivalent form, as a subsystem of virtual bosons. In general,
we follow the same strategy as before: We consider the system
to consist of two subsystems, of which one is the molecular
subsystem.

Even though the strategy in this section is the same as
in the previous one, the procedure is somewhat reversed: In
continuation of Eq. (20) we start out in Sec. IV A within a
path-integral description for the molecular modes. We show
that Eq. (20) is the very same as calculating a transition
amplitude for the virtual bosons under a certain Hamiltonian.
Having represented our system with a tractable model of
coupled oscillators, we even abandon the path integral of the
molecular subsystem in Sec. IV B. Thus, we present our final
result as a canonical Hamiltonian operator that incorporates
the postadiabatic effects of the time-dependent BCS-BEC
crossover, obtained in Sec. III.

A. Virtual bosons as effective atomic subsystem:
An algebraic solution

The integrand (22) in the double time integral of Eq. (20)
shows the creation and annihilation of molecules at t1 and their
subsequent annihilation and creation at t2. This is a signature
for the elimination of a virtual fermionic intermediate state
between t1 and t2. This insight offers an option to simplify the
double time integral: We can consider Eq. (20) as a transition
amplitude for a dummy subsystem under its Hamiltonian. This
means putting in bosonic modes �̂k,q by hand, which serve as
intermediate states. Because of their nature as intermediate
states we call them virtual bosons. The right-hand side of
Eq. (20) turns out to be equivalent to

F
∏

k �= 0
q

〈�̄k,q,f | T̂ e−i
∫ tf
ti

Ĥ P I
V,k,q dτ |�k,q,i〉, (23)

with the obligatory boundary conditions �̄k,q,f = 0 and
�k,q,i = 0 [in the notation of un-normalized coherent
states (6)].

The Hamiltonian Ĥ PI
V,k,q denotes the path-integral represen-

tation (in this case, âk and b̂k modes are just replaced with their
path-integral variables) of ĤV,k,q defined as

ĤV,k,q := [W|k−q| + W|q|]�̂
†
k,q�̂k,q

+ �̂k,q

[
γ Ȳ|q|Ȳ|k−q|(â−k + ε−1b̂−k)N−1/2

m

− γ Z̄|q|Z̄|k−q|(â
†
k + ε−1b̂

†
k)N−1/2

m

]
+ �̂

†
k,q

[
γ Y|q|Y|k−q|(â

†
−k + ε−1b̂

†
−k)N−1/2

m

− γ Z|q|Z|k−q|(âk + ε−1b̂k)N−1/2
m

]
. (24)

The fact that ĤV,k,q contains the interaction with virtual
excitations, motivates the index V . Consequently, the full
Hamiltonian of virtual bosons reads

ĤV :=
∑
k �= 0

q

ĤV,k,q. (25)

The result obtained by the DGA is thus represented by means
of the transition amplitudes between |�k,q,i〉 and 〈�̄k,q,f | that
are calculated with a time evolution under Ĥ PI

V,k,q.
The coefficients Y|q|, Ȳ|q| and Z|q|, Z̄|q| as well as W|q| are

derived in the Appendix in the course of the derivation of
an adiabatic solution for y|q|, ȳ|q| and z|q|, z̄|q|. They are all
explicitly time dependent via � (or ν2t in the linear case).

Because the operators appear only quadratically in Ĥ PI
V,k,q,

the transition amplitudes in Eq. (23) can, for instance, be
checked by a simple algebraic calculation to agree with
Eq. (20). This is especially simple because the dynamics for the
subsystem of virtual bosons factorizes within the path integral
for (k,q) �= (k′,q′) by means of the commutation relation[

Ĥ PI
V,k,q(t) ,Ĥ P I

V,k′,q′(t ′)
] = 0. (26)

Surprisingly, we have thus replaced originally fermionic
intermediate states with virtual bosons. Furthermore, the
Hamiltonian for the virtual bosons is just quadratic. Both
features are direct consequences of the fact that we went only
up to the second order in molecular modes with k �= 0 when
calculating their action in Sec. III. This is, however, sufficient
for the leading effect of nonadiabatic excitations, since for a
very slow Feshbach sweep, these excitations will be weak.

B. Molecular subsystem: Leaving the path-integral framework

It is important to notice that it is only solving the dynamics
of the fermionic subsystem or the subsystem of virtual bosons
before the molecular one that produces the double time integral
in (20). While it was only by solving the fermions first that we
could see that their effect on the molecules was the same as
that of virtual bosons, now that this has been established the
two-step procedure itself is not necessary. None of our results
for the molecules will be altered if we, in fact, solve the entire
system of molecular and virtual bosons all at once. Instead of
calculating the dynamics of the �̂k,q modes before the one of

the âk and b̂k modes, the whole dynamics is then calculated
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at the same time. This has the important technical advantage
that we will not have to deal with nonlocal effects in time,
for which calculational techniques are less familiar, and can
instead use standard linear differential equation techniques for
the enlarged dynamical system.

1. Restoring operators

In fact, since the entire bosonic system that we are now
using turns out to be quadratic, it is quite straightforward to
solve it all at once, with canonical operator methods. The
only reason to use the path integral was in order to solve for
the fermions first and leave the molecules for later; now that
we have used the path integral to establish the virtual boson
model, we are free to abandon the path integral for the k �= 0
molecular modes entirely and revert to canonical methods.

Leaving the path integral for the k �= 0 molecular modes,
the c-number fields αk, ᾱk, βk, β̄k representing the bosonic
modes will now be restored as operators which do not
all commute. It turns out that the transition amplitude (5)
considered originally can be rewritten with the help of (23) as

〈ᾱf ,β̄f ,F̄f |Û (tf ,ti)|αi ,β i ,Fi〉
= F

∏
k �= 0
k3 > 0

〈ᾱk,f ,ᾱ−k,f ,0,0,0,0|ÛB,k(tf ,ti)

× |0,0,0,0,0,0〉, (27)

where the full un-normalized coherent state in (27) is written
as |αk,α−k,βk,β−k,�k,�−k〉. The index q of �k,q has been
absorbed into the vector notation of �k. The k3 > 0 (assuming
V → ∞) condition in Eq. (27) avoids a double counting in
the product, as explained below.

Replacing the fermionic subsystem with virtual bosons
in (27), we also replace the initial and final fermionic states
with the equivalent initial and final states of virtual bosons as
obtained in (23).

A new Hamiltonian ĤB,k, creating the time evolution ÛB,k,
has been introduced here. Its properties are discussed in the
following section.

2. A Hamiltonian for molecules and virtual bosons

The new Hamiltonian ĤB,k appearing in ÛB,k of (27) when
leaving the path integral for the k �= 0 molecular modes is
defined as

ĤB,k :=
(

1

2
k2 − ω

)
(â†

kâk + â
†
−kâ−k)

+
(

γ 2

g

1

ε2
− ω

)
(b̂†kb̂k + b̂

†
−kb̂−k)

+
∑

q

(ĤV,k,q + ĤV,−k,q). (28)

The Hamiltonian for the full system reads now

ĤB :=
∑
k �= 0
k3 > 0

ĤB,k. (29)

The Hamiltonian ĤB simply restores to ĤV from (24)
and (25) the self-energy terms of our two molecular modes: It

includes the kinetic energy term of the âk modes (the actual
molecules forming the final condensate) and the total detuning
of the b̂k modes (the “dummy” molecules that mediate the
interactions among the fermions). Previously, these were
absorbed in the path integral’s HMO , but with our return to
the canonical operator formalism, they must be made explicit.

The Hamiltonian ĤB contains only bosonic operators and
is entirely quadratic. Due to the commutation relation

[ĤB,k(t) ,ĤB,k′(t ′)] = 0 for k′ �= ±k, (30)

the dynamics in (27) factorizes into a time evolution under the
ĤB,k(t) which contains as few molecular modes as possible.
In contrast, within the path integral [see (23)], the smallest
system factorizing the dynamics was ĤV,k,q.

The physical meaning of ĤB,k is that it describes the
complete dynamics of a pair of molecular modes with
momenta ±k, in terms of time-dependent, linear couplings
among three different types of bosonic fields.

The fact that only opposite momentum molecular modes
with ±k need to be coupled in ĤB,k is due to our assumption
that, to leading nonadiabatic order, only the k = 0 molecular
mode will be macroscopically populated in the BCS-BEC
crossover. This preserves translational symmetry for the
postadiabatic excitations.

Note that the symmetry offered by ĤB,k(t) = ĤB,−k(t)
implies also the symmetry ÛB,k(t,ti) = ÛB,−k(t,ti). Due to
these symmetries, a double counting in the product over k in
Eq. (27) is avoided by restricting the third component of k,
k3 to k3 > 0, assuming that the volume V tends to infinity. A
double counting in the sum over k in Eq. (29) is avoided in the
same way.

C. Initial and final conditions of the coupled subsystems

The postadiabatic analysis of the effective Hamiltonian ĤB

in Sec. VI is the main contribution of this paper. Before
proceeding with it, however, we pause here to note that
the mapping from the physical fermionic subsystem to the
effective subsystem of virtual bosons is not only a mapping
between formal Hamiltonians. It also includes the mapping
between initial and final quantum states of the physical and
effective systems. This has been done in (27) for the states at
infinitely early and late times: The BCS state at t = ti and the
fermion vacuum at t = tf are both mapped onto the vacuum
of virtual bosons.

Beyond computing the final results of slow but nonadiabatic
evolution over infinite times, however, we would like to be
able to use our effective model to describe low-frequency
excitations at arbitrary intermediate times as well. Indeed, we
can do this, but the sense in which we can do it is a bit subtle.
The necessary technical steps have, in principle, already been
laid out in Sec. III B and in the mapping (27) of initial and
final states.

Our construction of the virtual boson model, as reproducing
the effective action from fermions in the molecule path
integral, showed that the virtual boson model correctly yields
all effects on the molecules, as long as all dynamics is slow
compared to the BCS gap. The fact that we succeed in
computing the molecular excitations at late times shows that
we must be accurately computing the intermediate dynamics
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that yields them, and this is the full low-frequency dynamics
of the entire system. What we are really describing, therefore,
are the low-frequency collective modes of the entire system.
Since both the actual fermionic excitations and the effective
excitations of our virtual bosons are separated from the low-
frequency collective modes by the BCS gap, in both cases the
high-frequency modes adiabatically dress the low-frequency
excitations. It is thus, in principle, a straightforward exercise
in adiabatic theory to explicitly determine exactly what virtual
fermionic excitations are really dressing the slow molecular
excitations at intermediate times in terms of the virtual boson
excitations that dress them in our effective model.

We do not pursue that adiabatic exercise in this paper, but
instead focus on the postadiabatic collective excitations that
arise when the BCS-BEC crossover is effected at any finite
speed. We express the slow but possibly nonadiabatic evolution
of the full system in the time-dependent basis of its instanta-
neous normal modes. We represent these instantaneous energy
eigenstates within the effective model in which our virtual
bosons have replaced the physical fermions. For many practical
purposes, the expression in terms of instantaneous normal
modes is sufficient in itself. Spectroscopic measurements, for
example, measure normal modes directly. In any case, it will
only be adiabatic mappings that we leave implicit; our theory
will provide the leading postadiabatic effects explicitly.

