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Few interacting fermions in a one-dimensional harmonic trap
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We study spin-1/2 fermions, interacting via a two-body contact potential, in a one-dimensional harmonic
trap. Applying exact diagonalization, we investigate their behavior at finite interaction strength and discuss
the role of the ground-state degeneracy which occurs for sufficiently strong repulsive interaction. Even low
temperature or a completely depolarizing channel may then dramatically influence the system’s behavior. We
calculate level occupation numbers as signatures of thermalization, and we discuss the mechanisms to break the
degeneracy.
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I. INTRODUCTION

Advances in the control and manipulation of ultracold
quantum gases have opened up a new avenue to the study
of interacting few particle systems [1]. In particular, existing
trapping techniques allow for exploring the physics in low
dimensions where the quantum-statistical distinction between
fermionic and bosonic particles experiences severe modifi-
cations. A striking property of one-dimensional systems is
that a strongly repulsive bosonic system can be mapped to
a noninteracting fermionic system [2–7]. This gives rise to
a strongly correlated phase known as the Tonks-Girardeau
(TG) gas. For spin-1/2 fermions in a one-dimensional trap, in
the strongly repulsive limit, the spin-1/2 fermions may form
a ground state which is identical to that of noninteracting
fermions without spin [8,9]. High-precision control of such
systems has been proven feasible in a recent experiment
which allows for preparing the system in a state with a
well-defined, small number of particles [10]. In particular,
it has become possible to study the ground state and the
dynamics of a two-fermion system [11], for which the exact
theoretical solution is known in the full interaction parameter
range [12–14].

To describe systems with three or more fermions, different
analytical and numerical methods have been applied [15–20],
suggesting such systems as a tool for studying ferromagnetism
and providing some insight into the fermionized nature of the
strongly repulsive system. In this paper, we give a theoretical
description of few fermions in a one-dimensional harmonic
trap based on an exact diagonalization study. This allows us to
go beyond the analytic solution of Ref. [15], as we cover the
full energy spectrum in the full range of interaction strengths.
We focus on the quasidegenerate regime where any small
temperature or a completely depolarizing channel may lead to
an occupation of several states in the spectrum. As a signature
of this effect, we calculate the occupation numbers of the
harmonic oscillator levels, which are found to significantly
differ from the ground-state expectation value. On the other
hand, as the true ground state is protected against mixing
with other states by permutation symmetry, such thermalized
states require mechanisms to break the degeneracy. While
anharmonicities in the trap are found to fail, a small magnetic

field gradient is shown to mix the degenerate states, giving rise
to a nontrivial spin dynamics.

II. SYSTEM

Our system consists of two-species fermions of mass m

confined in a one-dimensional trap with frequency ω. The
Hamiltonian has the form

H =
N∑

i=1

[
− h̄2

2m

∂2

∂x2
i

+ mω2

2
x2

]
+ g1D

∑
i<j

δ(xi − xj ), (1)

where g1D is an effective interaction strength between two
fermions of different spins. In the following, we refer to the two
species as a single species with an internal (pseudo)spin-1/2
degree of freedom. We express all quantities in harmonic
oscillator units, i.e., h̄ω for energy,

√
h̄/mω for length, etc.

For convenience we introduce the dimensionless interaction
strength g = (m/h̄3ω)1/2 g1D . Let us note that the interaction
term in Eq. (1) is nonzero only for states having a spatial
wave function which is symmetric under particle exchange.
For fermions with the same spin the wave function is always
antisymmetric, and the interaction term will not contribute. For
two fermions with opposite spins, symmetric and antisymmet-
ric wave functions are possible and correspond to states with
zero and finite interaction energy.

A convenient basis for studying the many-body problem
is given by the eigenstates φn(x) of the single-particle
problem, simply being the harmonic oscillator eigenfunctions
corresponding to energies εn = n + 1/2. The Hamiltonian (1)
is then diagonalized in blocks with a fixed total number of
particles N , and fixed numbers N↑ (N↓) of ↑ (↓) fermions,
defining the z component of the spin. We truncate the single-
particle basis at a sufficiently large level, nmax = 20.

