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Spin dynamics in a spin-orbit-coupled Fermi gas
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We study the dynamics of a nondegenerate, harmonically trapped Fermi gas following a sudden ramp of
the spin-orbit coupling strength using a Boltzmann equation approach. In the absence of interactions and a
Zeeman field, we solve the spin-orbit-coupled Boltzmann equation analytically and derive expressions for the
phase-space and temporal dynamics of an arbitrary initial spin state. For a fully spin-polarized initial state, the
total magnetization exhibits collapse and revival dynamics in time with a period set by the trapping potential. In
real space, this corresponds to oscillations between a fully polarized state and a spin helix. To make predictions
relevant to current experiments on spin-orbit-coupled Fermi gases, we then numerically study the dynamics in
the presence of an additional momentum-independent Zeeman field. We find that the spin helix is robust for weak
magnetic fields but disappears for stronger field strengths. Finally, we explore the spin dynamics in the presence
of interactions and find that weak interactions enhance the amplitude of the spin helix.
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I. INTRODUCTION

The physics of spin-orbit coupling is at the heart of funda-
mental phenomena such as the spin Hall effect [1,2], as well
as practical devices such as the spin transistor [3]. Key to these
developments in the field of spintronics is the understanding
of how parameters such as the spin-orbit coupling, interaction,
disorder, and geometry separately, as well as collectively,
influence spin dynamics [4,5]. The creation of low-temperature
atomic and molecular spin-orbit-coupled Bose and Fermi gases
has paved the way for studying this physics in a setting where
these parameters are well characterized [6–13]. Furthermore, a
tool largely unique to ultracold gases is the ability to induce the
spin-orbit coupling dynamically, thereby enabling the study
of out-of-equilibrium physics in these systems. In this paper,
we solve the dynamics of a noninteracting nondegenerate
Fermi gas following a sudden ramp of the spin-orbit-coupling
strength. The resulting out-of-equilibrium dynamics is rich
[8,14–16]: Coherence inherent in cold atomic gases, but almost
always absent in solid state systems, leads to collapse and
revival of the total magnetization [15]. In real space, this is
manifested by the spontaneous appearance of a helical spin
texture which is the analog of the persistent spin helix observed
in two-dimensional electron gases [17,18].

A further advantage of cold atomic systems is the ability
to use magnetic fields to control the interactions between
the atomic states [19,20]. This, particularly in the presence
of spin-orbit coupling and s-wave superfluidity, may enable
experimentalists to realize novel states of matter with topolog-
ical properties whose excitations exhibit non-Abelian statistics
[21,22]. In addition to their fundamental importance, such
topological states of matter may serve as a platform for fault-
tolerant quantum computation [23]. However, a key challenge
in observing this physics in ultracold gases is the inherent dif-
ficulty in attaining the sufficiently low temperatures needed to
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realize these topological states. In contrast, the nonequilibrium
dynamics we study here occurs at high temperatures and can
be observed in current experiments. We numerically study the
spin dynamics of a fully polarized, weakly interacting Fermi
gas using a collisionless Boltzmann equation. We find large-
amplitude spin waves analogous to those previously observed
in dilute spin-polarized hydrogen [24–28] and more recently
in ultracold Bose and Fermi gases [29–34]. Our numerical
study of spin dynamics in the collisionless spin-orbit-coupled
Fermi gas complements a recent, linear-response study on a
homogeneous system by Tokatly and Sherman [14]. We point
out that the ultralow temperature degenerate version of our
system (with spin-orbit coupling and large Zeeman splitting)
would manifest topological superfluidity in the presence of
ordinary s-wave superfluidity induced by suitable Feshbach
resonance [22].

The effects predicted in our work are unlikely to be of much
experimental significance in solid-state spin-orbit-coupled
systems because of the strong disorder and decoherence
intrinsically present in these systems, as well as the ultrafast
time scales for spin relaxation [35]. In principle, the physics we
predict should be present in both atomic and molecular Fermi
and Bose gases since it is an intrinsically high-temperature
phenomenon, but in light of recent experiments [10–12], we
discuss our theoretical details using the atomic Fermi gas as
the representative system of study.