D. The mean-field approximation

As explained earlier, the path integral of the k = 0 modes
had been approximated by evaluating it along its classical path.
There is still a further step necessary in order to obtain a mean-
field theory in the common sense which does not depend on
specific molecular boundary conditions, i.e., specific phases.
Looking at the transition amplitude (27), there appears the
phase of the classical molecular background θ in F as well as
in ÛB,k (through terms in ĤB,k (28), i.e., ĤV,k,q (24), which
create and destroy molecular excitations). This is nothing but
the particle number conservation: If we changed from coherent
states to number states, the θ integration would define the
allowed particle numbers. The approach we take here is to
redefine the phases of the fermionic creation and annihilation
operators such that they just cancel the phase terms within
the Hamiltonian ĤB (29). The latter depends now only on the
mean-field values r and ω as defined in the Appendix. This
finally makes ĤB (29) a Hamiltonian for perturbations around
a classical mean-field background.

V. INSTANTANEOUS NORMAL MODES

The Hamiltonians ĤB,k (28) defined in the previous
section let the dynamics factorize. Moreover, they are simply
quadratic. As is well known, any quadratic Hamiltonian can be
diagonalized (i.e., reduced to the standard

∑
ξ ωk,ξ D̂

†
k,ξ D̂k,ξ

form for some set of canonical quasiparticle destruction
operators D̂k,ξ ) by means of a Bogoliubov transformation.
Unfortunately, the diagonalization of the Hamilton does not
in general imply the diagonalization of the time evolution
operator. The latter is only true for time-independent Hamil-
tonians, for which the Bogoliubov transformation identifies
the fundamental excitations, which are constant for all times.

In the time-dependent case we can still get the fundamental
excitations of the system at any instant in time by diagonalizing
the Hamiltonian instantaneously. This will, however, make
the diagonalizing Bogoliubov transformation time dependent.
This implies a postadiabatic coupling between the instanta-
neous fundamental excitations in the system’s dynamics. We
come back to this issue in Sec. VI.

Instantaneously diagonalizing ĤB is still the first step
towards our goal of describing these postadiabatic excitations.
To zeroth postadiabatic order, the system will simply remain
in an instantaneous quasiparticle number eigenstate at all
times. In this section we therefore perform the instantaneous
diagonalization of the Hamiltonian ĤB,k (28) in order to get the
instantaneous fundamental excitations. The latter excitations
are usually called Bogoliubov excitations on the BEC side and
Anderson-Bogoliubov excitations on the BCS side. On the
BCS side of the problem, the lowest energy eigenmodes of the
fundamental excitations are also called sound modes due to
the nature of their dispersion relation.

Along with the eigenmodes, we derive the equations for
the eigenfrequencies of the fundamental excitations. It will
turn out that the lowest energy eigenmodes of ĤB,k (28) have
eigenfrequencies within the gap of fermionic excitations. We
focus especially on the low-energy excitations in this section.

A. Compact notation

Since various sums are involved in the course of a
Bogoliubov transformation, it is notationally inefficient for
this purpose to denote modes by using different characters.
Instead, we switch to the following notation involving just one
basic character for all modes:

d̂k,a := âk, d̂k,b := b̂k, and d̂k,q := �̂k,q. (31)

The original modes are distinguished now by different
subindices. Consequently, the subindex can be either a vector,
denoting the old �̂k,q, or a character, denoting the old âk

and b̂k. As a joint notation which does not specify either
of both possibilities, we dedicate Greek subindices like η or
ξ . Thus, an unspecified operator is given, for example, by
d̂k,η. Consequently, sums over Greek indices are taken over all
momenta as well as over a and b.

B. Bogoliubov transformation to D̂k,ξ

As mentioned before, it is well known that a quadratic
Hamiltonian can be diagonalized by means of a Bogoliubov
transformation. We can thus assume that our Hamiltonian
ĤB,k (28) can be rewritten as

ĤB,k =
∑
ξ,±

ω±k,ξ D̂
†
±k,ξ D̂±k,ξ

−
∑
ξ,η,±

ω±k,ξ v̄±k,ξ,η v±k,ξ,η, (32)

where the transformed operators are defined as

D̂k,ξ :=
∑

η

uk,ξ,η d̂k,η + vk,ξ,η d̂
†
−k,η, (33)

D̂
†
−k,ξ :=

∑
η

ū−k,ξ,η d̂
†
−k,η + v̄−k,ξ,η d̂k,η, (34)
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and fulfill the canonical commutation relations. For small |k|,
we numerically find real, positive low-frequency solutions for
ωk,ξ . We assume that no further, negative, or even complex
ωk,ξ exist in the low-frequency regime.

It is easily seen that the c-number term in the
Hamiltonian (32) is necessary to compensate for an operator
reordering: If we insert Eqs. (33) and (34) into the Hamilto-
nian (32) and reorder the operators as in (28), we get extra terms
due to the canonical commutation relations. No c-number
additions to the Hamiltonian will affect the probabilities,
however, and so all of those may simply be ignored.

1. Completeness relations for mode functions

The above definitions of the Bogoliubov transformation
need to imply compliance with the canonical commutation
relations. As a consequence of this constraint, the following
conditions become part of the definition:∑

η

(uk,ξ,η ūk,ξ ′,η − vk,ξ,η v̄k,ξ ′,η) = δξ,ξ ′ (35)

is necessary in order to satisfy the commutation relation
[D̂k,ξ ,D̂

†
k′,ξ ′ ] = δk,k′ δξ,ξ ′ , whereas the commutation relation

[D̂k,ξ ,D̂k′,ξ ′ ] = 0 requires∑
η

(uk,ξ,η v−k,ξ ′,η − vk,ξ,η u−k,ξ ′,η) = 0 (36)

to hold. The commutation relation among the creation oper-
ators adds a further condition, which is the barred version
of (36), written here for −k instead of k:∑

η

(ū−k,ξ,η v̄k,ξ ′,η − v̄−k,ξ,η ūk,ξ ′,η) = 0. (37)

2. The inverse Bogoliubov transformation

In view of a later requirement in Sec. VI, we introduce here
also the inverse Bogoliubov transformation defined by

d̂k,η =
∑
ξ ′

ūk,ξ ′,η D̂k,ξ ′ − v−k,ξ ′,η D̂
†
−k,ξ ′ , (38)

d̂
†
−k,η =

∑
ξ ′

u−k,ξ ′,η D̂
†
−k,ξ ′ − v̄k,ξ ′,η D̂k,ξ ′ . (39)

The validity of (38) and (39) is easily checked by inserting
it into the definitions (33) and (34) and applying the identi-
ties (35), (36), and (37).

In order for the d̂k,η to obey canonical commutation
relations, the necessary and sufficient conditions are a set of
orthonormality relations among the uk,ξ,η, vk,ξ,η, similar to
those obtained for the original transformation (35), (36), (37).
It can be shown, however, that the conditions for the original
and the inverse transformation imply each other [26], and
so the normalization problem for the uk,ξ,η, vk,ξ,η is not
overconstrained.

C. Instantaneous eigenmodes: Mode functions and frequencies

We want the Bogoliubov transformation (33) and (34) to
instantaneously diagonalize the Hamiltonian ĤB,k (28) as (32).
To this end we need the appropriate mode functions uk,ξ,η,

vk,ξ,η of the eigenmodes and their eigenfrequencies ωk,ξ ,
respectively. The correct choice of both in order to diago-
nalize the Hamiltonian (32) implies that the time-independent
Heisenberg equation

[D̂k,ξ ,ĤB,k]
!= ωk,ξ D̂k,ξ (40)

must hold. If we insert here the definitions (33) and (34) of
the Bogoliubov transformed modes D̂k,ξ and D̂

†
k,ξ , we can sort

the terms by the various d̂k,ξ and d̂
†
k,ξ . Since the coefficient of

each of these operators must vanish, we get separate equations
for the mode functions. The coefficient in front of d̂k,a reads

0 =
(

1

2
k2 − ω − ωk,ξ

)
uk,ξ,a

−
∑

q

γ Z|q|Z|k−q| N−1/2
m uk,ξ,q

−
∑

q

γ Ȳ|q|Ȳ|−k−q| N−1/2
m vk,ξ,q. (41)

The coefficient in front of d̂k,b reads

0 =
(

γ 2

g

1

ε2
− ω − ωk,ξ

)
uk,ξ,b

−
∑

q

γ Z|q|Z|k−q| N−1/2
m ε−1 uk,ξ,q

−
∑

q

γ Ȳ|q|Ȳ|−k−q| N−1/2
m ε−1 vk,ξ,q. (42)

The coefficient in front of d̂k,q reads

0 = (W|k−q| + W|q| − ωk,ξ )uk,ξ,q

− γ Z̄|q|Z̄|k−q| N−1/2
m (uk,ξ,a + ε−1 uk,ξ,b)

− γ Ȳ|q|Ȳ|k−q| N−1/2
m (vk,ξ,a + ε−1 vk,ξ,b). (43)

The coefficient in front of d̂
†
−k,a reads

0 =
(

− 1

2
k2 + ω − ωk,ξ

)
vk,ξ,a

+
∑

q

γ Y|q|Y|k−q| N−1/2
m uk,ξ,q

+
∑

q

γ Z̄|q|Z̄|−k−q| N−1/2
m vk,ξ,q. (44)

The coefficient in front of d̂
†
−k,b reads

0 =
(

− γ 2

g

1

ε2
+ ω − ωk,ξ

)
vk,ξ,b

+
∑

q

γ Y|q|Y|k−q| N−1/2
m ε−1 uk,ξ,q

+
∑

q

γ Z̄|q|Z̄|−k−q| N−1/2
m ε−1 vk,ξ,q. (45)
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The coefficient in front of d̂
†
−k,q reads

0 = (−W|−k−q| − W|q| − ωk,ξ )vk,ξ,q

+ γ Y|q|Y|−k−q| N−1/2
m (uk,ξ,a + ε−1 uk,ξ,b)

+ γ Z|q|Z|−k−q| N−1/2
m (vk,ξ,a + ε−1 vk,ξ,b). (46)

With respect to the final index η, the mode functions uk,ξ,η and
vk,ξ,η are the components of an eigenvector of a linear mapping
with the eigenfrequency ωk,ξ . Together with the completeness
relation (35), this defines the mode functions.

Remember that the mode functions as well as the frequen-
cies defined here are time dependent via the time dependence
of the classical background αcl , ᾱcl and βcl , β̄cl , which appears
in Y|q|, Ȳ|q| and Z|q|, Z̄|q|.

D. Symmetry properties of mode frequencies
and mode functions

As one may check by inspection, Eqs. (41)–(46) offer
certain symmetries, which are especially useful for our
calculation. For the following reasoning it is important
that we always think of the system’s volume as going to
infinity. This leads to continuous momenta and we can
define an arbitrary rotation R̂ in momentum space. Let us
replace k with k′ = R̂ k and q with q′ = R̂ q everywhere
in the above equations. Realizing that the sums over R̂ q
and q are identical, we find that the new set of equations
is the same linear mapping as for the original mode
functions and mode frequency. We thus have the identities
ωk′,ξ = ωk,ξ , (uk,ξ,a,uk,ξ,b,uk,ξ,q) = (uk′,ξ,a,uk′,ξ,b,uk′,ξ,q′ )
and (vk,ξ,a,vk,ξ,b,vk,ξ,q) = (vk′,ξ,a,vk′,ξ,b,vk′,ξ,q′ ). As an
immediate consequence, the mode functions uk,ξ,a , uk,ξ,b and
vk,ξ,a , vk,ξ,b as well as the mode frequency ωk,ξ can only
depend on the modulus |k| since the rotation R̂ is arbitrary.
One rotation which is especially useful is the rotation mapping
k into −k and q into −q.