Before turning to our numerical results, let us consider
two limiting cases which can be solved analytically. The first
case is a noninteracting system, g = 0. The ground state is
then obtained by simply filling the Fermi sea, defining the
Fermi energy EF. The second limiting case is the Girardeau
limit of infinitely strong repulsive interaction between the two
species, g → ∞. Then, a Fermi-Fermi mapping [4] allows one
to treat the repulsive two-species fermions like noninteracting

033607-11050-2947/2013/88(3)/033607(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.033607
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one-species fermions. A spatial wave function for the ground
state is then obtained as a Slater determinant of the N lowest
levels. It can be rewritten as [8]

� ∝
[

N∏
i=1

e−x2
i /2

] ∏
1�j<��N

(xj − x�). (2)

This spatial wave function is fully antisymmetric and thus
corresponds to a fully symmetric spin configuration. It is an
eigenfunction of both the single-particle and the interaction
part of the Hamiltonian and thus provides an exact eigenfunc-
tion for any choice of g. In particular, as the wave function
vanishes whenever two particles are at the same position, it
describes a state with an energy which is independent from g

and which becomes the ground-state energy for g → ∞.
It is possible to symmetrize Eq. (2) with respect to

pairs of particles of opposite spin just by including a factor
sgn(x� − xk). However, as our numerical results suggest, wave
functions obtained in that way are eigenfunctions of the
Hamiltonian only for g → ∞. More insight is provided by an
exact solution of the two-particle problem [12,13] by rewriting
the Hamiltonian into the relative motion r = x1 − x2 and
the center-of-mass motion R = (x1 + x2)/2 coordinates. The
relative motion of the two particles is then described by

Hrel = − d2

dr2
+ 1

4
r2 + gδ(r). (3)

The relative motion part of the wave function (2) is found to
be the first-excited state of the Hamiltonian (3) with energy
E − EF = 1 for any g. Its center-of-mass motion is in the
ground state. In the limit g → ∞, the state (2) becomes
degenerate with the ground state which smoothly evolves to the
symmetric state �0(r,R) ∝ |r|e−r2/4e−R2

, as we adiabatically
increase g. Note that this wave function, despite describing a
state of zero interaction energy, is not an eigenstate of Eq. (3)
for any finite g.

We thus have seen that in the limit of infinitely strong
interactions, the two-particle problem has two degenerate
ground states with opposite symmetry of the spatial wave func-
tion. One solution is obtained from the other by multiplying
sgn(x1 − x2). This operation turns the spatially antisymmetric
wave function (2) into a spatially symmetric wave function
and thus has to be accompanied with a corresponding change
in the symmetry of the spin wave function.

The same mechanism can be applied for larger systems,
N > 2. Then, for every pair of particles with opposite spin, it
is possible to change the symmetry of the spatial wave function
in the state (2) and thereby construct new solutions in the
Girardeau limit. This has been done in Ref. [15] and leads
to a degenerate ground-state manifold, where the number of
degenerate ground states D is given by the number of distinct
spin configurations. It is counted by the distinct possibilities
of dividing N particles into two groups with N↑ and N↓
members; that is, D = N!

N↓!N↑! . Note that the degeneracy of
higher manifolds, corresponding to an excited center-of-mass
motion, increases since one also has to take into account
excitations in the relative motion.

III. ROLE OF DEGENERACIES

These degeneracies, although known before [15], might
play a crucial role in understanding the few-body physics of
strongly interacting fermions. Our numerics focuses on the
region between the two limiting cases, where, for N > 2, exact
solutions are not known. In that region, the system makes use
of both the possibility of doubly occupying the lowest levels to
reduce potential energy and occupying higher levels in order to
reduce interactions. Energy spectra as a function of interaction
strength g are plotted in Fig. 1 for fixed N↑ and N↓. With
this also the total particle number and the z component of
spin, Sz = N↑ − N↓, are fixed, but not the total spin. We find
different energy manifolds which become degenerate in the
limit g → ∞. Each manifold corresponds to different center-
of-mass wave functions. The number of degenerate states in
the lowest manifold is given by D, the number of different
spin configurations. For any Sz, the highest energy state of the
lowest manifold is described by the fully antisymmetric wave
function of Eq. (2). As explained above, it is an exact solution
with zero interaction energy for any g, and its energy function
is therefore simply a horizontal line. The degeneracy is lifted
at any finite g.

