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Collective modes in the anisotropic unitary Fermi gas and the inclusion of a backflow term
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We study the collective modes of the confined unitary Fermi gas under anisotropic harmonic confinement as
a function of the number of atoms. We use the equations of extended superfluid hydrodynamics, which take into
account a dispersive von Weizsäcker-like term [C. F. von Weizsäcker, Z. Phys. 96, 431 (1935)] in the equation
of state. We also discuss the inclusion of a backflow term in the extended superfluid Lagrangian and the effects
of this anomalous term on sound waves and the Beliaev damping of phonons [ S. T. Beliaev, Sov. Phys. JETP 7,
299 (1958)].
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I. INTRODUCTION

In this paper we calculate the collective monopole and
quadrupole modes of the unitary Fermi gas (characterized by
an infinite s-wave scattering length) under axially symmetric
anisotropic harmonic confinement by using the extended
Lagrangian density of superfluids, which we proposed a few
years ago [1], to study the unitary Fermi gas [1–8]. The
internal energy density of our extended Lagrangian density
contains a term proportional to the kinetic energy of a uniform
noninteracting gas of fermions, plus a gradient correction of the
von-Weizsacker form λh̄2/(8m)(∇n/n)2 [9]. The inclusion of
a gradient term has been adopted for studying the quantum
hydrodynamics of electrons by March and Tosi [10] and
by Zaremba and Tso [11]. In the context of the BCS-BEC
crossover, the gradient term is quite standard [12–20]. In the
last part of this paper we consider the inclusion of backflow
terms [21,22] in the extended superfluid Lagrangian. By
using our equations of extended superfluid hydrodynamics
with backflow we calculate sound waves, the static response
function, and the structure factor of a generic uniform
superfluid and also the effect of the backflow on the Beliaev
damping of phonons [23].

II. EXTENDED SUPERFLUID LAGRANGIAN
AND HYDRODYNAMIC EQUATIONS

The extended Lagrangian density of dilute and ultracold
superfluids is given by [1–8]

L = L0 + LW, (1)

where

L0 = −h̄ θ̇ n − h̄2

2m
(∇θ )2 n − U (r) n − E0(n) (2)

is the familiar Popov’s Lagrangian density [24] of superfluid
hydrodynamics, with n(r,t) being the local density and θ (r,t)
half [25] of the phase of the condensate order parameter of
Cooper pairs for superfluid fermions (or the phase of the
condensate order parameter for superfluid bosons). Here U (r)
is the external potential acting on particles and E0(n) is the
bulk internal energy of the system. The additional term

LW = −λ
h̄2

8m

(∇n)2

n
(3)

generalizes superfluid hydrodynamics by explicitly taking into
account local density gradients’ contributions to the local
internal energy density, which becomes

E0(n(r,t),∇n) = E0(n(r,t)) + λ
h̄2

8m

[∇n(r,t)]2

n(r,t)
, (4)

where, as previously mentioned, E0(n) is the internal energy
of a uniform unitary Fermi gas with density n. The parameter
λ giving the gradient correction must be determined from mi-
croscopic calculations or from comparison with experimental
data.

By using the Lagrangian density (1) the Euler-Lagrange
equation for θ gives

∂n

∂t
+ h̄

m
∇ · (n ∇θ ) = 0, (5)

while the Euler-Lagrange equation for n leads to

h̄ θ̇ + h̄2

2m
(∇θ )2 + U (r) + X(n,∇n) = 0, (6)

where

X(n,∇n) = ∂E
∂n

− ∇ · ∂E
∂(∇n)

, (7)

which describes how the internal energy varies as the local
density and its gradient vary, may be considered a local
chemical potential. The local velocity field v(r,t) of the
superfluid is related to θ (r,t) by

v(r,t) = h̄

m
∇θ (r,t). (8)

This definition ensures that the velocity is irrotational, i.e.,
∇ × v = 0. By using definition (8) in both Eqs. (5) and (6)
and applying the gradient operator ∇ to Eq. (6) one finds the
following extended hydrodynamic equations of superfluids:

∂n

∂t
+ ∇ · (n v) = 0. (9)

m
∂v
∂t

+ ∇
[

1

2
mv2 + U (r) + X(n,∇n)

]
= 0. (10)

Since in equilibrium both v(r,t) = 0 and ∂v(r,t)
∂t

= 0 must hold,
from Eq. (6) it follows that in the presence of an external
confinement, U (r), the equilibrium (ground state) density n0(r)
obeys:

U (r) + X(n0,∇n0) = μ, (11)
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and the space- and time-independent constant μ may be
identified with the chemical potential (in fact it may thought
of as the Lagrangian parameter which fixes the total number of
fermions). The equilibrium conditions’ position-independent
phase θ0(r,t) = −μt/h̄ obviously satisfies the equilibrium
conditions on v and its time derivative.