E. Low-energy (Anderson-)Bogoliubov modes

In this section, we reduce the equations for the mode
functions and mode frequencies as far as possible. We restrict
ourselves to low-frequency excitations.

1. Elimination of uk,ξ,b and vk,ξ,b for appropriate ωk,ξ

Comparing Eqs. (41) and (42) as well as (44) and (45), we
can express uk,ξ,b and vk,ξ,b in terms of uk,ξ,a and vk,ξ,a ,

uk,ξ,b = ε f (ωk,ξ ) uk,ξ,a, (47)

vk,ξ,b = ε f (−ωk,ξ ) vk,ξ,a, (48)

by means of the function

f (ωk,ξ ) =
(

1

2
k2 − ω − ωk,ξ

)[
γ 2

g
− ε2(ω + ωk,ξ )

]−1

.

(49)

This helps us in the following to eliminate uk,ξ,b and vk,ξ,b

from the equations. Of course, the above denominator should
not become zero. Since we consider ε as going to zero anyway,
we restrict our further analysis to cases where the combination

of ξ and ε fulfills the condition

ωk,ξ <
γ 2

g

1

ε2
− ω. (50)

For an appropriate choice of ε, this holds for ξ = a or if ξ

equals q for a small value of |q|. However, as ε tends to zero,
more and more q values meet this criterion and the upper
bound for ωk,ξ tends to infinity.

2. Elimination of uk,ξ,q and vk,ξ,q for appropriate ωk,ξ

We would also like to eliminate the mode functions uk,ξ,q
and vk,ξ,q. This is easily done by rewriting Eq. (43) as

uk,ξ,q = {
γ Z̄|q|Z̄|k−q| N−1/2

m [1 + f (ωk,ξ )]uk,ξ,a

+ γ Ȳ|q|Ȳ|k−q| N−1/2
m [1 + f (−ωk,ξ )]vk,ξ,a

}
· (W|k−q| + W|q| − ωk,ξ )−1 (51)

and Eq. (46) as

vk,ξ,q = {
γ Y|q|Y|−k−q| N−1/2

m [1 + f (ωk,ξ )]uk,ξ,a

+ γ Z|q|Z|−k−q| N−1/2
m [1 + f (−ωk,ξ )]vk,ξ,a

}
· (W|−k−q| + W|q| + ωk,ξ )−1. (52)

Equation (51) is at least well defined as long as its denominator
does not become zero. Thus, to avoid unnecessary complica-
tions, we restrict ourselves to mode frequencies satisfying

ωk,ξ < min
q

(W|k−q| + W|q|), (53)

with W|q| as defined in the Appendix.
As long as � − ω < 0 holds, not all atoms of the atomic

background solution have already gone through the resonance.
In this case we have minq(W|k−q| + W|q|) = 2 γ

√
neff for all

|k| � 2
√

(ω − �)/2 (see [27]) with neff as defined in the Ap-
pendix. The minimal value is achieved for q laying on a circle
defined by the intersection of the spheres q2 = (ω − �)/2 and
(k − q)2 = (ω − �)/2. In all other cases, the lower bound
is given by minq(W|k−q| + W|q|) = 2 W|k/2| (see [27]) and is
achieved for q = k/2.

2W|k/2| is bounded from below by 2γ
√

neff . The latter is
thus the overall lower bound with respect to k on the BCS side,
where the value 2γ

√
neff is just the minimal width of the energy

gap in the two-level systems of the atomic background solution
as described in the Appendix. This gap separates paired from
unpaired atomic (fermionic) states. Finally, this means that the
above condition for ωk,ξ is nothing other than the requirement
that the excitations considered here must have frequencies
much lower than the frequencies involved in breaking pairs of
atoms.

We focus in the following on excitations which are
energetically well separated from the dummy molecular mode
[condition (50)] and from the atomic pair breaking threshold
[condition (53)]. It will turn out that this class of instantaneous
normal modes agrees with low-energy free molecular modes
d̂k,a at late times. Therefore, we use from now on the index a

instead of the general index ξ .
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3. A simple matrix equation for uk,a,a and vk,a,a

From Eqs. (41) and (44) we get uk,a,a and vk,a,a , respec-
tively. In order to close the system of equations, we eliminate
uk,a,q and vk,a,q by means of (51) and (52). Finally, we end up
with a linear mapping,

ωk,a

(
uk,a,a

vk,a,a

)
=

(
M11 M12

M21 M22

)(
uk,a,a

vk,a,a

)
, (54)

where the components of the matrix M are defined as

M11 := 1
2 k2 − ω − [1 + f (ωk,a)]A(k,ωk,a), (55)

M12 := −[1 + f (−ωk,a)]B(k,ωk,a), (56)

M21 := [1 + f (ωk,a)]B̄(k,ωk,a), (57)

M22 := − 1
2 k2 + ω + [1 + f (−ωk,a)]A(k, − ωk,a). (58)

The functions A(k,ωk,a) and B(k,ωk,a) are defined after some
appropriate relabeling of the summation indices as

A(k,ωk,a) := γ 2

Nm

∑
q

[
Z|q|Z|k−q|Z̄|q|Z̄|k−q|
W|k−q| + W|q| − ωk,a

+ Ȳ|q|Ȳ|k−q|Y|q|Y|k−q|
W|k−q| + W|q| + ωk,a

]
(59)

and

B(k,ωk,a) := γ 2

Nm

∑
q

[
Z|q|Z|k−q|Ȳ|q|Ȳ|k−q|

W|k−q| + W|q| − ωk,a

+ Ȳ|q|Ȳ|k−q|Z|q|Z|k−q|
W|k−q| + W|q| + ωk,a

]
. (60)

Similar functions appear in the time-independent treatment of
single-channel and two-channel models as, e.g., in [8,9].

We have thus reached an eigenvector equation, which
delivers us uk,a,a and vk,a,a . The mode functions uk,a,q and
vk,a,q can then be derived trivially from Eqs. (51) and (52).
The mode functions uk,a,b and vk,a,b follow from Eqs. (47)
and (48). Please keep in mind that after all the manipulations
in this section, we assume small ε or even ε → 0. The matrix
equation (54) then only depends on the small-ε limit of
f (ωk,ξ ) (49).

Note that the above calculation could be generalized to
excitations which are energetically not well separated from the
dummy molecular mode [condition (50)]: One could eliminate
uk,a,q and vk,a,q as well, but would end up with a four-by-four
matrix instead of M. These four equations would then also
depend linearly on uk,a,b and vk,a,b. The strategy would just be
to solve (43) and (46) for uk,a,q and vk,a,q and to apply the result
in the other eigenvalue equations (41), (42), (44), and (45).
However, we do not follow this approach here, since for a
true multichannel Feshbach resonance with finite ε it would
have been necessary to keep the kinetic energy term of the
second resonance, which we neglected right in the beginning.
Moreover, it would have been necessary to specify the precise
position of the resonance in the Hamiltonian (2).

F. Frequencies of the low-energy (Anderson-)Bogoliubov modes

According to Eq. (54), the low-energy mode frequency
ωk,a can be found straightforwardly by setting the deter-
minant det(M − ωk,a) to zero (compare the single-channel
model [9]):

(M11 − ωk,a) (M22 − ωk,a) − M12 M21 = 0. (61)

Note that this equation involves ωk,a not just polynomially but
in a very nontrivial way, because the matrix elements Mij

all depend on ωk,a , as given by (55), (56), (57), and (58). A
numerical solution is necessary to find the explicit frequencies.

For sufficiently small |k|, the possible mode frequencies of
ĤB,k (as the volume tends to infinity) will appear as follows:
There exists one isolated solution ωk,a for each ĤB,k and
a continuum of possible frequencies above some threshold
value. The existence of continuous mode frequencies becomes
clear by realizing that

[ĤB,k ,�̂
†
k,q′ − �̂

†
k,k−q′ ] = (W|q′| + W|k−q′|)

· (�̂†
k,q′ − �̂

†
k,k−q′). (62)

This means that, when applied onto an eigenstate, the operator
�̂
†
k,q′ − �̂

†
k,k−q′ creates excitations with frequencies W|q′| +

W|k−q′|. As the example shows, there exist excitations with
frequencies of the uncoupled virtual molecules. For fixed k,
they are bounded from below by the very same minimum
discussed in the previous Sec. V E2.

On the BCS side � − ω < 0, the k dependence of ωk,a

for moderate |k| values shows a special feature: It tends to
the threshold line associated with the onset of the continuous
frequency spectrum. The threshold value is 2γ

√
neff for

|k| � 2
√

(ω − �)/2 and 2W|k/2| for |k| � 2
√

(ω − �)/2,
where neff and W|k| are defined in the Appendix. This behavior
has been stated for a single-channel model in [27] and is
shown in Fig. 2 therein. We recover exactly this figure
at ti = −∞, �(ti) = −∞, where our two-channel model
has turned asymptotically into a single-channel model. This
happens as follows.

Since in the above limit (� → −∞) only the quantities
g, (� − ω) /2, and 2γ

√
neff appear in the equation for ωk,a

as well as in the two equations of motion for the classical
background (see the Appendix ), the only free undetermined
parameter which is left is g. The parameter γ alone becomes
arbitrary since it can be compensated by an appropriate choice
of neff . Thus, we are essentially left with a BCS model that
involves only the parameter g.

The parameters for which our two-channel model asymp-
totically (� → −∞) agrees with the single-channel model of
Fig. 2 in [27] are given in Table I, where the second and third
row correspond to the upper and lower thick lines in the cited
figure.

TABLE I. Parameters matching Fig. 2 in [27] for t = ti .

“1/kF a” in [27] g (� − ω) /2 2γ
√

neff

−1/2 8/(3 π ) −0.849 490 0.804 175
−1 4/(3 π ) −0.953 983 0.416 835
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FIG. 1. Frequency dispersion relation ωk,a (solid line) and its
k-dependent threshold (dashed line) as � → − ∞. Shown are
the two cases given in Table I. The � → − ∞ limit recovers a
single-channel model as considered in [27]. We chose the parameters
such that our results are in agreement with Fig. 2 therein. The
threshold line is 2γ

√
neff for |k| � 2

√
(ω − �)/2 and 2W|k/2| for

|k| � 2
√

(ω − �)/2. To simplify numerics, ωk,a is calculated only
up to values slightly below the threshold line.

Figure 1 shows the k dependence of our two-channel model
on the BCS side for ti = −∞, where �(ti) = −∞. A similar
situation is also found for finite times t on the whole BCS
side. The approach of the threshold line is the same as in the
single-channel case [27].