This paper is organized as follows. In Sec. II, we describe
our system and derive the collisionless Boltzmann equation
for a two-component Fermi gas in a two-dimensional (2D)
harmonic trap in the presence of spin-orbit coupling. In the
subsequent sections, we choose an initial state which is a
stationary state of the Hamiltonian in the absence of spin-orbit
coupling. We then drive the system out of equilibrium by
suddenly turning on the spin-orbit coupling and study the
resulting dynamics. In Sec. III, we solve the Boltzmann
equation in the absence of interactions, and in Sec. IV, we
consider the effect of interactions on the spin dynamics. We
summarize our results in Sec. V.
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II. SETUP

In the absence of spin-orbit coupling, the Hamiltonian for
two hyperfine states of a Fermi gas can be expressed as a sum
of single-particle and two-body interaction terms,

H = Hs + Hint, (1)

where the single-particle Hamiltonian is composed of a kinetic
term and a potential term arising from the external trapping
potential,

Hs =
∑

i=↑,↓

∫
d3rψ†

i

[
−h̄2∇2

r

2m
+ U (r)

]
ψi,

where ψi denotes the fermionic annihilation operator for a
particle in hyperfine state {↑,↓} and mass m. Here U (r) refers
to the external trapping potential, which we assume to be
cylindrically symmetric U (r) = 1

2mω2
r (x2 + y2) + 1

2mω2
zz

2,
where ωr and ωz are the trapping frequencies in the radial
and longitudinal directions, respectively. As the relevant
spin-orbit physics is 2D, we assume a quasi-2D, pancake
geometry, obtained by tight confinement in the longitudinal
(z) direction (ωz � ωr ). For simplicity, we assume that both
atomic states experience identical trapping potentials, but all
of our calculations can be readily extended to include more
general trapping potentials realized in experiments.

At the ultracold temperatures realized in these experiments,
the dominant contribution to scattering comes from the
s-wave channel. The interaction Hamiltonian therefore takes
the simple form of a contact interaction,

Hint = g

2

∫
drψ†

↑(r)ψ†
↓(r)ψ↓(r)ψ↑(r), (2)

with interaction strength g = 4πh̄2a/m, where a denotes the
s-wave scattering length. A key advantage of the fermionic
experiments [10–12] is the ability to use magnetic fields to
tune the interactions between different internal states, via a
Feshbach resonance [19,20]. Here we work in the weakly
interacting regime, which can be realized by working near
the zero crossing of the Feshbach resonance.

The spin-orbit Hamiltonian containing terms linear in
momentum takes the form

HSOC = α(σxpy − σypx) + β(σxpx − σypy), (3)

where the first term is the Rashba contribution and the second
term is the Dresselhaus contribution, parametrized by the
coupling constants α and β, respectively. Here σx , σy , and
σz denote Pauli matrices.

In the ultracold-gas setting, spin-orbit coupling is gener-
ated by using a pair of Raman beams to drive transitions
between two hyperfine states of an atom, while simultaneously
imparting a momentum kick [6–13]. The resulting spin-orbit
Hamiltonian takes the Rashba equal Dresshelhaus form α = β,
where the magnitude of α is determined by the wavelength
of the Raman beams and the angle at which they intersect.
The Raman beams also produce a momentum-independent
Zeeman field, HZ = −h̄�Rσz, where �R is the strength of
the Raman coupling and is proportional to the intensity of
the Raman lasers. As we show below, this term plays an
important role in the dynamics. The scheme described here

was first successfully demonstrated in experiments at NIST
using bosonic 87Rb [6,7]. Recently, a similar scheme was
used to generate spin-orbit coupling in a Fermi gas of 6Li
and 40K [10–12].

As we are primarily motivated by current experiments, we
limit ourselves to the case α = β in Eq. (3). In this limit, the
spin-orbit Hamiltonian can be diagonalized by independently
rotating the momentum coordinate and performing a global
spin rotation. We denote the diagonal basis as {ψ+,ψ−}.
Throughout, we use both the diagonal basis ({+,−}) and
the pseudospin basis ({↑,↓}) corresponding to the original
hyperfine states, depending on the context. The generalization
to α �= β is straightforward within our formalism and will be
the subject of a future work [36].

All of the work described here is in the nondegenerate limit.
The only requirement on the temperature T is that it should
be smaller than the detuning energy between the magnetic
sublevels, so that the gas can be described by a two-level
(pseudospin- 1

2 ) system. This is readily accomplished as the
splitting between hyperfine levels is much larger than the Fermi
energy for typical densities [10].

The physics of the weakly interacting gas is dominated by
coherent mean-field dynamics which occurs on a time scale
τmf ∼ (an0/m)−1, which is much faster than the time scale
for energy exchanging collisions τcoll ∼ (4πa2n0v)−1 (v is the
characteristic velocity of the particles and n0 is the density).
For a trapped gas of N ∼ 105 6Li atoms at a temperature
T ∼ 10−6K, the collisionless limit (τmf � τcoll) corresponds
to scattering lengths a ∼ 10aB, where aB is the Bohr radius.
The recent experiment of Cheuk et al. is already in this regime
[11], while the experiment of Wang et al. [10] has stronger
interactions of a ∼ 200aB, which can be tuned near zero using
a Feshbach resonance [20].

