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Superfluidity of a spin-imbalanced Fermi gas in a three-dimensional optical lattice
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We study fermion pairing in a population-imbalanced mixture of 6Li atomic gas loaded in a three-dimensional
lattice at very low temperatures. Using the number equation for each population, the gap equation, and the equation
for the Helmholtz free energy, we determine the gap, chemical potentials, and pair-momentum as functions of
polarization. These parameters define the stability regions for a Fulde-Ferrell-Larkin-Ovchinnikov phase, a
phase separation region where Bardeen-Cooper-Schrieffer and normal phases coexist, a Sarma phase when the
pair-momentum vanishes, and the transition to the normal phase when the gap disappears. The collective-mode
energies are then calculated using a Bethe-Salpeter approach in the generalized random-phase approximation
assuming that the system is well described by the single-band Hubbard model. An interesting result is that this
fermionic gas has a superfluid phase revealed by rotonlike minima in the asymmetric collective-mode energy
spectrum.
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I. INTRODUCTION

The ability to use optical lattices to study the properties of
ultracold atoms provides a testing model to simulate different
strongly correlated Fermi systems. Optical lattices are also
tailor-made to study the effects of dimensionality on correlated
Fermi systems as the former are created by standing laser
waves in one, two, or three dimensions [1]. Since the frequency
and intensity of the lasers can be tuned up to specific values,
the properties of ultracold Fermi or Bose systems loaded
onto these lattices can be studied with impressive detail [2].
In addition, when the atoms are near a Feshbach resonance
their interaction can be finely tuned to explore the crossover
from the weakly interacting Bardeen-Cooper-Schrieffer (BCS)
regime characterized by Cooper pair formation to the strongly
interacting regime where the formation of molecular pairs with
zero spin can undergo a Bose-Einstein condensation (BEC) at
sufficiently low temperatures [3]. Although most experimental
and theoretical models of correlated Fermi systems have dealt
with balanced populations of spin states, more recently [4,5]
the ability to manipulate ultracold atomic clouds has motivated
the interest to study systems when the mixture of two hyperfine
states in, for example, an atomic Fermi gas is not balanced.
In this case, the two Fermi surfaces are no longer aligned and
the lowest-energy pairs have nonzero total momenta. Such
phases were first studied by Fulde and Ferrell (FF) [6], who
used an order parameter that varies as a single plane wave, and
by Larkin and Ovchinnikov (LO) [7], who suggested that the
order parameter is a superposition of two plane waves.

Although the FF and LO phases (presently referred as
FFLO) were introduced quite a long time ago, they are
still of very high interest because the question whether
the superconductivity or superfluidity can survive in three-
dimensional (3D) polarized systems remains experimentally

unanswered. In the FFLO phase, Cooper pairing occurs
between a fermion with momentum k + q and spin ↑ and
a fermion with momentum −k + q and spin ↓. As a result, the
total pair momentum is 2q and the order parameter becomes
spatially dependent as proposed by Larkin and Ovchinnikov
[7]. The mean-field treatment of the FFLO phase in a variety of
systems, such as superconductors with Zeeman splitting and
heavy-fermion superconductors [8], atomic Fermi gases with
population imbalance under a T -matrix approach in BCS-BEC
crossover regimes [9], or loaded in optical lattices [10–12] and
harmonic traps [13], and dense quark matter [14], shows that
the FFLO phase competes with a number of other phases,
such as the Sarma (q = 0 ) states [15], but in some regions of
momentum space the FFLO phase is more stable as it provides
the minimum of the mean-field expression of the Helmholtz
free energy.

In this paper we calculate the polarization dependence of the
gap, the chemical potentials, and the pair momentum as well
as the collective excitations of an imbalanced mixture of two
hyperfine states |↑〉 and |↓〉 of a 6Li atomic Fermi gas under an
attractive contact interaction loaded into a cubic optical lattice.

In Sec. II we summarize the properties of the Hubbard
Hamiltonian used here to model a two-component Fermi gas
in a lattice produced by standing waves of three pairs of
counterpropagating laser beams. Section III is devoted to the
calculation of the thermodynamic potential of the system.
When the number of particles is fixed, the Helmholtz free
energy is obtained as a function of the order parameter
and total pair momentum. We also analyze the extent of
the phase separation region determined by the minimal free
energy of a normal and a BCS mixture. The polarization vs
temperature phase diagram is calculated and compared with
previous results for a 2D system [16]. In Sec. IV we derive a
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Bethe-Salpeter equation for two-body amplitudes assuming
a generalized random-phase approximation. The collective
excitations are obtained via the vanishing of a secular 4 × 4
determinant. Finally, our conclusions are presented in Sec. V.