As discussed in [27] for the single-channel case, the
behavior of these curves at higher frequencies is nontrivial. On
the BCS side � − ω < 0, the dispersion curve for Anderson-
Bogoliubov modes most probably merges into the continuum
for a certain |k| with |k| > 2

√
(ω − �)/2 as it does in the

single-channel case; the seemingly asymptotic approach to
the continuum that one sees in Fig. 1 here and in Fig. 2 of [27]
changes at high |k|. As the BCS-BEC crossover proceeds, the
dispersion curve is expected to cross into the continuum before
entering the BEC regime � − ω > 0. There, the dispersion
curve gradually turns into the parabola of noninteracting
bosons. On the BEC side, we expect no special behavior of
the dispersion curve at the threshold of the �̂k,q continuum.

4 3 2 1 0 1 2
0
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20

10
3
ω

k
,a

FIG. 2. Frequency dispersion relation ωk,a versus � for different
|k| (103 |k| = 2, 6, 10, 14, 18, lower to upper line). The linear |k|
dependence for small |k| in the early BCS regime is obvious. The
parameters are γ = 0.1 and g = 0.2.
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FIG. 3. Same situation as in Fig. 2, but focusing on another
region. The free particle dispersion relation k2/2 is asymptotically
approached in the late BEC regime.

This is simply because the molecular frequency in the extreme
BEC limit, k2/2, is always smaller than the continuum
threshold on the BEC side, minq(W|k−q| + W|q|) = 2W|k/2|
(see the Appendix for definition).

In a single-channel model, [27] considers collective modes
of all frequencies, for time-independent Feshbach detuning
�. Our interest here, however, is in the nonadiabatic effects
of time-dependent � in a two-channel model. Feshbach
sweep rates high enough to induce nonadiabatic behavior
at frequencies approaching the BCS gap will also produce
more complicated nonadiabatic evolution, including the non-
perturbative two-body fermion dynamics that we have here
treated adiabatically. We thus restrict our attention to Feshbach
sweeps slow compared to the gap, so that our treatment of
the fermions with a mixture of adiabatic and perturbative
approximations is valid. We therefore also focus only on
collective modes with frequency well below the continuum
threshold, since only these will show significant nonadiabatic
evolution in the limit of a slow BCS-BEC crossover. For
low frequencies, wave numbers are also low, and the linear
dispersion curve indicates that we deal with sound modes.

The time dependence of instantaneous, low ωk,a is shown
in Figs. 2 and 3. In Fig. 2, the linear |k|-dependence of ωk,a for
small |k| becomes obvious. Since the system does not change
very much as long as the atoms are not resonant with the
molecules yet (i.e., before � ≈ −2), the frequencies do not
change very much in this region either. For the parameters
chosen, the frequencies drop quite rapidly as soon as the
first atoms on the Fermi surface become resonant with the
molecules, just before � ≈ −2. However, the frequencies
plotted here still show a very linear |k|-dependence up to
� ≈ 0, i.e., almost in the full BCS regime � − ω < 0.

The mode frequencies are shown in Fig. 3 for the late BEC
regime, i.e., � − ω > 0. Evidently, the molecules turn into
free particles since their frequencies asymptotically approach
k2/2. In the transition region between BCS and BEC, i.e., for
� − ω ≈ 0, the frequency dispersion changes smoothly from
linear into quadratic.

VI. POSTADIABATIC NORMAL-MODES HAMILTONIAN

In this section we derive the central result of this paper,
namely a postadiabatic Hamiltonian ĤI for which the subscript
indicates that it is expressed in terms of the instantaneous
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normal modes. The postadiabatic effects will thus be expressed
as nondiagonal couplings among these modes. Within the
approximations and constraints made in the previous sections
and in the following paragraph, this Hamiltonian is equivalent
to our original problem.

We derive the coupling among normal modes, which is
of order �̇ and originates from time dependence of the
Bogoliubov transformation B̂k. Note that, in general, there
are also corrections to Y|q| and Z|q| of the order �̇ contained
in y|q| and z|q| due to the adiabatic time evolution of the
fermions in the molecular background (see the Appendix).
This contribution could be expressed in terms of normal modes
as well, leading to additional couplings among these. However,
we neglect these couplings, since we are mainly interested in
the dynamics of low-energy normal modes located at the lower
end within the fermionic gap. For these low-energy normal
modes, the situation is as follows: Compared with the coupling
terms of order �̇ which result from the time dependence of the
Bogoliubov transformation B̂k, the coupling terms resulting
from the time dependence of the fermionic subsystem are,
roughly speaking, at least smaller by the ratio of ωk,a and the
fermionic gap. Since we finally consider momenta k for which
this ratio tends to be small, we neglect these coupling terms.

A. Time evolution of the smallest factorizing part

Our procedure was exactly the same as the familiar
Bogoliubov diagonalization of a quadratic Hamiltonian, but
since the Hamiltonian in question was time dependent, the
resulting quasiparticle operators were also time dependent,
and not only in the trivial sense of having time-dependent
phase prefactors. Our Bogoliubov transformation was itself
nontrivially time dependent, with each of the instantaneously
diagonalizing operators being a time-dependent combination
of time-independent creation and destruction operators.

In this sense our time-dependent Bogoliubov transforma-
tion simply has not yet gone quite far enough. For any
given time t , we have a convenient set of instantaneously
diagonalizing operators; but this is still a different set of
operators for every t . We do not yet have a single set of
operators that provides a simple description of excitations at
all times.

The easiest way to explain exactly what we still need to
do is probably just to do it. We introduce a time-dependent
change of basis in the many-body Hilbert subspace of modes
with fixed k, such that for all states |�k(t)〉, the new-basis
representation |�̃k(t)〉 is given by

|�k(t)〉 =: B̂k(t)|�̃k(t)〉, (63)

where B̂k(t) is the unitary operator that effects the time-
dependent Bogoliubov transformation which instantaneously
diagonalizes ĤB,k:

D̂k,ξ := B̂k d̂k,ξ B̂
†
k. (64)

We usually omit the argument of B̂k(t) whenever it is t . In
general, B̂k is the exponential of a bilinear mapping in terms
of the old creation and annihilation operators appearing in
ĤB,k (28).

The effect of this change of basis is simple and very
convenient: It relabels states so that they count as the same,
at different times, if they are the same modulo adiabatic time
evolution. So, for example, the instantaneous ground state of
the k subspace at any time t was defined in our original basis
by

D̂k,ξ (t)|0(t)〉 = 0. (65)

This implies that, in the new basis, the ground state is
determined by

D̂k,ξ (t) B̂k(t)|0̃〉 ≡ B̂k(t) d̂k,ξ |0̃〉 = 0

⇐⇒ d̂k,ξ |0̃〉 = 0. (66)

Since all the operators d̂k,ξ are time independent, the ground
state |0̃〉 is now also time-independent. A similar property
holds for all instantaneous eigenstates of ĤB,k: Their eigen-
values are time dependent, but the states themselves are now
time independent, in this new time-dependent basis, because
the adiabatic time evolution (up to phases) has been built into
the basis itself.

Exactly this change of many-body Hilbert space basis is
normally made implicitly at the same time as one diagonalizes
a quadratic Hamiltonian with a Bogoliubov transformation.
In the case of a time-independent Bogoliubov transformation,
diagonalizing a time-independent Hamiltonian, the basis trans-
formation is trivial enough that it needs no explicit attention. In
the general case of a time-dependent transformation, however,
the basis change is time-dependent, and some nontrivial effects
are involved. For where the time evolution in the original basis
was given by

|�k(t)〉 = ÛB,k(t,ti)|�k(ti)〉, (67)

now in the new basis the time evolution is

|�̃k(t)〉 = ÛI,k(t,ti)|�̃k(ti)〉, (68)

ÛI,k(t,ti) := B̂
†
k(t) ÛB,k(t,ti) B̂k(ti), (69)

with

ĤI,k = B̂
†
k ĤB,k B̂k − i B̂

†
k

(
d

dt
B̂k

)
, (70)

where we have also used the identity B̂
†
k(t) B̂k(t) ≡ 1.

The first term in ĤI,k represents strictly adiabatic evolution.
It is a sum of rather trivial terms ωk,ξ (t) d̂

†
k,ξ d̂k,ξ , where

the time-dependent instantaneous eigenfrequencies ωk,ξ (t) are
those of Sec. V above, and the operators d̂k,ξ and d̂

†
k,ξ are

time independent. The second term in ĤI,k is less trivial, but
because the Bogoliubov transformation B̂k only varies on the
slow time scale �, it will be a postadiabatic correction that is
small if the crossover sweep is slow. It can be considered
a second-quantized analog to first postadiabatic correction
terms in single-particle quantum mechanics, such as so-called
geometric magnetism and other artificial gauge fields.

We would also like this second term to be expressed in
terms of the time-independent operators d̂k,ξ . As we will see,
this term couples different eigenmodes of the instantaneous
Hamiltonian. Its representation at hand is still not very
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practical, however, since it contains B̂
†
k and the time derivative

of B̂k. To compute the coupling term directly would thus
require an explicit representation of B̂k. We take a simpler
approach in the following section.

Keep in mind that, due to the transformation into the normal
modes basis, the physical meaning of d̂k,ξ has changed; instead
of describing the basic excitations of molecules and virtual
bosons, it now describes the excitation in terms of normal
modes. Here “in terms of” means that d̂k,ξ is still not time
dependent itself, since the time dependence (up to phases)
of the normal modes has been absorbed in B̂

†
k(t) within the

definition of ÛI,k (69).

B. Coupling of instantaneous eigenmodes

In order to derive the coupling term among normal modes
in ĤI,k (70) without using an explicit representation for B̂k,
we take the following approach. We calculate the commutator
of the coupling term, with all the operators it contains, in
terms of the time-independent operators d̂k,ξ . It is then possible
to reconstruct an operator leading to the same commutation
relations. The coupling term reconstructed by this method is
just defined up to c-number terms, which we freely choose to
be zero.

Following this strategy, we first of all calculate the commu-
tator of the coupling term (omitting the prefactor) with d̂k,ξ ,

[
d̂k,ξ ,B̂

†
k

(
d

dt
B̂k

)]
= d̂k,ξ B̂

†
k

(
d

dt
B̂k

)
+

(
d

dt
B̂

†
k

)
B̂k d̂k,ξ

= B̂
†
k D̂k,ξ

(
d

dt
B̂k

)
+

(
d

dt
B̂

†
k

)
D̂k,ξ B̂k

= d

dt

(
B̂

†
k D̂k,ξ B̂k

)
− B̂

†
k

(
d

dt
D̂k,ξ

)
B̂k

= −B̂
†
k

(
d

dt
D̂k,ξ

)
B̂k. (71)

In the first step of this derivation we use the identity

d

dt
(B̂†

k B̂k) = B̂
†
k

(
d

dt
B̂k

)
+

(
d

dt
B̂

†
k

)
B̂k = 0 (72)

and in its last step we use the inverse Bogoliubov transforma-
tion

d̂k,ξ = B̂
†
k D̂k,ξ B̂k. (73)

The expression for the commutation relation (71)

− B̂
†
k

(
d

dt
D̂k,ξ

)
B̂k (74)

might not look very useful at first sight, but, in fact, it is. If
we had the time derivative of D̂k,ξ in terms of D̂k,ξ modes,
the inverse Bogoliubov transformation in the above equation
would map them into d̂k,ξ modes, giving the desired result.