Mathematically, the weakly interacting gas can be described
using a collisionless Boltzmann equation. Following Ref. [37],
we use the Heisenberg equations for ψσ (r,t) to derive the
equations of motion for the spin dependent Wigner function

←→
F =

(
f↑↑(p,R,t) f↑↓(p,R,t)
f↓↑(p,R,t) f↓↓(p,R,t)

)
,

fσσ
′ (p,R,t) =

∫
dreip·r

〈
ψ†

σ

(
R − r

2
,t

)
ψσ

′

(
R + r

2
,t

)〉
,

(4)

which is the quantum analog of the classical distribution
function. Here p represents the momentum, r = r1 − r2 is
the relative coordinate, and R = r1+r2

2 is the center-of-mass
coordinate.

The diagonal components of
←→
F can be integrated

in momentum to give the respective spin densities
nσσ (R,t) = 〈ψ†

σ (R,t)ψσ (R,t)〉 = ∫
dp

(2π)3 fσσ (p,R,t), while
the off-diagonal components correspond to quantum
coherences that are absent in a classical model of a spin- 1

2
gas.

For the pancake geometry considered here, all the
relevant dynamics is 2D. Assuming thermal equilib-
rium in the longitudinal direction, we decompose the
Wigner function in the radial and axial directions
as fσσ

′ (p,R,t) = fσσ
′ (pr,r,t)f (pz,z), where f (pz,z) =

e−β(p2
z /2m+ 1

2 mω2
z z

2), where β = 1/kBT .
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We obtain a 2D density n2D
σσ

′ (r,t) =∫
dprfσσ

′ (pr,r,t)
∫

dpzf (pz,z) by integrating out the
longitudinal coordinate. Averaging over the z direction, we
obtain an effective quasi 2D Boltzmann equation,

∂t

←→
F + p

m
· ∇r

←→
F − ∇rU∇p

←→
F

= i[
←→
V ,

←→
F ] + 1

2
{∇r

←→
V ,∇p

←→
F } + iαp+[σ+,

←→
F ]

+ α

2
{σ+,∇r+

←→
F }, (5)

where p+ = px + py , σ+ = σx + σy , and the interaction

potential
←→
V is [31]

←→
V =

(
g2Dn↓↓ − h̄�R −g2Dn↑↓

−g2Dn↓↑ g2Dn↑↑ + h̄�R

)
, (6)

where g2D is an effective 2D interaction strength given by
g2D = 2

√
πh̄2a/(m�th), where �th =

√
2πh̄2/mkBT . The

diagonal components in the interaction matrix arise from
forward scattering (Hartree) while the off-diagonal terms
arise from exchange interactions (Fock). Commutators and
anticommutators are denoted by [,] and {,}, respectively.

The single-particle limit of Eq. (5) was derived by
Mishchenko and Halperin [5], who used this approach to study
the transport properties of a 2D electron gas. Here we general-

ize the Boltzmann equation to include the effect of
←→
V on the

phase-space and spin-space evolution of the Wigner function.
In general, Eq. (5) is a nonlinear matrix equation which has

to be solved numerically. Below, we assume an initial state
which is a stationary state of the Hamiltonian in the absence
of spin-orbit coupling (α = �R = 0). We then suddenly turn
on the Raman coupling and investigate the resulting out-of-
equilibrium dynamics.

III. NONINTERACTING LIMIT

A. �R = 0

The noninteracting limit in ultracold Fermi gases is
achieved by working at the zero crossing of a Feshbach
resonance. As the magnetic fields corresponding to the zero
crossing of the interactions are typically small [11], we do not
expect the Raman couplings to deviate appreciably from their
zero field values [38]. We first consider the case where upon
switching on the Raman coupling the spin-orbit coupling (α)
is nonzero, but the Zeeman term �R = 0. While this scenario
does not correctly model the present experiments, in this limit
the Boltzmann equation is exactly solvable for an arbitrary
initial spin state, thus serving as a conceptual starting point. We
remark that although we consider only the nondegenerate limit
here, our results can be readily generalized to temperatures
below the Fermi temperature.

Mathematically, the spin-orbit-coupled problem in the
absence of a Zeeman field can be mapped to a single-particle
problem in the absence of spin-orbit coupling by a local gauge
transformation of the fermionic basis wave functions [14].
Here we solve the problem by performing a global rotation
of the spin and momentum coordinates, which maps the
spin-orbit-coupled problem in the absence of a Zeeman field

to a single-particle problem in the presence of a momentum-
dependent magnetic field.