We next consider the population of the different single-
particle levels. In the quasidegenerate regime, the vanishing
small energy gap does not protect the ground state against
mixing with other states from the manifold: If the system’s
temperature is of the order of the gap, a description in terms
of thermal states becomes necessary. In Fig. 2(a) we show,
for N↑ = 4 and N↓ = 1, how temperature strongly affects the
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FIG. 1. We plot the energy E − EF as a function of the dimen-
sionless interaction strength g for different combinations of spin-up
and spin-down particles. The energy offset EF is the Fermi energy
of the noninteracting system. We find ground-state degeneracies in
the limit of strong interactions. We plot first 20 eigenenergies of the
Hamiltonian in Hilbert spaces with fixed Sz = N↑ − N↓, but without
fixing the total spin.
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FIG. 2. (Color online) (a) The probabilities P↓ and P↑ for finding
↑ and ↓ particles in different orbitals (n = 0,1,2,3) as a function of
the dimensionless interaction strength g. We consider the effect of
temperature using a Boltzman distribution: the solid black and dashed
blue lines denote the temperatures kT /h̄ω = 0 and 0.3, respectively.
(b) Temperature dependence of the cumulative distribution function
for g = 9 (left) and g = 12 (right). This function describes the
probability of finding the ↓ particle above the nth harmonic oscillator
level, where n = 0 is shown by the thick solid line, n = 1 by the
dashed line, n = 2 by the thin solid line, and n = 3 by the dash-dotted
line. In all plots N = 5 and N↓ = 1.

occupation probabilities of the ↓ particle. Taking into account
the whole manifold of five quasidegenerate states, we apply
a Boltzmann average at different temperatures. For g � 10,
the probability of finding the ↓ particle in the level n = 0 is
clearly reduced even by a small temperature, kBT � h̄ω. To
understand this, we note that at zero temperature, as shown
by the thick solid line, only the true ground state is occupied.
For this state, the probability for the ↓ particle to be in n = 0
ranges between 1 at g = 0 down to 0.8 for g 	 1. In contrast,
the Girardeau state has an equal population of the five lowest
levels, such that the probability of finding the ↓ particle in
n = 0 is given by 0.2. This shows that the quasidegeneracy of
the ground state enhances the population of the higher energy
levels in the limit g → ∞. Interestingly, as shown by the
second line of Fig. 2(a), the occupation probabilities for the
↑ particles are close to unity, independent of temperature and
interaction strength g, as a consequence of the Pauli principle.

From the experimental point of view, the probabilities
shown in Fig. 2(a) cannot be measured directly. Instead, by
tilting the trap potential one can estimate the number of atoms
above a certain harmonic oscillator level by the counting
atoms that leave the trap [10]. In a series of measurements,
this quantity is a counterpart of the cumulative distribution
function (CDF). This function describes the probability of a
particle to occupy any level above a certain cutoff level n.
Measurements of CDFs for different n would allow one to
reproduce the probabilities of Fig. 2(a). In Fig. 2(b), we plot
the temperature dependence of the CDF of the ↓ particle in a
system with N↓ = 1 and N↑ = 4 for two different interaction

strengths, g = 9 and g = 12. In both cases, the CDF of the
lowest energy levels (n = 0 and n = 1) is very sensible to
small temperatures and more than doubles in the plotted
range 0 � kBT � 0.5h̄ω. In the case of g = 12, this increase
mostly takes place in the interval 0 � kBT � 0.15h̄ω, and
the CDF saturates for larger temperatures. This shows that
temperature has become large compared to a vanishingly
small many-body gap, which exponentially decreases with g.
Then, the thermal regime transforms into the scenario where a
completely depolarizing channel simply favors the state with
maximum entropy according to the Jaynes principle.

IV. EXTERNAL SYMMETRY BREAKING

We now discuss the thermalization mechanisms that are
able to bring the system into a superposition of different states
from the quasidegenerate manifold. On the basis of our ideal
model, neither an adiabatic increase nor a sudden quench of
the interaction parameter would lead to occupation of more
than one state in the degenerate manifold. A mixing with other
states is prohibited by the permutation-group symmetry, that
is, the conservation of total spin.