Thus, we calculate the time derivative of D̂k,ξ in terms of

D̂k,ξ modes by using its explicit definition (33),

d

dt
D̂k,ξ =

∑
η

(
d̂k,η

d

dt
uk,ξ,η + d̂

†
−k,η

d

dt
vk,ξ,η

)
, (75)

and by replacing the d̂k,ξ modes therein with the explicit
inverse Bogoliubov transformation (38) and (39). We obtain
an equation which contains only the various operators D̂k,ξ ′

and D̂
†
−k,ξ ′ . The desired result is then

[
d̂k,ξ ,B̂

†
k

(
d

dt
B̂k

)]
= �̇

∑
ξ ′

Gk,ξ,ξ ′ d̂k,ξ ′ −�̇
∑
ξ ′

Ik,ξ,ξ ′ d̂
†
−k,ξ ′ ,

(76)

giving the commutator of d̂k,ξ with the coupling term in terms

of the time-independent modes d̂k,ξ ′ . The commutator of the

coupling term with d̂
†
k,ξ can be found straightforwardly by

taking the Hermitian conjugate of this equation (76) and using
the identity (72).

In the above equation (76), the coupling between the
operators involves the newly defined functions,

Gk,ξ,ξ ′ :=
∑

η

(
ūk,ξ ′,η

d

d�
uk,ξ,η − v̄k,ξ ′,η

d

d�
vk,ξ,η

)
, (77)

Ik,ξ,ξ ′ :=
∑

η

(
v−k,ξ ′,η

d

d�
uk,ξ,η − u−k,ξ ′,η

d

d�
vk,ξ,η

)
,

(78)

where we should keep in mind the properties of the mode
functions as discussed in Sec. V D. Since the mode functions
only depend on time via � in our case, the above definitions
immediately imply that the same also holds for Gk,ξ,ξ ′ and
Ik,ξ,ξ ′ .

The functions Gk,ξ,ξ ′ and Ik,ξ,ξ ′ offer some symmetries: If
we take the time derivative of the completeness relation (35),
we find (note the position of the prime)

Gk,ξ,ξ ′ = − Ḡk,ξ ′,ξ . (79)

This means that Gk,ξ,ξ ′ is a purely imaginary function. By
taking the time derivative of the orthogonality relation (36),
we find (note the position of the prime)

Ik,ξ,ξ ′ = I−k,ξ ′,ξ . (80)

However, one might already guess from the rotational
symmetry of our system as the volume tends to infinity that
Gk,ξ,ξ ′ and Ik,ξ,ξ ′ depend on k just via the modulus |k|. More
rigorously, this can also be seen as follows: If the system’s
volume tends to infinity, we can replace k with rotated k′ = R̂ k
everywhere in (77) and (78). We also replace the part of the
η sum over q by a sum over the rotated q′ = R̂ q. Using the
identities derived in Sec. V D and realizing that the sums
over R̂ q and q are identical, we find that Gk,ξ,ξ ′ = Gk′,ξ,ξ ′ and
Ik,ξ,ξ ′ = Ik′,ξ,ξ ′ . Since the rotation R̂ is arbitrary, both functions
depend only on the modulus |k|.
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C. The Hamiltonian in instantaneous eigenmodes

In this section, we calculate ĤI,k, the Hamiltonian in terms
of instantaneous eigenmodes (equivalently denoted as normal
modes). Since the first part of ĤI,k (70) is already diagonal
in the time-independent d̂k,ξ modes, all we need to do is to
reconstruct the second remaining part. This is achieved by
stating an operator which has the correct commutation relation
with d̂k,ξ (76), as well as with d̂

†
k,ξ , d̂−k,ξ , and d̂

†
−k,ξ . This is

done, in general, up to a c-number term which we choose to
be zero, since it leads only to a global phase in the dynamics.

For fixed k the following Hamiltonian satisfies the required
conditions for d̂k,ξ , d̂

†
k,ξ , d̂−k,ξ , and d̂

†
−k,ξ :

ĤI,k =
∑

ζ

ωk,ζ (d̂ †
k,ζ d̂k,ζ + d̂

†
−k,ζ d̂−k,ζ )

− i �̇
∑
ζ,ξ ′

Gk,ζ,ξ ′ (d̂ †
k,ζ d̂k,ξ ′ + d̂

†
−k,ζ d̂−k,ξ ′ )

+ i �̇
∑
ζ,ξ ′

(Ik,ζ,ξ ′ d̂
†
k,ζ d̂

†
−k,ξ ′ − Īk,ζ,ξ ′ d̂k,ζ d̂−k,ξ ′ ). (81)

This is checked by inspection using the properties (79) and (80)
of Gk,ξ,ξ ′ and Ik,ξ,ξ ′ as well as the k ↔ −k symmetry of
all c-number coefficients in (81). Furthermore, the latter
properties ensure that the Hamiltonian is Hermitian (assuming
the frequencies are real) and satisfies ĤI,k = ĤI,−k. The full
Hamiltonian in terms of instantaneous eigenmodes reads then

ĤI =
∑
k �= 0
k3 > 0

ĤI,k, (82)

where the summands ĤI,k can be used to factorize the
dynamics by means of the commutation relation

[ĤI,k(t) ,ĤI,k′(t ′)] = 0 for k′ �= ±k. (83)

The restriction to k3 > 0 (assuming V → ∞) in (82) avoids a
double counting in k.

Let us consider the postadiabatic effects in ĤI,k (81)
created by the time-dependent functions Gk,ζ,ξ ′ and Ik,ζ,ξ ′ .
The effect of the diagonal elements of Gk,ζ,ξ ′ , Gk,ζ,ζ is to
cause corrections to the instantaneous eigenfrequencies. More
interestingly, the terms in ĤI,k (81) containing the couplings
Ik,ζ,ξ ′ and Īk,ζ,ξ ′ create and destroy pairs of quasiparticles. This
is an example of quantum field theoretical pair production
in a time-dependent background, such as typically occurs in
cosmology.

The Hamiltonians ĤI,k (81) and ĤI (82) as well as the
definitions of their coefficients are the main result of this paper.
We focus on the low-energy excitations of this system in a
subsequent publication [25].

D. Numerical results

For the present we show some numerical results illustrating
the qualitative character of Ik,a,a over the course of a crossover
sweep.

As Fig. 4 shows, there are two regions where the matrix
element Ik,a,a shows a characteristic behavior for the given pa-
rameters. One characteristic peak appears when the first atoms
become resonant around � � −2 and the other characteristic
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FIG. 4. Matrix element Ik,a,a versus � for different |k|
(103 |k| = 2, 10, 18, solid lines with decreasing peak size and limit
|k| → 0, dashed line). Characteristic peaks appear when the first
atoms become resonant for � � −2 and when the last atoms leave
the resonance for � ≈ 0. The parameters are γ = 0.1 and g = 0.2.

peak appears when the last atoms leave the resonance around
� ≈ 0. Between these peaks, the matrix element crosses zero,
meaning that there is one instance in time without molecular
pair production for any slow crossing speed.

Figure 4 also shows the k dependence of the matrix
element Ik,a,a for small |k|. It is important to notice that
the matrix element considered is bounded even in the limit
|k| → 0. The peak around � � −2 is almost constant in the
considered k regime, whereas the peak at � ≈ 0 is lowered
for increasing |k|, especially for � � 0, i.e., mainly on the
BEC side. Consequently, the latter peak becomes sharper with
increasing |k|.

In summary, Fig. 4 immediately implies that the nonadia-
batic quasiparticle production can be expected to occur most
strongly at the beginning and at the end of the Fermi sphere’s
sweep through the Feshbach resonance.

Figure 5 shows the matrix element Ik,a,a in the limit |k| → 0
for different values of γ . With decreasing γ , the peaks at
� � −2 and � ≈ 0 become both continuously amplified,
whereas their maxima are shifted continuously. For increasing
γ , the peak at � � −2 is shifted to smaller � values while the
peak at � ≈ 0 is shifted to higher � values.
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FIG. 5. Matrix element Ik,a,a versus � in the limit |k| → 0 for
g = 0.2 and different γ . The solid, the dashed, and the dotted lines
show γ = 0.05, 0.1, and 0.2, respectively. Characteristic peaks appear
when the first atoms become resonant for � � −2 and when the last
atoms leave the resonance for � ≈ 0.
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FIG. 6. Matrix element Ik,a,a versus � in the limit |k| → 0 for
γ = 0.1 and different g. The solid, the dashed, and the dotted lines
show g = 0.1, 0.2, and 0.4. Characteristic peaks appear when the first
atoms become resonant for � � −2 and when the last atoms leave
the resonance for � ≈ 0.

In contrast, Fig. 6 shows the matrix element Ik,a,a in the
limit |k| → 0 for different values of g. Here, the situation
is different from the γ behavior in Fig. 5. The peak around
� � −2 increases with decreasing g. Its minimum gets shifted
to the right for increasing g. With increasing g, the maximum
around � ≈ 0 is also slightly shifted to the right while the
peak size increases.

VII. DISCUSSION

In this paper, we have addressed the postadiabatic dynamics
of a two-channel model, describing the transition from a BCS
ground state of fermionic atoms through a Feshbach resonance
into a possibly excited state of bosonic molecules.

A. Summary of results

Throughout this paper, we have mimicked the effect
of background scattering by the adiabatic elimination of
off-resonant bound states. In comparison with the standard
Hubbard-Stratonovich approach, this offers an especially
physical interpretation of the mathematical simplifications.

The basic intermediate result continuously used in the
calculations is the classical path for k = 0 molecular modes
as derived in the Appendix and shown in Fig. 7. It serves as a
background field within all our calculations.

In the course of this paper we have introduced virtual
bosonic modes in order to mimic the effects derived before
by a DGA. The common idea of both descriptions is that the
system can be interpreted as consisting of two subsystems.
The order of solving them, one after another, or both at once,
is the key step in simplifying the systems description. We
have finally mimicked the leading effects of the subsystem of
fermionic atoms by means of a subsystem of virtual bosons,
while the subsystem of molecular bosons is treated in terms of
a coherent-state path integral. Instead of solving the dynamics
of one subsystem within the path integral, we left the path
integral in order to solve the dynamics of both subsystems
simultaneously. This led us to a purely bosonic, quadratic
Hamiltonian, which should be an excellent approximation to
the original problem in the parameter range we are looking at.
The latter Hamiltonian ĤB,k (28) is an important intermediate

result of this paper since all our following main results are
based on it.

1. Instantaneous diagonalization

As a main result, we have diagonalized the quadratic Hamil-
tonian ĤB,k (28) instantaneously and thus obtained equations
for the spectrum of instantaneous eigenfrequencies ωk,ζ as
well as for the instantaneous mode functions uk,ξ,η and vk,ξ,η.
The equations obtained can be used for a numerical analysis
as shown in the Figs. 1, 2, and 3. Thus, we have described the
instantaneous (Anderson-)Bogoliubov excitations completely.

2. The postadiabatic Hamiltonian

The most important result of this paper is the postadiabatic
Hamiltonian ĤI,k (81). It describes the Hamiltonian ĤB,k (28)
in terms of its instantaneous, time-dependent normal modes.
As an effect of the time dependence, there appear various
coupling terms, quadratic in the normal mode’s creation
and annihilation operators with prefactors Gk,ζ,ξ ′ , Ik,ζ,ξ ′ , and
Īk,ζ,ξ ′ . These prefactors that introduce new couplings among
the modes are the main postadiabatic effect. The different
prefactors can be obtained numerically as the examples in
Figs. 4, 5, and 6 show for various, significant cases.