III. COLLECTIVE MODES OF THE ANISOTROPIC
UNITARY FERMI GAS

In the case of the unitary Fermi gas the bulk internal energy
can be written as

E0(n) = ξ
3

5

h̄2

2m
(3π2)2/3 n5/3, (12)

where ξ � 0.4 is a universal parameter [1,2,16,26,27] and
various approaches [1,2,16,19,26,27] suggest that λ � 0.25.
The local chemical potential is then

X(n,∇n) = h̄2

2m
(3π2)2/3ξ n2/3 − λ

h̄2

2m

∇2√n√
n

, (13)

with the abovementioned values of ξ and λ.
In this section we consider the unitary Fermi gas under the

anisotropic axially symmetric harmonic confinement

U (r) = m

2
ω2

ρ(x2 + y2) + m

2
ω2

zz
2, (14)

where ωρ is the cylindric radial frequency while ωz is the axial
frequency. In this case, Eq. (11) for the ground-state density
profile n0(r) becomes

m

2
ω2

ρ(x2 + y2) + m

2
ω2

zz
2 + h̄2

2m
(3π2)2/3ξ n0(x,y,z)2/3

− λ
h̄2

2m

∇2√n0(x,y,z)√
n0(x,y,z)

= μ. (15)

We have solved numerically this three-dimensional partial
differential equation by using a finite-difference predictor-
corrector Crank-Nicholson method [28] with imaginary time
after chosing ξ = 0.42 and λ = 0.25. In the case of the
isotropic trap (ωρ/ωz = 1) the fermionic cloud is spheri-
cally symmetric and consequently axial and radial density
profiles coincide. Instead, as expected, by increasing the
trap anisotropy also the fermionic cloud becomes more
anisotropic.

We are interested in calculating the frequencies of low-lying
collective oscillations of the anisotropic unitary Fermi gas.
Exact scaling solutions for the unitary Fermi gas have been
considered by Castin [29] and, for the linearized hydrodynamic
equations with no gradient quantum pressure term, by Hou,
Pitaevskii, and Stringari [30]. Unfortunately, in the presence
of anisotropic trapping potential these scaling solutions are no
longer exact when one considers the gradient term.

For this reason we solve numerically the extended hydrody-
namic equations, Eqs. (9) and (10). In particular, by using our
finite-difference predictor-corrector Crank-Nicholson code in
real time [28], we integrate the time-dependent nonlinear
Schrödinger equation, which is fully equivalent (see [1,5])
to Eqs. (9) and (10).

Figure 1 refers to the unitary Fermi gas under isotropic
(ωρ = ωz) harmonic confinement. In the two panels we plot

1 10 100 1000 10000
N

1

1.5

2

2.5

3

Ω
0/ω

ρ

1 10 100 1000 10000
N

1.3

1.4

1.5

1.6

1.7

1.8

Ω
2/ω

ρ

ωρ/ω
z
 = 1

ωρ/ω
z
 = 1

FIG. 1. (Color online) Unitary Fermi gas under isotropic (ωρ =
ωz) harmonic confinement. In the two panels there are the monopole
frequency 	0 (upper panel) and the quadrupole frequency 	2 (lower
panel) as a function of the number N of atoms. Solid circles with
error bars: numerical results obtained solving Eqs. (9) and (10) with
Eq. (13) and λ = 0.25. Dashed lines: analytical results, i.e., exact
Eq. (16) and Thomas-Fermi Eq. (17). Universal parameter of the
unitary Fermi gas: ξ = 0.42.

the monopole frequency 	0 (upper panel) and the quadrupole
frequency 	2 (lower panel) as a function of the number N of
atoms. As expected [29], the frequency 	0 of the monopole
mode does not depend on the number N of particles and it is
given by

	0 = 2ωρ. (16)