II. HUBBARD MODEL IN A CUBIC OPTICAL LATTICE

The Hamiltonian of a two-component Fermi gas under an
attractive contact interaction v(r − r ′) = v0δ(r − r ′) is given
by

H =
∑

σ

∫
d r�̂†

σ (r)

[
− h̄2∇2

2m
+ Vσ (r) − μσ

]
�̂σ (r)

+ v0

∫ ∫
d rd r ′�̂†

σ1
(r)�̂†

σ2
(r ′)δ(r − r ′)�̂σ2 (r ′)�̂σ1 (r),

(1)

where �̂†
σ (r) and �̂σ (r) are fermionic creation and annihilation

field operators of component σ , respectively; μσ is the
chemical potential for each component |↑〉 or |↓〉; and the
lattice periodic potential is

Vσ (r) = γσ,x sin2 kx + γσ,y sin2 ky + γσ,z sin2 kz, (2)

where k = π/a with a = λ/2, the lattice constant, and λ is the
laser wavelength.

We assume that the optical-lattice potential strengths γσ,ν

(ν = x, y, or z) are sufficiently deep to consider that lattice-site
tunneling occurs only between nearest neighbors. Then, the
field operators can be expanded as

�̂σ (r) =
∑

i

ψi,σ (r)ĉi,σ ,

where ψi,σ (r) are one-particle wave functions localized at site
i, and the Fermi operator ĉ

†
i,σ ( ĉi,σ ) creates (destroys) an atom

in site i. Under these assumptions, the Hamiltonian in (1)
reduces to the single-band attractive Hubbard model,

H = −Jx

∑
〈i,j〉x ,σ

ĉ
†
i,σ ĉj,σ − Jy

∑
〈i,j〉y ,σ

ĉ
†
i,σ ĉj,σ

− Jz

∑
〈i,j〉z,σ

ĉ
†
i,σ ĉj,σ −

∑
i

(μ↑ĉ
†
i,↑ĉi,↑ + μ↓ĉ

†
i,↓ĉi,↓)

+U
∑

i

ĉ
†
i,↑ĉ

†
i,↓ĉi,↓ĉi,↑, (3)

where Jν is the tunneling strength of the atoms between
nearest-neighbor sites in the ν direction and U is the on-site
attractive interaction strength. On the BCS side, the Hubbard
parameter U is negative, but in what follows U denotes its
absolute value and is given by

U = v0

∫
d r|ψi,↑(r)|2|ψi,↓(r)|2. (4)

We assume a system with a total number of atoms M =
M↑ + M↓ distributed along N sites of the optical-lattice po-
tential (2). In the mean-field approximation, the pair interaction

term in Eq. (3) is replaced by

U
∑

i

ĉ
†
i,↑ĉ

†
i,↓ĉi,↓ĉi,↑

� U
∑

i

(〈ĉ†i,↑ĉ
†
i,↓〉ĉi,↓ĉi,↑ + ĉ

†
i,↑ĉ

†
i,↓〈ĉi,↓ĉi,↑〉

− 〈ĉ†i,↑ĉ
†
i,↓〉〈ĉi,↓ĉi,↑〉), (5)

where the Hartree terms are included in the chemical potentials
and the Fock terms do not contribute [10]. The order parameter

i = U 〈ĉi,↓ĉi,↑〉 of the FFLO states is assumed to vary as a
single plane wave, 
i = 
 exp(2ıq · r i), where q is the pair
center-of-mass momentum and r i is the coordinate of site
i. These states are expected to occur on the BCS side of a
Feshbach resonance where the effective attractive interaction
between fermion atoms leads to BCS-type pairing. The tight-
binding lattice dispersion energy is ξ↑,↓(k) = 2

∑
ν Jν(1 −

cos kνa) − μ↑,↓. In our calculations we use λ = 1030 nm
and equal tunneling strengths Jν = J to obtain the following
mean-field Hamiltonian,

H = 1

N

∑
k

[
ξ↑(k)ĉ†k,↑ĉk,↑ + ξ↓(k)ĉ†k,↓ĉk,↓

+
ĉ
†
k+q,↑ĉ

†
−k+q,↓ + 
∗ĉ−k+q,↓ĉk+q,↑ + |
|2

U

]
, (6)

which can be diagonalized using a Bogoliubov transformation
[10], (

ĉk+q,↑
ĉ
†
−k+q,↓

)
=

(
uq(k) vq(k)

−vq(k) uq(k)

)(
d̂k,q,↑
d̂
†
−k,q,↓

)
. (7)

The coefficients uq and vq are given by

uq(k) =
√

1

2

[
1 + χq(k)

Eq(k)

]
, vq(k) =

√
1

2

[
1 − χq(k)

Eq(k)

]
, (8)

where

χq(k) = 1
2 [ξ↑(k + q) + ξ↓(q − k)],

(9)
Eq(k) =

√
χ2

q (k) + 
2.