In order to proceed, we introduce dimensionless position
and momentum coordinates r̃ = r/rtrap and p̃ = p

√
2πh̄/�th,

where rtrap = √
h̄/mωr is the characteristic length scale of

motion in the trap and and �th =
√

2πh̄2/mkBT is the thermal
deBroglie wavelength. We normalize time in units of the radial
trapping frequency t̃ = t/ωr . We also introduce a parameter
η = √

h̄ωr/kBT . As the spin-orbit Hamiltonian only couples
to momentum in the px + py direction, it suffices to consider
the evolution of the distribution in the p+ = px + py and r+ =
x + y directions of phase space.

Consider an arbitrary initial spin state given by the Wigner

distribution function,
←→
F (p̃+,r̃+,t = 0) = e− 1

4 (p̃2
++η2r2

+)←→f ,
where

←→
f is a 2 × 2 matrix corresponding to the initial spin

state. We omit the p−,r− directions for now as they have no
dynamics. In the absence of spin-orbit coupling or interactions
(α = �R = g2D = 0), the initial state is stationary.

Next, we express the Boltzmann equation in the diago-
nal basis by performing the global transformation

←→
F →

B†←→f B, where the unitary matrix

B =
( 1√

2
−1+i

2

1+i
2

1√
2

)

rotates σx + σy to
√

2σz. In the rotated basis, the spin + and
− components evolve independently.

The dynamics in phase space can now be solved by making
an ansatz for the diagonal components of the rotated spin-
density matrix,

F++/−−(p̃+,r̃+,t̃) = A+/−e− 1
4 {[p̃+∓a(t̃)]2+η2[r̃+∓b(t̃)]2}, (7)

where a(0) = b(0) = 0. The coefficients A+/− are the diagonal

matrix elements of the spin density matrix
←→
f after rotation

into the {+,−} basis.
Substituting the ansatz of Eq. (7) into Eq. (5) we find

a(t̃) = α̃η[cos(t̃) − 1] and b(t̃) = α̃ sin(t̃), where we have
introduced a dimensionless, spin-orbit-coupling constant α̃ =√

2α
√

m/h̄ωr , which parametrizes the strength of the spin-
orbit coupling relative to the trapping potential. Thus, the
rotated spin densities simply perform oscillations in real and
momentum space with an amplitude set by the strength of the
spin-orbit interaction and period set by the trap frequency.

Similarly, one can solve for the dynamics of the off-diagonal
components to find

F+−(p̃,+r̃+,t̃)

= A+−e
−4α̃2[1−cos(t̃)]

η2 e− 1
2 ([p̃+−2iα̃/η sin(t̃)]2+η2{r̃+−2iα̃/η2[1−cos(t̃)]}2),

(8)

where A+− is the off-diagonal matrix element of the spin-
density matrix after rotation into the ± basis. The dynamics
of F−+ is obtained by replacing α̃ → −α̃ in Eq. (8). Unlike
the diagonal components, the magnitudes of the off-diagonal
components are not conserved and oscillate in time.

The corresponding spin densities are found by integrating
the above expressions for the Wigner functions in momentum
space. By rotating the diagonal basis back into the hyperfine
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basis {↑,↓}, one obtains the dynamics of an arbitrary initial
spin state.

To illustrate the role of quantum coherence, we consider
the dynamics of a fully polarized initial state corresponding to
all particles in the ↑ state. We study the dynamics of the lon-
gitudinal magnetization density and the total magnetization:

mz(r,t) =
∫

dp[f↑↑(p,r,t) − f↓↓(p,r,t)],
(9)

M(t) =
∫

drmz(r,t).

The zero-temperature dynamics of the total magnetization
for this initial state was considered previously by Stanescu,
Zhang, and Galitski [15]. By exactly solving for the quantum
dynamics in a trap, they demonstrated that the total magne-
tization exhibits collapse and revival dynamics and produced
analytic formulas for the total magnetization in weak spin-orbit
coupling limit.

Here we show that similar dynamics also occurs in the
nondegenerate gas, which is much more readily accessible in
experiments. Furthermore, we obtain analytic expressions for
the total magnetization for arbitrary values of the spin-orbit
coupling.

Rotating the spin-polarized state to the diagonal basis, one
finds that the density matrix has both diagonal and off-diagonal
matrix elements (A+ = A− = 1/2 and A+− = − 1−i

2
√

2
), whose

dynamics is given by Eqs. (7) and (8). Transforming back
to the hyperfine basis and integrating over momentum, the
longitudinal magnetization density takes the form:

mz(r̃+,t̃) ∼ e
− 1

2 η2 r̃2
+− α̃2

η2 [1−cos(2t̃)]
cos{2r̃+α̃[1 − cos(t̃)]}

(10)

and the total magnetization is

M(t̃) ∼
√

2π

η
e
− 4α̃2

η2 [1−cos(t̃)]
, (11)

where we have ignored an overall normalization factor
resulting from integration over momentum. The expression for
the transverse magnetization density is rather cumbersome, but
the total transverse magnetization remains zero at all times.