3. Validity of results

The main restriction on the validity of our result is the
constraint on ν. The validity of almost all other assumptions
are immediate self-consistent consequences of the latter one:
The smaller ν is, the fewer modes are expected to become
excited. Thus, the total depletion out of the system’s adiabatic
ground state is expected to decrease. As the total depletion
decreases, the quality of the DGA is expected to increase.
Furthermore, a small depletion justifies also the neglect of
backreaction on the classical background.

There is another restriction on ν, originating from the
derivation of the underlying classical background: The adi-
abaticity condition for the atomic two-level systems ν as well
as the slow time dependence of the molecular classical path are
both self-consistent. Both hold as long as ν is small compared
to the energy gaps of all atomic two-level systems (i.e., the
BCS gap on the BCS side). This condition ensures that we end
up in a state without remaining fermionic excitations.

Small sweep rates ν2 also suggest low-energy modes to be
involved. Focusing on the dynamics of low-energy normal
modes located at the lower end within the fermionic gap,
we can neglect higher order adiabatic corrections to the time
evolution of the fermions in the molecular background.

Apart from the restrictions on ν, the classical approximation
for the k = 0 molecular modes has to hold. This is ensured by
the choice of a small γ (see [28,29]): As γ decreases, the
coupling between the fermionic and the bosonic subsystem
decreases and the eigenstates of the whole system approach
product states out of either Hilbert space more closely. Since
the classical approximation approximates the system’s ground
state by a product of an (un-normalized) coherent state and a
fermionic squeezed state it improves as γ decreases. Note that
according to its definition, γ decreases with increasing Nm.

Several assumptions have been made in the derivation of the
classical path which turn out to be fulfilled self-consistently.
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Despite this, these assumptions might, in principle, have
ruled out some possible further classical paths. However, we
consider this extremely unlikely, since the obtained classical
path shows the expected behavior.

B. Relation to experiments

In comparison with real experiments, our results have surely
to be adapted insofar as all experiments are conducted in traps,
whereas we deal with a potential-free Hamiltonian. However,
potentials with nice momentum space representations might
be tractable within our calculations as well. Numerical results
which can be compared with experimental results at least
qualitatively will be presented in a future publication [25].

C. Squeezing and quasiparticle production

The basic implication of our analysis is that the leading
postadiabatic effect of a finitely slow BCS-BEC crossover,
through a narrow Feshbach resonance, is the excitation
of opposite-momenta squeezed states of the low-frequency
collective modes of the molecular quantum gas. This is a
typical form of nonadiabatic excitation in systems described by
quantum fields in time-dependent backgrounds. It occurs, for
example, in cosmology, where excitations of long-wavelength
modes in cosmic fields during expansion of the universe have
been considered as sources of nonuniformity in the spatial
distribution of energy and matter.

As in cosmology, one may expect that subsequent nonlinear
interactions will drive the nonadiabatically excited squeezed
state into a more typical thermal distribution. In this sense
the coherent nonadiabatic excitations are a source of thermal
fluctuations, and represent an essential initial stage of entropy
production. Our results in this paper can thus be considered as
an analysis of the first roots of entropy in chemical reactions,
as they appear in molecule production under the most tightly
controlled conditions of full quantum coherence.
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APPENDIX: ADIABATIC, CLASSICAL MOLECULAR,
AND ATOMIC BACKGROUND SOLUTION

Our main strategy in dealing with the path integral is
to consider a slow but possibly large classical background
and small but possibly fast perturbations around it. For
small enough sweep rates, the depletion into other modes
will be small, in general, and we can restrict completely
on the k = 0 classical molecular background, which we
treat nonperturbatively. For the k = 0 molecular modes the
decomposition into classical path αcl , βcl and fluctuations
δα0, δβ0 is done formally by writing α0 = αcl + δα0 with
δα0 := α0 − αcl and β0 = βcl + δβ0 with δβ0 := β0 − βcl .

Consequently, we consider in this appendix the sys-
tem (4) in the case where only k = 0 molecular modes are
present as discussed in Sec. III C1. This immediately implies
ĤAT = ĤT L, meaning that the atomic Hamiltonian consists

of many fermionic two-level systems. We derive the adiabatic
classical background solution, i.e., the classical path αcl , ᾱcl

and βcl , β̄cl for k = 0 molecules and small �̇. Simultaneously,
we derive the adiabatic classical background solution for atoms
|F (t)〉, 〈F̄ (t)|, i.e., the evolution of the fermionic atoms under
ĤT L,cl (ĤT L on the classical path).

As for all classical path calculations, we need to extremize
the molecular action by linearizing it for small fluctuations and
setting the first variation to zero. To this end, we formally set
up the general classical atomic problem for the time evolution
under ĤT L,cl . Subsequently, we can construct the first variation
of the system’s action, set it to zero, and get the molecular
equation of motion for the molecular classical path. Together
with the time-dependent Schrödinger equation for the atomic
evolution under ĤT L,cl , the equations at hand are a sufficient
set to determine the classical molecular and atomic background
solution. Their solution is found by an appropriate ansatz for
the adiabatic limit, i.e., for small �̇ or, strictly speaking, for
�̇ → 0.

Note that making the action stationary means, in general,
to go into the complex plane with both, the real and imag-
inary parts of the path-integral variables. Consequently, the
bar ¯ does, in general, not mean complex conjugation
anymore but denotes independent functions. However, we
only consider classical path for which the bar in fact means
complex conjugation, since we expect the latter to give the
most important contribution to the path integral.

1. The classically driven fermionic problem ĤT L,cl

As described in Sec. III A2 and Sec. III C1, the Hamiltonian
ĤT L (9)

ĤT L :=
∑

q

Ĥq (A1)

can be decomposed into a sum over Ĥq (11),

Ĥq :=
(

q2 + �

2
− ω

2

)
(ĉ†↑,qĉ↑,q + ĉ

†
↓,−qĉ↓,−q)

+ γ√
Nm

[ĉ↑,qĉ↓,−q(ᾱ0 + ε−1β̄0) + H.c.]. (A2)

The latter can be used in order to factorize the dynamics created
by ĤT L since they fulfill the commutation relation (12). The
time-dependent Schrödinger equation for the whole atomic
state |F (t)〉 (14) on the classical path,

i
d

dt
|F (t)〉 = ĤT L,cl |F (t)〉, (A3)

can therefore also be separated into time-dependent
Schrödinger equations for the two-level systems,

i
d

dt

(
y|q|
z|q|

)
= Hq,cl

(
y|q|
z|q|

)
, (A4)

where the atomic Hamiltonian matrix Hq,cl is given by

Hq,cl =
(

2 q2 + � − ω
γ√
Nm

(αcl + ε−1βcl)
γ√
Nm

(ᾱcl + ε−1β̄cl) 0

)
. (A5)
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These two-level systems have to fulfill the initial conditions
stated in Sec. III C1. The initial conditions as well asHq,cl only
depend on q by means of |q|, as anticipated by our notation.

2. The general atomic problem ĤT L and the first variation

While fully performing the path integral is impossible, since
the atomic problem cannot be solved explicitly for arbitrary
molecular fields, it is possible to construct the saddle-point
approximation to the path integral by considering linear
fluctuations around a sufficiently slow classical molecular
path. We could compute the classical action explicitly, but
do not, since it is not necessary for quantities computed within
this paper.

The Hamiltonian ĤT L can be rewritten as ĤT L,cl + δĤT L,
where the term δĤT L := ĤT L − ĤT L,cl is linear in the
deviations from the molecular classical path δα0, δβ0 and its
barred counterparts. The Hamiltonian ĤT L,cl is independent
of the latter deviations. We calculate the first variation of the
part of the molecular action which is caused by fermionic
time evolution. This reads

δ ln(〈F̄f |ÛT L|Fi〉) = δ〈F̄f |ÛT L|Fi〉
〈F̄f |ÛT L,cl|Fi〉

= 〈F̄f |δÛT L|Fi〉
F , (A6)

where we have used the definition

F := 〈F̄f |F (tf )〉 = 〈F̄f |ÛT L,cl|Fi〉. (A7)

We assume |F | ≡ 1, meaning |Ff 〉 is proportional to
ÛT L,cl|Fi〉 up to a phase factor. Since we chose 〈F̄f | as the state
without remaining fermions, any fermionic dynamics along a
slowly growing molecular path will fulfill this condition. Using
this fact, we can simplify the above equation (A6) by means of

〈F̄f |δÛT L|Fi〉 ≡ − i F
∫ tf

ti

dt 〈F̄ (t)|δĤT L(t)|F (t)〉. (A8)

The matrix element in the variation (A8) is given by

〈F̄ (t)|δĤT L(t)|F (t)〉 =
∑

q

γ√
Nm

[ȳ|q|z|q|(δα0 + ε−1δβ0)

+ y|q|z̄|q|(δᾱ0 + ε−1δβ̄0)]. (A9)

By linearizing the other terms of the action as well around αcl ,
ᾱcl , βcl , β̄cl and by setting the first variation to zero, we obtain
the equations of motion for the molecular classical path as

d

dt
αcl = i ω αcl − i

∑
q

γ√
Nm

y|q|z̄|q|, (A10)

d

dt
βcl = i ω βcl − i

γ 2

g
ε−2βcl − i ε−1

∑
q

γ√
Nm

y|q|z̄|q|,

(A11)

and

d

dt
ᾱcl = − i ω ᾱcl + i

∑
q

γ√
Nm

ȳ|q|z|q|, (A12)

d

dt
β̄cl = − i ω β̄cl + i

γ 2

g
ε−2β̄cl + i ε−1

∑
q

γ√
Nm

ȳ|q|z|q|,

(A13)

for the corresponding barred quantities. As discussed in
Sec. III B, the boundary conditions to the above differential
equations are αcl(ti) = 0, βcl(ti) = 0 and ᾱcl(tf ) = √

Nm ei ϕf ,
β̄cl(tf ) = 0. Together with the differential equations (A4),
their barred versions, and the initial conditions for both
(see Sec. III C2), these differential equations determine the
classical background.

Since all the equations of motion have the structure of
complex conjugate pairs, they lead to complex conjugate αcl ,
ᾱcl , as soon as the boundary conditions allow this. We assume
this and find self-consistently that the assumption is true.

In the following, Eqs. (A10), (A11), (A12), and (A13)
will be mapped onto another set of four equations by a
superposition. The new equations are equivalent to the old
ones as long as the determinant of the linear mapping is
not zero. This condition is fulfilled as long as Neff �= 0 holds
[Neff as defined below in (A18)].