On the contrary, the figure shows that the frequency 	2 of
the quadrupole mode depends on N and for large values of N

it approaches asymptotically the value
√

2ωρ , appropriate to
the case of neglecting the gradient term (see [31]). The solid
circles are the results with λ = 0.25 while the dashed lines
show the analytical results [29,31]. Remarkably, for small
values of N the gradient term enhances the quadrupole
frequency 	2. In the isotropic case (ωρ = ωz) the quadrupole
frequency 	2 in the limit N → ∞ reduces to the Thomas-
Fermi result (i.e., without the gradient term) [31]

	 =
√

2ωρ, (17)

as expected. On the contrary, in the small N limit it approaches
	 = 2ωρ , which is the quadrupole oscillation frequency of
non-interacting atoms (the same result holds for ideal fermions
and ideal bosons) [32].

In Figure 2 we consider the unitary Fermi gas under
anisotropic but axially symmetric (ωρ = 2ωz) harmonic con-
finement. In this case monopole and quadrupole modes
are coupled and we have determined numerically the two
associated frequencies, 	

(a)
0,2 and 	

(b)
0,2. Also in this case the

gradient term increases the frequencies for small values of N .
Moreover, for large values of N these frequencies reduce to
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FIG. 2. (Color online) Unitary Fermi gas under anisotropic but
axially symmetric (ωρ = 2ωz) harmonic confinement. In the two
panels there are the two frequencies, 	

(a)
0,2 and 	

(b)
0,2, of the coupled

monopole and quadrupole modes as a function of the number N

of atoms. Solid circles with error bars: numerical results obtained
solving Eqs. (9) and (10) with Eq. (13) and λ = 0.25. Dashed lines:
analytical results, i.e., Thomas-Fermi Eq. (18). Universal parameter
of the unitary Fermi gas: ξ = 0.42.

the results without the gradient term [31],

	
(a),(b)
0,2 =

√
5
3ω2

ρ + 4
3ω2

z ± 1
3

√
25ω4

ρ + 16ω4
z − 32ω2

ρω
2
z ,

(18)

which correspond to the dashed lines. Our calculations show
that the frequency 	2 of Fig. 1 and the frequencies 	

(a)
0,2 and

	
(b)
0,2 of Fig. 2 give a clear signature of the presence of the

von-Weizsacker gradient term.
We point out that current experiments with ultracold atoms

at unitarity can detect deviations from the Thomas-Fermi
approximation, as observed some years ago for Bose-Einstein
condensates [33].

IV. INCLUSION OF A BACKFLOW TERM

Inspired by the papers of Son and Wingate [26] and Manes
and Valle [27] in this section we consider the inclusion of
a backflow term in the extended superfluid Lagrangian. This
backflow term depends on the velocity strain, as suggested
for superfluid 4He many years ago by Thouless [21] and
explicitly included in the density functional Lagrangian for
superfluid 4He by Dalfovo and collaborators [22]. In particular,
we consider the Lagrangian density

L = L0 + LW + LB, (19)

where L0 and LW are given by Eqs. (2) and (3), respectively,
and the backflow term LB reads

LB = −h̄2

m
n1/3[γ1(∇2θ )2 + γ2(∂i∂j θ )2]. (20)

Notice that i,j = x,y,z and summations over repeated
indices are implied. Again, for a generic superfluid the
parameters γ1 and γ2 of the backflow term must be determined

from microscopic calculations or from comparison with
experimental data.

The Lagrangian density (19) depends on the dynamical
variables θ (r,t) and n(r,t). The conjugate momenta of these
dynamical variables are then given by

πθ = ∂L

∂θ̇
= −h̄n, (21)

πn = ∂L

∂ṅ
= 0, (22)

and the corresponding Hamiltonian density reads

H = πθ θ̇ + πnṅ − L = −h̄nθ̇ − L , (23)

namely,

H = h̄2

2m
(∇θ )2 n + U (r) n + E0(n)

+ λ
h̄2

8m

(∇n)2

n
+ h̄2

m
n1/3[γ1(∇2θ )2 + γ2(∂i∂j θ )2],

(24)

where the last term (h̄2/m)n1/3[γ1(∇2θ )2 + γ2(∂i∂j θ )2] =
mn1/3[γ1(∇ · v)2 + γ2(∂ivj )2] is the energy density associated
with the backflow.