From Eq. (11), it is clear that the total longitudinal
magnetization exhibits collapse and revival dynamics in time
with a period which depends only on the trapping potential and
is completely independent of the temperature or the spin-orbit
coupling strength. At fixed temperature, for weak spin-orbit
coupling α̃ � 1, our expression reads M ∼ 1 − 4α̃2/η2[1 −
cos(t̃)] [15]. In this limit, the magnetization exhibits sinusoidal
oscillations with an amplitude which is proportional to 8α̃2/η2.
For strong spin-orbit coupling, α̃ � 1, the magnetization
becomes strongly peaked near t = 2πn/ωr , where n is an
integer, and decays exponentially, away from these points.

The collapse and revival of the total magnetization is a trap
effect. In a homogeneous system, the momentum-dependent
spin-orbit magnetic field will simply cause the spins to
dephase, particles with different momenta will precess at
different rates, and the total magnetization will go to zero
irreversibly on a time scale set by the spin-orbit coupling

strength [14]. It is also important to emphasize that the collapse
and revival in the total magnetization described above has a
different origin from what is observed in the experiments of
Wang et al. [10]. We discuss this in more detail later.

To understand the origin of the magnetization oscillations,
we now turn to the dynamics of the longitudinal and transverse
magnetization density following the ramp. In a trapped geome-
try, from Eq. (10), we find that the longitudinal magnetization
density exhibits periodic oscillations in space and in time.
The temporal oscillations have a period of t = 2π/ωr , while
at t = π/ωr the spatial oscillations have a characteristic
wavelength of λsh = πrtrap/(2α̃) where rtrap = √

h̄/mωr .
In Fig. 1 we plot the magnetization density normalized

to the initial magnetization at the center [m(r = 0,t = 0)] as
a function of time for the parameters above. Brighter colors
indicate positive magnetization while darker colors indicate
negative values of mz. We choose a rather weak spin-orbit
coupling strength in order to enhance the wavelength of the
spatial oscillations at t = π/ωr . The transverse components
of the spin are indicated by arrows whose lengths correspond
to the magnitude of the spin vector in the x-y plane. At t = 0,
all spins are pointing in the ↑ direction indicated by the bright
region in the density plot. Over time a transverse component
develops and a spin helix emerges. At t = π/ωr , the spin

FIG. 1. (Color online) Time evolution of the longitudinal (density
plot) and transverse magnetization (arrows) in the r+ = x + y

direction, following a sudden ramp of the spin-orbit coupling
strength. The Zeeman term is set to zero here (�R = 0). Brighter
colors indicate positive magnetization (↑) and darker colors indicate
negative magnetization (↓). The arrows indicate the direction of the
magnetization in the x-y plane, and the length of the arrows indicate
the magnitude of the transverse spin normalized to the total spin.
At t = 0 all the spins are pointing in the z direction (all atoms
in the ↑ state). Spin-orbit coupling causes the atoms to precess
in time, and at half the trapping period a spin helix is produced.
The wavelength of the helix at t = π/ωr depends only on the
spin-orbit interaction and is λsh = πrtrap/2α̃, where rtrap = √

h̄/mωr .
To clearly illustrate this effect, we choose a weak spin-orbit coupling
of α̃ = √

2α
√

m/h̄ωr = 0.125 and η = √
h̄ω/kBT = 0.25 in these

simulations. The initial state is recovered after t = 2π/ωr .

033613-4



SPIN DYNAMICS IN A SPIN-ORBIT-COUPLED FERMI GAS PHYSICAL REVIEW A 88, 033613 (2013)

oscillations have maximum amplitude, with a wavelength of
�sh/rtrap = π/2α̃.

Energy-conserving dynamics in phase space implies that
the momentum of a particle is linked to its position. Moreover,
the spin of an atom is linked to its momentum via the spin-orbit
coupling. The spin-orbit Hamiltonian shifts the minimum of
the dispersion to finite momenta. In a harmonically confined
system, isoenergy contours are circles in phase space that are
shifted to finite momenta due to the spin-orbit coupling. A
wave packet polarized in the ↑ direction centered at r = p = 0
will follow the isoenergy contours in phase space, while
simultaneously rotating in spin space. At t = π/ωr the atomic
wave packet is centered around r = 0 in real space, and in order
to conserve the total energy, the distribution will be centered
around p̃+ = ±2α̃η in momentum space. As a result, atoms
with opposite momenta precess in opposite directions in spin
space, producing a spin helix. At t = 2π/ωr , the atoms return
to their original distribution in real and momentum space, and
the initial state is recovered. The spin helix has a smaller net
magnetization as compared to the fully polarized initial state,
thus explaining the oscillations in the net magnetization.