3. The molecular equations of motion

a. Number conservation

The first new equation,

d

dt
(ᾱcl αcl + β̄cl βcl) = i

∑
q

γ√
Nm

ȳ|q|z|q|(αcl + ε−1βcl)

− i
∑

q

γ√
Nm

y|q|z̄|q|(ᾱcl + ε−1β̄cl),

(A14)

we find is a first integral of motion and, in general, exact.
We rewrite it with the help of the fermionic equations of
motion (A4) as

d

dt

(
ᾱcl αcl + β̄cl βcl +

∑
q

ȳ|q|y|q|

)
= 0. (A15)

Integration of this equation leads to(
ᾱcl αcl + β̄cl βcl +

∑
q

ȳ|q|y|q|

)
= Nm. (A16)

This is nothing but the conservation of the number of
bosons plus twice the number of fermions. We determine the
integration constant from the fact that as t → ti and ε → 0,
the number of bosons tends to zero, whereas the expectation
value for the number of atom pairs tends to Nm in the pure
BCS state. On the other hand, as t → tf , the left-hand side of
the equation tends to ᾱcl αcl = Nm, the mean field value at tf .

b. Choice of the free parameter ω

The second new equation reads

2 ε2√neff

1 + ε2
(ω + θ̇ ) −

∑
q

γ

Nm

(e− i θ ȳ|q|z|q| + ei θ y|q|z̄|q|)

− γ 2√neff

g (1 + ε2)

(
1 − ᾱclαcl

Neff
+ β̄clβcl

ε2 Neff

)
= 0, (A17)
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where θ is the phase of ᾱcl + ε−1β̄cl and with

Neff := (ᾱcl + ε−1β̄cl)(αcl + ε−1βcl), (A18)

neff := Neff

Nm

, (A19)

where Nm is the exact constant of motion. Next we
examine the evolution of the variable θ which is the
phase corresponding to this conserved number. Our basic
Hamiltonian (4) involves the arbitrary parameter ω ∈ R. We
use this freedom and make a choice which we expect to
simplify our calculations. Looking at the equations of motion
for molecules (A10), (A11), (A12), (A13) and for fermionic
atoms (A4), (A5), we realize that the solution for ω �≡ 0 can be
obtained out of the solution for ω ≡ 0 by the transformation

(αcl,βcl,y|q|) = (αcl,βcl,y|q|)|ω ≡ 0 e
i
∫ t

ti
ω dτ

, (A20)

(ᾱcl,β̄cl,ȳ|q|) = (ᾱcl,β̄cl,ȳ|q|)|ω ≡ 0 e
− i

∫ t

ti
ω dτ

, (A21)

z|q| = z|q||ω ≡ 0, and z̄|q| = z̄|q||ω ≡ 0. (A22)

As this transformation shows, we can and will choose ω such
that the phase θ of ᾱcl + ε−1β̄cl is a constant, simplifying
equation (A17) a lot. The motivation for this choice is the
following: Since we would like to perform an adiabatic
approximation to the system (A4) in section A 4 of this
appendix, we would prefer for this purpose an αcl + ε−1βcl

without phases that vary rapidly in time. More generally, we
also want the complete function αcl + ε−1βcl to depend only
adiabatically slowly on time through �̇ as explained in the
next section. At this point it is not clear whether the above
choice of ω will lead to the desired adiabatic behavior of the
complete function αcl + ε−1βcl in time. This has to be checked
later self-consistently.

Keep in mind that the choice of the, in principle, arbitrary
ω ∈ R is only determined by our goal of simplifying the
adiabatic approximation for the atomic two-level system (A4)
and is not a further assumption or approximation.

c. Adiabatic dragging of βcl

The third and forth new equation are

d

dt
βcl − i

(
ω − γ 2

g
ε−2

)
βcl = ε−1

(
d

dt
αcl − i ω αcl

)
(A23)

and its complex conjugate. This equation relates αcl and βcl

and can be formally solved for βcl as

βcl =
∫ t

ti

ei
∫ t

τ
(ω − γ 2g−1ε−2) dτ ′

ε−1

(
d

dτ
αcl − i ω αcl

)
dτ. (A24)

However, this does not help very much in solving all equations
of motion. Further assumptions are necessary before we
proceed. As long as the sweep rate �̇ is small enough, we
expect the Hamiltonian (A5) to depend only adiabatically slow
on time by means of �. From now on, we assume that αcl and
βcl as well as ω and consequently Hq,cl (A5) are a power
series in terms of �̇ = ν2, the coefficients of which depend on
time only via � = ν2t . We determine these quantities up to
corrections of the order O(�̇2). The advantage of this notation

is that we can make clear statements about the scaling for
asymptotically small �̇ (i.e., ν2) independent of the size of �

(i.e., ν2t).
Equation (A24) can then be adiabatically approximated

by an asymptotic expansion for �̇ → 0 (i.e., ν2 → 0). This
expansion strategy is called integration by parts (see, e.g., [30])
which is systematic in orders of �̇ (i.e., ν2). The smaller ε is,
the better it works, since this will increase the frequency in the
integrand more and more. The result is

βcl = − g ε ω

γ 2 − g ε2 ω
αcl − i

g ε γ 2

(γ 2 − g ε2 ω)2
α̇cl

− i
g2 ε3 γ 2

(γ 2 − g ε2 ω)3
ω̇ αcl + O(�̇2). (A25)

This equation by construction solves (A23) up to terms of the
kind O(�̇2) or ν4. Obviously, the assumption made before that
βcl is a power series in �̇ is an immediate consequence of αcl

having this property and is not an extra condition.
Using the ansatz

αcl = √
Nm re− i ϕ (A26)

we can now calculate the leading orders of the phase θ of
ᾱcl + ε−1β̄cl , which has to be constant by construction

θ = i ln
αcl + ε−1βcl√

Neff
≡ const. (A27)

Together with the assumption [see also (A51) and following
discussion]

ω <
γ 2

g(1 + ε2)
, (A28)

this leads us immediately to θ ≡ ϕf and to an equation for ϕ,

ϕ = ϕf − g γ 2 ṙ

r(γ 2 − g ε2 ω)[γ 2 − g(1 + ε2)ω]

− g2 γ 2 ε2 ω̇

(γ 2 − g ε2 ω)2[γ 2 − g(1 + ε2)ω]
+ O(�̇2). (A29)

Furthermore, we are now able to rewrite Neff as

Neff = [γ 2 − g(1 + ε2)ω]2

(γ 2 − g ε2 ω)2
ᾱclαcl

− 2 g γ 2[γ 2 − g(1 + ε2)ω]

(γ 2 − g ε2 ω)3
ᾱclαcl θ̇ + O(�̇2) (A30)

and β̄clβcl as

β̄clβcl = g2 ε2 ω2

(γ 2 − g ε2 ω)2
ᾱclαcl

+ 2 g2 γ 2 ε2 ω

(γ 2 − g ε2 ω)3
ᾱclαcl θ̇ + O(�̇2), (A31)

where in both equations (A30) and (A31)

θ̇ = i

2

(
α̇cl + ε−1β̇cl

αcl + ε−1βcl

− ˙̄αcl + ε−1 ˙̄βcl

ᾱcl + ε−1β̄cl

)
≡ 0 (A32)

has to be zero by construction.
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4. The fermionic equations of motion

We need to find a solution which satisfies the differential
equations for y|q|, z|q|, αcl , and βcl simultaneously. This is
a priori a difficult task, but can be simplified, in general, by
seeking for the solutions y|q| and z|q| under the assumption that
αcl , βcl , ω, and thus Hq,cl (A5) depend on time in the special
adiabatic way discussed before: These quantities are power
series in terms of �̇ = ν2 with coefficients that depend on time
only through � = ν2t . Thus, a general adiabatic asymptotic
series reads

f (�) = f (ν2t) =
∞∑

n=0

ν2nfn(ν2t) =
∞∑

n=0

�̇nfn(�). (A33)

Consequently, we can solve the fermionic equations of motion
adiabatically in the following.

Given the solutions for y|q| and z|q| we can solve for αcl

and βcl in the following sections. Finally, we need to check
whether the latter molecular classical path αcl and βcl fulfills
self-consistently the assumptions made when deriving y|q| and
z|q|. This can, of course, not be done to all orders but is usually
done up to terms of the kind O(�̇2) in our case. If the self-
consistency criterion holds, we obtained the desired solution
for the case of slow time dependence, i.e., small �̇ or ν2. As
will become clear at the end of our calculations, the adiabaticity
criterion indeed holds for the solution we find.

a. Adiabatic atomic two-level systems

Under the assumptions made in the previous section, the
adiabatic approximation holds and the general solution to the
fermionic two-level problem (A4) can be replaced with the
adiabatic one,(

y|q|
z|q|

)
:=

[(
Y|q|
Z|q|

)
+ i

Z|q|Ẏ|q| − Y|q|Ż|q|
2 W|q|

(
Z̄|q|

− Ȳ|q|

)

+ O(�̇2)

]
e
− i

∫ t

ti
E|q|(τ ) dτ + i G0,|q|+ i G1,|q|, (A34)

where the instantaneous lowest energy eigenvector of the
matrix (A5) is given by(

Y|q|
Z|q|

)
:= h|q|√

E2
|q| + γ 2 neff

(
e− i ϕf E|q|
γ

√
neff

)
+ O(�̇2)

= h|q|√
2 W|q|

(−e− i ϕf
√−E|q|√

E|q| + 2 W|q|

)
+ O(�̇2). (A35)

The respective lowest instantaneous energy E|q| is given by

E|q| :=
(

q2 + � − ω

2

)
− W|q| + O(�̇2), (A36)

W|q| :=
√(

q2 + � − ω

2

)2

+ γ 2 neff + O(�̇2). (A37)

The prefactor h|q| satisfying h̄|q|h|q| = 1 has been chosen as

h|q| =
{−ei ϕf for |q| � 1,

1 for |q| > 1,
(A38)

such that the instantaneous eigenvector at t = ti would tend to
a Fermi gas,

(
Y|q|
Z|q|

)
=

⎧⎨
⎩

( 1
0

)
for |q| � 1,( 0

1

)
for |q| > 1,

(A39)

if the interaction among the fermions would be tuned down.
Note that the choice of the lower energy branch of the

fermionic two-level system will automatically lead to a
self-consistent molecular and atomic BCS state solution,
making it unnecessary to worry about the initial boundary
conditions.

The functions G0,|q|, G1,|q| are geometric phases starting
with powers of �̇0 and �̇1, respectively. They explicitly read

G0,|q| := i

∫ t

ti

(Ȳ|q|Ẏ|q| + Z̄|q|Ż|q|) dτ + O(�̇2), (A40)

G1,|q| :=
∫ t

ti

Z|q|Ẏ|q| − Y|q|Ż|q|
2 W|q|

· (Z̄|q| ˙̄Y|q| − Ȳ|q| ˙̄Z|q|) dτ + O(�̇2), (A41)

and have the properties G0,|q| = Ḡ0,|q| and G1,|q| = Ḡ1,|q|.
The former of these identities results from the conservation
of the norm Ȳ|q|Y|q| + Z̄|q|Z|q| = 1. Note that since we chose
ω such that θ̇ ≡ 0, we have G0,|q| = 0 along the classical path.
Furthermore, the knowledge of G1,|q| is never necessary in
the derivation of the main result of this paper and we do not
compute it explicitly. Also the time integral over the energy
E|q| is never needed explicitly, such that it is enough to compute
E|q| up to O(�̇2) instead of O(�̇3). Consequently, the adiabatic
solution (A34) simplifies to

(
y|q|
z|q|

)
:=

[(
Y|q|
Z|q|

)
+ i

2 W|q|

(
Ẏ|q|
Ż|q|

)
+ O(�̇2)

]

· e− i
∫ t

ti
E|q|(τ ) dτ + O(�̇1)

, (A42)

where we have also simplified the equation using norm
conservation.