The Hamiltonian density (24) is nothing else than the
energy density recently found by Manes and Valle [27] with a
derivative expansion from their effective field theory of the the
Goldstone field [26,27]. The effective field theory of Manes
and Valle [27] traces back to the old hydrodynamic results
of Popov [24] and generalizes the one derived by Son and
Wingate [26] for the unitary Fermi gas from general coordinate
invariance and conformal invariance. Actually, at next-to-
leading order Son and Wingate [26] found an additional
term proportional to ∇2U (r), which has been questioned by
Manes and Valle [27] and which is absent in our approach. In
addition, Manes and Valle [27] have stressed that the conformal
invariance displayed by the unitary Fermi gas implies

γ2 = −3γ1. (25)

Note that a paper of Schakel [34] confirms the results of Manes
and Valle.

We are interested in the propagation of sound waves in
superfluids. For simplicity we set U (r) = 0 and consider
a small fluctuation φ(r,t) of the phase θ (r,t) around the
stationary phase θ0(t) = −(μ/h̄)t , namely,

φ(r,t) = θ (r,t) − θ0(t), (26)

and a small fluctuation ρ(r,t) of the density n(r,t) around the
constant and uniform density n0, namely,

ρ(r,t) = n(r,t) − n0. (27)

After noticing that (∇2θ )2 and (∂i∂j θ )2 differ by a total
derivative [27] and that their coefficients in the full Lagrangian
density (19) are constants, one easily derives the quadratic
Lagrangian density L (2) of the fluctuating fields φ(r,t) and
ρ(r,t) in the following form:

L (2) = −h̄φ̇ρ − h̄2n0

2m
(∇φ)2 − mc2

s

2n0
ρ2

− λ
h̄2

8mn0
(∇ρ)2 − γ

h̄2n
1/3
0

m
(∇2φ)2, (28)
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where cs is the sound velocity of the generic superfluid, given
by

c2
s = n0

m

∂2E0(n)

∂n2

∣∣∣∣
n0

, (29)

and γ = γ1 + γ2.
The linearized equations of motion associated with L2 read

∂

∂t
ρ + n0∇ · v − 2n

1/3
0 γ ∇2(∇ · v) = 0, (30)

∂

∂t
v + c2

s

n0
∇ρ − λh̄2

4m2n0
∇(∇2ρ) = 0, (31)

with v = (h̄/m)∇φ. They can be arranged in the form of a
wave equation:[

∂2

∂t2
− c2

s ∇2 +
(

λ
h̄2

4m2
+ γ

2c2
s

n
2/3
0

)
∇4 − λγ

h̄2

2m2n
2/3
0

∇6

]

× ρ(r,t) = 0. (32)

which admits monochromatic plane-wave solutions, whose
frequency ω and wave vector q are related by the dispersion
relation:

h̄ ω(q) =
√√√√(

h̄2q2

2m
+ γ

h̄2q4

mn
2/3
0

) (
λ
h̄2q2

2m
+ 2mc2

s

)
. (33)

Notice that a negative value of γ implies that the frequency
ω(q) becomes imaginary for q > n

1/3
0 /

√
2|γ |. However, since

γ is expected to be very small, the wave vectors where this
happens are outside the range of validity of hydrodynamics.

It is instead useful to expand ω(q) for small values of q

(long-wavelength hydrodynamic regime), finding

h̄ω(q) = csh̄q + h̄

2

(
λ

h̄2

4m2cs

+ γ
2cs

n
2/3
0

)
q3 + · · · . (34)

The dispersion relation is linear in q only for small values of the
wave number q and the coefficient of cubic correction depends
on a combination of the gradient and backflow parameters
λ and γ . For γ = 0 one recovers the dispersion relation we
proposed some years ago [1], while setting also λ = 0 one gets
the familiar linear dispersion relation ω = csq of phonons. For
the unitary Fermi gas one gets

c2
s = h̄2

m2

ξ

3
(3π2)2/3n

2/3
0 . (35)

Moreover, we have seen that the backflow parameters are
related by the formula (25), which means

γ = γ1 + γ2 = −2γ1. (36)

Consequently, at the cubic order in q Eq. (33) gives

ω(q)

cskF

= q

kF

+ �
q3

k3
F

, (37)

where kF = (3π2n0)2/3 is the Fermi wave number and

� = 3λ

8ξ
− 2(3π2)2/3γ1. (38)

Within a mean-field approximation Manes and Valle [27]
have found γ1 � 0.006, which implies γ � −0.012 and