Experimentally, the spin density can be imaged in situ
using phase-contrast imaging [39,40]. The wavelength of
the spin helix is set by the spin-orbit interaction which is
determined by the wavelength of the Raman beams. For the
parameters used in the experiment of Cheuk et al. [11], �sh ∼
0.5 μm, which may be below the experimental resolution.
However, the wavelength can be increased by decreasing
the spin-orbit coupling strength. At present, experiments on
spin-orbit-coupled cold gases suffer from extremely short
lifetimes (<500 ms) due to the large heating rates resulting
from inelastic light scattering from the Raman beams [41]. For
typical trapping potentials, the time scale for the appearance
of the spin helix is t = π/ωr ∼ 50 ms, so the short lifetimes
may not be a major limitation in observing the spin helix.

B. �R �= 0

We now turn to the experimentally relevant case where
upon suddenly switching on the Raman beams, the atoms
also experience a constant, momentum-independent magnetic
field, parametrized by a dimensionless parameter B̃ = �R/ωr .
In this limit, the problem cannot be solved analytically as
the Zeeman and spin-orbit terms in Eq. (5) do not commute.
Instead, we numerically integrate the Boltzmann equation on a
4D grid in phase space. We choose a 20 × 20 lattice in R and p
with a spatial resolution of δr = 2rtrap, where rtrap = √

h̄/mωr

is the characteristic length scale of motion in the trap, and
momentum resolution of δp = 0.62π/�th. The integration is
done using a split-step method that conserves total particle
number and the total energy to high accuracy for sufficiently
small time steps.

For simplicity we choose a fully polarized initial state,
which is stationary in the absence of interactions or spin-orbit
coupling. We then consider two limits upon switching on the
Raman beams: B̃ ∼ α̃ and B̃ > α̃. The two parameters can be
controlled independently as the magnitude of α̃ is set by the
wavelength of the Raman beams, and �R is set by the laser
intensity. The resulting dynamics of the total magnetization as
well as the magnetization density is plotted in Fig. 2.

FIG. 2. (Color online) (Left) Time evolution of the total magne-
tization in the system [see Eq. (9)] normalized to the total particle
number for three different values of the dimensionless Zeeman cou-
pling B̃ = �R/ωr . In each case, we fix α̃ = √

2α
√

m/h̄ωr = 0.25.
From top to bottom: (black) B̃ = 0; (blue) B̃ = 0.25; (red) B̃ = 1.
(Right) Magnetization density along the r+ = x + y direction for the
same values of the spin-orbit coupling strength and Zeeman field as
in the left figure at fixed time t = π/ωr . The magnetization densities
are normalized to the total central density denoted n = n(r = 0,

t = 0) = ∫
dp[f↑↑(p,0,0) + f↓↓(p,0,0)]. Solid curves represent the

magnetization density in the z direction [Eq. (9)], while the dashed
curves indicate the magnetization density in the x direction: mx(r,t =
π/ωr ) = ∫

dp[f↑↓(p,r,π/ωr ) + f↓↑(p,r,π/ωr )].

As shown in Fig. 2, the addition of a Zeeman term causes
the magnetic field oscillations to decay over time. At long
times, the total magnetization acquires a new steady-state value
which is smaller than 1. As the strength of the Zeeman field is
increased, the fully polarized initial state becomes increasingly
stable, and the total magnetization remains close to 1 at long
times with small oscillations.

The dynamics can be understood as follows. In the presence
of a Zeeman field, each spin precesses about a new magnetic
field, which is the sum of the spin-orbit magnetic field and
the Zeeman field and is tilted away from the x-y plane by
an angle sin(θp) = B̃/

√
B̃2 + (α̃ηp̃+)2. As the initial state

has a Gaussian distribution of atoms with different momenta
with spins pointing in the z direction, atoms with momenta
greater than p > p̃crit = B̃/α̃η will primarily experience the
spin-orbit magnetic field and precess about the x-y plane,
while atoms with momenta p < pcrit will predominantly see
the Zeeman field and precess about the z axis.