Also trap anharmonicities do not change this situation. As
shown in Fig. 3(a), they only shift the quasidegenerate energy
manifolds without lifting the degeneracy. In fact, the nature of
the symmetry dictates that thermalization mechanisms must
simultaneously act on spin and spatial degrees of freedom.
This could be a spin-orbit coupling, spin-dependent interaction
like, for instance, p-wave interaction or the existence of
a spatially dependent magnetic field. The latter option is
easily implemented as a Zeeman term, HZ = δ

∑
i xiσ

z
i , in the

Hamiltonian. Without loss of generality, we assume that
the two internal states have opposite magnetic moments
along the z direction and δ is a magnetic field gradient.
Such a term can be implemented in a controlled way in the
experiment.

To study the effect of a Zeeman term in more detail, we
first consider two particles with opposite spins. It is easily
seen that the symmetric wave function |S〉 ∝ |r|e−r2/4e−R2

(which has to be multiplied by an antisymmetric spin wave
function |↑↓〉 − |↓↑〉) has nonzero transition matrix elements
〈S| HZ |A〉 = 2

√
2/πδ with the antisymmetric wave function

|A〉 ∝ re−r2/4e−R2
(which has to be multiplied by a symmetric

spin wave function |↑↓〉 + |↓↑〉). This gives rise to a degener-
acy splitting � which is linear in the magnetic field gradient,
� = 4

√
2/πδ, and to mixed-symmetry states in the limit of

large g. The same effect is found for systems with three or four
particles, where we have taken into account the Zeeman term in
our exact diagonalization study. The situation is plotted in Fig.
3(b), clearly showing the lifted degeneracy in the large g limit.
In particular, we find that for sufficiently small Zeeman energy,
δ〈x〉 � h̄ω, only states of the same energy manifold are mixed.
Furthermore, since the Zeeman term can be rewritten as a
sum of operators acting only on pairs of particles, transition
matrix elements of states which differ by more than one unit
of total spin are zero. Accordingly, the matrix representation
of the Zeeman term has a tridiagonal structure. The mixed
symmetry of the eigenstates in the presence of a Zeeman
splitting is illustrated by Fig. 3(c). For N = 4 and N↑ = 1
we consider a system which is prepared in the (maximum
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FIG. 3. (Color online) (a) Influence of a symmetric anharmonicity
of the trap to the spectrum of the Hamiltonian. Anharmonicity
shifts eigenenergies of the Hamiltonian (black lines) relative to the
eigenenergies of the Hamiltonian with the harmonic trap (gray lines).
It does not lift the degeneracies at large g and provides no mixing
between different states in each manifold. (b) Energies as a function
of g in the presence of a Zeeman term. No degeneracies occur in the
strongly interacting limit. (c) Zeeman breaking of the spin symmetry.
For N = 4 and N↑ = 1, the ground state at g = 12 is time-evolved
after switching on a Zeeman term, δ = 0.05. The probability for
finding the state in one of the four possible spin configurations is
plotted. The thick black, dashed blue, dotted red, and thin black lines
correspond to the states ordered by energy (increasing).

total spin) ground state of the Hamiltonian for g = 12 and
δ = 0. Then we switch on the external magnetic field gradient
δ = 0.05 and propagate the state for some time t . We then

measure the spin symmetry of the state (by projecting back into
the spin-conserving basis given by the eigenstates of δ = 0).
We then plot the probabilities of finding the system in one of
the three different spin sectors as a function of time. The time
scale of the dynamics shown in Fig. 3(c) can be controlled by
the strength of the field gradient. This could allow for studying
the crossover from quantum time evolution to thermalization.

V. CONCLUSIONS

In our study of one-dimensionally trapped spin-1/2
fermions we have focused on the strongly repulsive regime, in
which a ground-state degeneracy is exhibited. This quaside-
generate manifold allows one to study thermalization in a small
quantum-mechanical system. We have calculated correlation
functions and occupation numbers of the harmonic oscillator
levels as signatures for distinguishing between pure states and
thermal states at finite or even infinite temperature. Since each
eigenstate is protected from mixing with other states by its
symmetry with respect to the permutation group, mechanisms
for thermalization must in general be operators which simul-
taneously act on spin and spatial degrees of freedom. We have
shown that the presence of an additional Zeeman term lifts the
degeneracy and may lead to a time-dependent superposition
of different states from the quasidegenerate manifold.

Note added in proof. Recently, we became aware of a related
work by S. E. Gharashi and D. Blume exploring the degenerate
regime of strongly repulsive 1D fermions [21].
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