� � 0.12, using ξ = 0.4 and λ = 0.25. As recently discussed
by Mannarelli, Manuel, and Tolos [35], the sign of � has a
dramatic effect on the possible phonon interaction channels:
the three-phonon Beliaev process, i.e., the decay of a phonon
into two phonons [23], is allowed only for positive values of �.
Under this condition (� � 0) the phonon has a finite lifetime
and the frequency ω(q) possesses an imaginary part Im[ω(q)]
due to this three-phonon decay [23,36]. In particular, we find

Im[ω(q)] = − h̄q5

270πmn0
. (39)

This formula of Beliaev damping is easily derived from Beliaev
theory [23,36] taking into account Eq. (35).

It is important to point out that the sign of � in Eq. (37)
was debated also without the backflow term. In 1998 Marini,
Pistolesi, and Strinati [37] found � > 0 at unitarity by
including Gaussian fluctuations to the mean-field BCS-BEC
crossover. In 2005 Combescot, Kagan, and Stringari [38]
derived Eq. (37) with a negative � at unitarity on the basis
of a dynamical BCS model. In 2011 Schakel [34] obtained
a positive � at unitarity by using a derivative expansion
technique, finding exactly the values of � predicted by Ref.
[37] in the full BCS-BEC crossover.

To conclude this section, we observe that, for a generic
many-body system, the dispersion relation can be written as
[32]

h̄ω(q) =
√

m1(q)

m−1(q)
, (40)

where mn(q) is the n moment of the dynamic structure function
S(q,ω) of the many-body system under investigation, namely
[32],

mn(q) =
∫ ∞

0
dωS(q,ω)(h̄ω)n. (41)

In our problem, Eq. (32), it is straightforward to recognize (see
also [22]) that

m1(q) = h̄2q2

2m
+ γ

h̄2q4

mn
2/3
0

(42)

and

m−1(q) = 1

λ
h̄2q2

2m
+ 2mc2

s

. (43)

In general, the static response function χ (q) is defined as [32]

χ (q) = −2 m−1(q); (44)

in our problem it reads

χ (q) = − 2

λ
h̄2q2

2m
+ 2mc2

s

, (45)

which satisfies the exact sum rule χ (0) = −1/mc2
s [32]. The

static structure factor S(q), defined as [32]

S(q) = m0(q) =
∫ ∞

0
dωS(q,ω), (46)
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can be approximated by the expression

S(q) =
√

m1(q) m−1(q) =

√√√√√ h̄2q2

2m
+ γ

h̄2q4

mn
2/3
0

λ
h̄2q2

2m
+ 2mc2

s

, (47)

which gives an upper bound of S(q) [32] and reduces to S(q) =
h̄q/(2mcs) for small q.

Finally, we remark that one can also calculate the frequen-
cies 	 of collective oscillations of the unitary Fermi gas under
the action of the trapping potential given by Eq. (14) taking
into account the backflow. We have verified that in the case of
spherically symmetric harmonic confinement (ωρ = ωz) the
monopole mode 	0 is not affected by the backflow term, i.e.,
	0 = 2ωρ . Moreover, for large values of N the contribution
due to the backflow becomes negligible, similarly to the von
Weizsäcker one.

V. CONCLUSIONS

We have calculated collective modes of the anisotropic
unitary Fermi gas by using the equations of extended superfluid
hydrodynamics. In particular, we have shown that a gradient
correction of the von-Weizsacker form in the hydrodynamic
equations strongly affects the frequencies of collective modes
of the system under axially symmetric anisotropic harmonic

confinement. We have found that, for both monopole and
quadrupole modes, this effect becomes negligible only in the
regime of a large number of fermions, where one recovers the
predictions of superfluid hydrodynamics [31]. In the last part
of the paper we have considered the inclusion of a backflow
term in the extended hydrodynamics of superfluids.

We believe our results can trigger the interest of exper-
imentalists. Some years ago beyond-Thomas-Fermi effects
due to the dispersive gradient term have been observed by
measuring the frequencies of collective modes in trapped
Bose-Einstein condensates [33]. Moreover, the spectrum of
phonon excitations and Beliaev decay have been observed in
a quasiuniform Bose-Einstein condensate with Bragg pulses
[39]. Performing similar measurements in the unitary Fermi
gas can shed light on the role played by gradient and backflow
corrections in superfluid hydrodynamics.
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