In a thermal gas, the characteristic width of the momentum
distribution is set by pth = √

2πh̄/�th. If the Zeeman field is
weak compared to the spin-orbit strength (αpth � h̄�R), the
majority of the atoms still experience the spin-orbit magnetic
field, and the spin-density wave is preserved (as shown in
the blue curves in Fig. 2) for the first few oscillations. On
longer time scales the magnetic field affects the spin precession
of even the atoms with p � pcrit and the spin-density wave
disappears. On very long times the system settles into a new
steady state with a lower net magnetization.
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On the other hand, if the Zeeman field is strong (αpth �
h̄�R), the majority of the atoms experience a net magnetic
field which is only slightly tilted away from the z axis. As the
initial state is fully polarized, the total magnetization remains
close to 1 at all times with rapid oscillations whose frequency
is given by �R . The transverse spin density remains small at
all times (see the dashed red curve in Fig. 2) and no spin helix
is found.

The spin helix is the result of the interplay between dy-
namics in spin space and dynamics in phase space. Observing
the spin helix therefore requires that the time scales for spin
dynamics be comparable to the time scales for dynamics in
phase space.

In the presence of a large Zeeman field, as in the exper-
iments of Wang et al. [10] (EZ ∼ kHz � h̄ωr ∼ 100 Hz),
the time scale for spin dynamics is set by the Zeeman
term, which is much too short for any dynamics to occur
in phase space. Thus, while the total magnetization shows
collapse and revivals (on a time scale set by t ∼ 2π/EZ ∼ 1
ms), the magnetization density in real space is unaffected.
By contrast, the collapse and revival dynamics discussed in
Sec. III A occurs because the initial state is out of equilibrium
in phase space, when the Raman coupling is switched on. As
a result, the magnetization oscillates on a time scale set by
t ∼ 2π/ωr ∼ 10 ms, and a spin spiral appears.

IV. INTERACTIONS

We now consider the effect of weak interactions on the
dynamics discussed above. As discussed previously, we work
in the the collisionless limit (sometimes referred to as the
Knudsen regime), which is valid as long as τmf � τcoll.

Spin waves in dilute, quantum gases were studied the-
oretically by Bashkin and others [24–27] and observed in
experiments on spin-polarized hydrogen [28]. More recently,
Du et al. [29] explored similar physics in a weakly interacting,
thermal gas of 6Li atoms. Here we explore spin waves in a
collisionless thermal gas with spin-orbit coupling.

To compare with the results of Sec. III, we consider
a fully polarized initial state which is the stationary state
of the Boltzmann equation in the absence of spin-orbit
coupling or interactions. We then simultaneously switch on
the interactions, and the spin-orbit coupling. We define a
dimensionless interaction strength g̃ = g2Dn/h̄ωr , where n

is the total initial density at the trap center n = n(r = 0,

t = 0) = ∫
dp[f↑↑(p,0,0) + f↓↓(p,0,0)]. For typical trapping

potentials used in experiments, ωr ∼ 2π × 100 Hz, the
Knudsen regime corresponds to g̃ ∼ 0.1 [29]. We choose
g̃ = 0.25. Furthermore, as shown in Sec. III B, a large Zeeman
field (B̃ � α̃) stabilizes the spin-polarized state and produces
little spin dynamics. Hence, we consider B̃ = α̃ = 0.25.

In Fig. 3 we plot the total magnetization density along
the r+ direction and the total net magnetization as a func-
tion of time. As is apparent from the figure, the inclusion
of interaction drives large magnetization oscillations on a
characteristic time scale much larger than t = π/ωr . This time
scale grows as the interaction strength is increased. In real
space, the magnetization minimum is manifested as a large-
amplitude longitudinal spin wave. The panels on the right show
the magnetization density in the longitudinal and transverse

FIG. 3. (Color online) (Top left) Density plot showing the
magnetization density along r+ [see Eq. (10)], normalized to the
total initial central density as a function of time. The parameters
are g̃ = B̃ = α̃ = 0.25. (Recall that g̃ = g2Dn/h̄ωr , B̃ = �R/ωr , and
α̃ = √

2α
√

m/h̄ωr .) Brighter colors indicate positive magnetization,
while darker colors indicate negative magnetization. (Bottom left)
Total magnetization in the entire system as a function of time for three
different values of g̃. In each plot, B̃ = α̃ = 0.25. From top to bottom
g̃ = 0 (dashed), g̃ = 0.25 (solid), and g̃ = 0.5 (dotted). (Panels on
right) Longitudinal (solid) and transverse (dashed) magnetization
densities in the r+ direction at different times. The top panel shows
the spin helix without interactions for B̃ = α̃ = 0.25 (same as the
central panel in Fig. 2) for comparison. The central and bottom
panels are snapshots of the longitudinal and transverse magnetization
at time t = 2.5π/ωr and t = 5π/ωr for the same parameters as in the
top left.

directions (solid and dashed, respectively) at two different
times t = 2.5π/ωr (red) and t = 5π/ωr (blue) for parameters
corresponding to the density plot. The spin densities for the
spin helix [cf. Fig. 2 (right) center panel] for the same values of
B̃ and α̃, but g̃ = 0, are shown in the top panel for comparison.
The amplitude of the spin wave seen here is much larger
than that observed in previous studies of the spin- 1

2 gas in
the absence of spin-orbit coupling [29].