5. A self-consistent adiabatic solution

Inserting the adiabatic solution y|q| (A34) into the integral
of motion (A16) we find that the notation can be shortened by
writing

ᾱcl αcl

Nm

+ β̄cl βcl

Nm

− ∂f (ω + θ̇ ,neff)

∂ ω
= 1 + O(�̇2) (A43)

and then using θ̇ ≡ 0. The function f (ω,neff) is defined by

f (ω,neff) :=
∑

q

E|q|
Nm

, (A44)

where it is assumed that W|q| has been substituted into E|q| in
order to let the latter depend on neff .

In the same way, we can insert the adiabatic solutions y|q|,
z|q| (A34) into the molecular equation of motion (A17). It turns
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out that we can also shorten the notation here by writing

2 ε2√neff

1 + ε2
(ω + θ̇ ) − 2

√
neff

∂f (ω + θ̇ ,neff)

∂ neff

− γ 2√neff

g (1 + ε2)

(
1 − ᾱclαcl

Neff
+ β̄clβcl

ε2 Neff

)
= O(�̇2) (A45)

and then applying θ̇ ≡ 0.

a. The continuum limit

The sum appearing in the definition of f (ω,neff) can be
approximated by means of the integrals∑

q

b(|q|) ≈ V k3
F

(2π )3

∫
R3

d3q b(|q|) = 3 Nm

∫ ∞

0
dq q2 b(q),

(A46)

where the approximate sign turns into an equal sign as
V → ∞. We can thus rewrite f (ω,neff) as

f (ω,neff) = 3 γ 5/2 n
5/4
eff �

(
� − ω

2 γ
√

neff

)
, (A47)

with the integral

�(x) =
∫ ∞

0
dq q2(q2 + x) − q2

√
1 + (q2 + x)2 + 1

2
.

(A48)

In order to make the integral converge, an extra term is added.
This is a standard renormalization procedure when dealing
with an effective Hamiltonian, as we do. Finally, we express
the partial derivatives of f (ω,neff) as

∂f (ω,neff)

∂ ω
= −3

2
γ 3/2 n

3/4
eff �′, (A49)

∂f (ω,neff)

∂ neff
= −3

4
(� − ω) γ 3/2 n

−1/4
eff �′

+ 15

4
γ 5/2 n

1/4
eff �, (A50)

where � and �′ are evaluated at (� − ω)/(2 γ
√

neff).

b. Adiabatic solution for αcl

In order to make further simplifications, we assume that

ω <
γ 2

g(1 + ε2)
, (A51)

an assumption which has also to be checked in the end for
self-consistency. This assumption implies that

0 <
γ 2 − g(1 + ε2)ω

γ 2 − g ε2 ω
(A52)

and enables us to rewrite
√

Neff from (A30). Especially for√
neff , we get

√
neff = γ 2 − g(1 + ε2)ω

γ 2 − g ε2 ω
r + O(�̇2). (A53)

Now we replace the partial derivatives in the integral of
motion (A43) and in the second remaining molecular equation
of motion (A45) by (A49) and (A50). Moreover, we express
β̄clβcl and Neff as well as some neff in terms of ᾱclαcl = r2

by means of (A31) and (A30). Applying θ̇ ≡ 0, we finally
obtain

r2 + g2 ε2 ω2 r2

(γ 2 − g ε2 ω)2
+ 3

2
γ 3/2 n

3/4
eff �′ = 1 + O(�̇2) (A54)

and

2 r ω + 3
2 (� − ω)γ 3/2 n

1/4
eff �′ − 15

2 γ 5/2 n
3/4
eff � = O(�̇2),

(A55)

where � and �′ are evaluated at (� − ω)/(2 γ
√

neff). Equa-
tions (A53), (A54), and (A55) define r and ω. If we find a
solution satisfying all assumptions made so far, we finally
have the desired classical path. Note that, since the latter
equations do not depend on �̇, i.e., ν2 explicitly, we will get
r(�) + O(�̇2) and ω(�) + O(�̇2). This is only true provided
that the functional determinant of the two equations of motion
(definition of neff plugged in) with respect to r and ω is not
zero.

c. The function �

For real x, the integrand∫ q

0
dq̃ q̃2(q̃2 + x) − q̃2

√
1 + (q̃2 + x)2 + 1

2
(A56)

reads
1

2
q + x

3
q3 + 1

5
q5 − 1

15
q(3q2 + 2x)

√
1 + (q2 + x)2

+ 2 q(3 − x2)
√

1 + (q2 + x)2(q2 − √
1 + x2)

15(1 − q4 + x2)

+ 2

15
(3 − x2)(1 + x2)1/4

{
2 E

[
1

2
− x

2
√

1 + x2

]

− E

[
arccos

(
q2 − √

1 + x2

q2 + √
1 + x2

)
,
1

2
− x

2
√

1 + x2

]}

+ 1

15
(1 + x2)1/4[3 − x(x +

√
1 + x2)]{

F

[
arccos

(
q2 − √

1 + x2

q2 + √
1 + x2

)
,
1

2
− x

2
√

1 + x2

]

−2 K

[
1

2
− x

2
√

1 + x2

]}
, (A57)

where neff > 0 ensures that we always have

0 <
1

2
− x

2
√

1 + x2
< 1, (A58)

as long as � − ω �= ±∞. With considerable effort, the
integrand (A57) can be found with the help of similar integrals
(see, e.g., [31]). The functions F[ϕ,m] and K[m] are the
incomplete and complete elliptic integral of the first kind,
respectively. They are defined for 0 < m < 1 as

F[ϕ,m] :=
∫ ϕ

0
dϕ [1 − m sin2(ϕ)]−1/2, (A59)

K[m] := F

[
π

2
,m

]
. (A60)

The functions E[ϕ,m] and E[m] are the incomplete and
complete elliptic integral of the second kind, respectively. They
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are defined for 0 < m < 1 as

E[ϕ,m] :=
∫ ϕ

0
dϕ [1 − m sin2(ϕ)]1/2, (A61)

E[m] := E
[π

2
,m

]
. (A62)

Taking the q → ∞ limit of the integrand (A57) leads to

�(x) = 4

15
(3 − x2)(1 + x2)1/4E

[
1

2
− x

2
√

1 + x2

]

− 2

15
[3 − x(x +

√
1 + x2)](1 + x2)1/4

· K

[
1

2
− x

2
√

1 + x2

]
. (A63)

At this point the asymptotic expansions of the elliptic integrals
might be of interest in order to get an idea of the behavior of
�. The asymptotic expansions for m → 0 from above and
for m → 1 from below are especially helpful and comparably
simple as well. They read for the complete elliptic integral of
the first kind

K[m] ≈ π

2
+ π

8
m + O(m2), (A64)

K[m] ≈ −1

2
ln(1 − m) + 2 ln(2)

−
[

1

4
− ln(2)

2
+ 1

8
ln(1 − m)

]
(1 − m)

+O((1 − m)2) (A65)

and

E[m] ≈ π

2
− π

8
m + O(m2), (A66)

E[m] ≈ 1 −
[

1

4
− ln(2) + 1

4
ln(1 − m)

]
(1 − m)

+O((1 − m)2), (A67)

for the complete elliptic integral of the second kind. One may
check with these expansions that the condition for the upper
bound of ω (A51) holds at late times where it is not obvious
from just plotting the numerical solution.

6. Results for ε → 0

We are mainly interested in the limit ε → 0, which we use
in the main part of this paper. Thus, we take this limit for
αcl (A26), βcl (A25), and

√
neff (A53) leading to

αcl =
√

Nm

(
r − i

g ṙ

g ω − γ 2

)
e− i ϕf + O(�̇2), (A68)

βcl = ε
√

Nm

(
− g ω

γ 2
r + i

g ṙ

g ω − γ 2

)
e− i ϕf + O(�̇2),

(A69)

and

√
neff =

(
1 − g ω

γ 2

)
r + O(�̇2), (A70)

where the imaginary parts of αcl and βcl are just the expansion
of the slow phase terms. The leading linear ε order of βcl is
kept, since βcl appears as βcl/ε in many equations.

The ε → 0 limit of the molecular equations of motion (A54)
and (A55) simplifies to

r2 + 3

2
γ 3/2

(
1 − g ω

γ 2

)3/2

r3/2 �′ = 1 + O(�̇2), (A71)

2 r ω + 3

2
(� − ω)γ 3/2

(
1 − g ω

γ 2

)1/2

r1/2 �′

− 15

2
γ 5/2

(
1 − g ω

γ 2

)3/2

r3/2 � = O(�̇2). (A72)

Here, γ (� − ω)/[2 (γ 2 − g ω) r] is the argument of � and of
�′. The number conservation (A71) and the molecular equa-
tion of motion (A72) together finally define r(�) + O(�̇2)
and ω(�) + O(�̇2). It is important to notice that both r and ω

have no terms of first order in �̇.

a. Numerical results

Numerical results for γ = 0.1 and g = 0.2 are given in
Fig. 7. The square root of the relative molecule number
(and density), r , starts to grow significantly as soon as
the atomic part of the system becomes resonant with the
molecular part around � ≈ −2. Around this point ω changes
its behavior and approaches asymptotically the value γ 2/g.
The value (� − ω) /2 can be interpreted as half the negative
chemical potential of an atom pair. Its almost constant behavior
at early times reflects the deep BCS regime. The square
root of the relative effective density,

√
neff , is also almost

constant within the deep BCS regime, ensuring that the
instantaneous energy gaps of the atomic two-level systems
have a lower bound. As discussed before, this makes an
adiabatic approximation for these two-level systems pos-
sible. The results obtained here agree with our previous
results presented in [24] and generalize them for background
scattering g �= 0.

4 3 2 1 0 1 2 3 4
2

1

0

1

2

FIG. 7. Square root of the classical relative molecule number (and
density), r (solid line), square root of the relative effective density,√

neff (dashed line), frequency ω (dash-dotted line), and (� − ω) /2
(dotted line) as functions of �. At late times ω approaches γ 2/g.
Parameters are γ = 0.1 and g = 0.2.
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b. Early and late time limits

As t → tf we get r → 1 already very early. In contrast, the
asymptotic values ω → γ 2/g and

√
neff → 0 are approached

more slowly.
As t → ti , the number conservation (A71) and the molec-

ular equation of motion (A72) tend to
3
2 (γ

√
neff)3/2�′ = 1 + O(�̇2) (A73)

and
3

2
g

(
� − ω

2

)
(γ

√
neff)

−1/2�′

− 15

4
g(γ

√
neff)

1/2� = 1 + O(�̇2) (A74)

both written in terms of
√

neff (A70) instead in terms of r since
the latter really tends to zero at early times. The functions

� as well as �′ are evaluated at (� − ω)/(2 γ
√

neff). These
equations (A73) and (A74) are obtained by taking the leading
order when ω → −∞.

At ti , the system of equations depends only on (� − ω)/2
and γ

√
neff , which are the new variables to solve for in de-

pendence of the background scattering parameter g. Using the
asymptotic expansions of the complete elliptic integrals (A65)
and (A67), we find the leading order solution to be

� − ω

2
≈ − 1, (A75)

γ
√

neff ≈ 8

e2
e− 2/(3 g), (A76)

for sufficiently small g. This is the familiar scaling of the BCS
order parameter.
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