Interactions alter the physics of the noninteracting gas in
two crucial ways. Forward scattering modifies the isoenergy
contours in phase space: Spin ↑ atoms experience a mean field
proportional to the density of the ↓ atoms and vice versa. More
importantly, due to the exchange interaction, when two atoms
collide, they precess about the common axis of their total spin.
As argued by Lhuillier and Laloë, it is this effect that gives rise
to spin waves in the collisionless gas [25]. In the experiments
of Du et al. [29], the initial state was polarized along the x

direction, and spin dynamics was the result of the negligible
difference in the trapping potentials experienced by the spin
↑ and ↓ atoms. Consequently, the amplitude of the resulting
spin wave was very small, mz(r)/n0 � 1 [29].

By contrast, in the present case the initial state is polarized
along z. Absent spin-orbit coupling, this state has no dynamics
as it is stationary with respect to the Zeeman field and
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the interaction term. Spin-orbit coupling, however, causes
the spins to precess about the x-y plane with a precession
rate proportional to the momentum. Over time, atoms with
different momenta precess at different rates and can collide
with one another. The atomic collisions subsequently lead to
a dynamical spin segregation in real space [25]. Unlike the
experiments of Du et al. [29], the initial spin precession in our
system occurs due to spin-orbit coupling, which is not a small
effect. Consequently, the amplitude of the resulting spin wave
is also larger than what was found in Ref. [29].

We remark that the amplitude of the total magnetization
oscillations, and the associated spin texture in real space,
depends nonmonotonically on the strength of the Zeeman field.
For B̃ � α̃, and weak interactions g̃ � 1, the magnetization
oscillations are only slightly larger than those studied in
Sec. III A, and the real space magnetization density resembles
the spin helix shown in Fig. 3 (top right). The magnetization
oscillations reach a maximum at some B̃crit, which depends on
g̃ and α̃. Upon further increase of B̃, the spin ↑ state becomes
stable and there is no spin dynamics.

V. SUMMARY AND CONCLUSIONS

In summary, we studied the spin dynamics in a weakly
interacting, nondegenerate Fermi gas following a sudden
ramp of the spin-orbit coupling strength. In the absence
of interactions and a Zeeman field, we produced analytic
expressions for the total magnetization and the magnetization
density for arbitrary values of the spin-orbit coupling, trap
frequency, and temperature. We argued that a fully polarized
initial state will give rise to a spin helix on a time scale set
by the trapping period with a wavelength that depends on the
ratio of the spin-orbit interaction to the trap frequency. For
the high-temperature gas, we generalized the analytic results
obtained by Stanescu et al. [15] to arbitrary spin-orbit coupling
strength.

We then numerically studied the spin dynamics in the
presence of interactions and a Zeeman field, highlighting the
role played both separately and collectively by these terms. For
weak Zeeman fields the spin helix is preserved but it disappears
for very large Zeeman fields, as the fully polarized initial state
becomes increasingly stable. In the presence of interactions,
however, the dynamics is more complicated. Interactions tend
to enhance the amplitude of the spin oscillations. We explain
this effect as a dynamical spin segregation driven by exchange.

Finally, we briefly comment on the role of Fermi statistics
in our calculations. In principle, all the results discussed in this
paper apply equally well to bosons. The spin helix discussed
in Sec. III is a single-particle effect and should also occur in a
bosonic system. Importantly, it is a dynamical effect and should
be contrasted with the spin stripe phase predicted to occur in
equilibrium spin-orbit-coupled Bose-Einstein condensates by
Wang et al. [42] and Ho and Zhang [43].

To conclude, our work shows that a seemingly one-particle
term in the Hamiltonian (i.e., spin-orbit coupling), when
coupled with coherent nonequilibrium dynamics of the Fermi
gas, could manifest rather nonobvious and complex (and more
importantly, observable) behavior in cold atoms and molecules
even at relatively high temperature where the quantum de-
generacy of the system is not of any key importance. The
dynamical physics we predict here is unlikely to manifest
itself in any solid-state systems (and can only be seen in
atomic gases) although the basic concept of spin-orbit coupling
originates in solids, as discussed in detail in Refs. [1,2].
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