III. THERMODYNAMIC POTENTIAL
AND PHASE DIAGRAMS

In the mean-field approximation, the momentum-space,
single-particle Green’s function is a 2 × 2 matrix given by

Ĝ =
(

G
↑↑
q G

↑↓
q

G
↓↑
q G

↓↓
q

)
,

where

G↑↑
q (k,iωm) = uq(k)2

ih̄ωm − ω+(k,q)
+ vq(k)2

ih̄ωm + ω−(k,q)
,

G↓↓
q (k,iωm) = vq(k)2

ih̄ωm − ω+(k,q)
+ uq(k)2

ih̄ωm + ω−(k,q)
,

G↑↓
q (k,iωm) = G↓↑

q (k,iωm) = uq(k)vq(k)

×
[

1

ih̄ωm − ω+(k,q)
− 1

ih̄ωm + ω−(k,q)

]
.

(10)
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The Matsubara frequencies are ωm = πkBT (2m + 1)/h̄,
with m = 0,±1,±2, . . . ; T is the temperature; and kB

is the Boltzmann constant. The one-particle excitations
in a mean-field approximation ω± are coherent combina-
tions of electronlike ω+(k,q) = Eq(k) + ηq(k) and hole-
like ω−(k,q) = Eq(k) − ηq(k) excitations, where ηq(k) =
1
2 [ξ↑(k + q) − ξ↓(q − k)]. The thermodynamic potential at
temperature T in a mean-field approximation can be evaluated
from the grand canonical partition function Z of an ensemble
of quasiparticles with energy ω±(k,q) given by [10]

Z =
∏

k

(1 + e−βω+(k,q)/N )(1 + e−βω−(k,q)/N )e− β

N
(ξ↓(q−k)+ |
|2

U
),

(11)

where β = 1/kBT . The thermodynamic potential � =
− 1

β
ln Z is, therefore,

� = 1

N

∑
k

[
χq(k) − Eq(k) + 
2

U

]
− 1

β

∑
k

[ln(1 + e−βω+(k,q)) + ln(1 + e−βω−(k,q))].

(12)

From (8), the parameter 
 = U
N

∑
k〈ĉ−k+q,↓ĉk+q,↑〉 satisfies

the gap equation at zero temperature:

1 = U

N

∑
k

1

2Eq(k)
. (13)

If we consider an imbalanced system with fixed chemical
potentials, μ↑,↓, the minima of �(
,q,μ↑,μ↓,T ) with respect
to 
,q,μ↑,μ↓ define the possible stable phases of this system
as a function of temperature. However, recent experiments
[4,17] deal with the more realistic situation in which the
number of particles of each kind is fixed. In the latter case,
the relevant thermodynamic potential is the Helmholtz free
energy F (
,q,f↑,f↓,T ) = � + μ↑f↑ + μ↓f↓. Without loss
of generality we set q = (qx,0,0), i.e., in the x direction, and
minimize the Helmholtz free energy F (
,qx,f↑,f↓,T ) with
respect to μ↑, μ↓, 
, and qx , where f↑,↓ ≡ M↑,↓/N . As a
result, we obtain a set of four equations, namely, the number
and gap equations, as well as the equation for qx :

f↑ = 1

N

∑
k

[
u2

q(k)f (ω+(k,q)) + v2
q(k)f (−ω−(k,q))

]
,

f↓ = 1

N

∑
k

[
u2

q(k)f (ω−(k,q)) + v2
q(k)f (−ω+(k,q))

]
,

1 = U

N

∑
k

1 − f (ω−(k,q)) − f (ω+(k,q))
2Eq(k)

0 = 1

N

∑
k

{
∂ηq(k)

∂qx

[f (ω+(k,q)) − f (ω−(k,q))] + ∂χq(k)

∂qx

×
[

1 − χq(k)

Eq(k)
[1 − f (ω+(k,q)) − f (ω−(k,q))]

]}
,

(14)

where f (ω±(k,q)) = 〈d̂†
−k,q,↑d̂k,q,↑〉 is the Fermi distribution

{exp[βω±(k,q)] + 1}−1.
The existence of a mixed phase of normal state and BCS

phase has been reported in several analyses [18]. A systematic
review of the phase separation of ultracold Fermi gases in
harmonic traps for the whole BCS-BEC crossover has been
studied [19]. It arises when a fraction of the fermions are
forming Cooper pairs in a BCS, Sarma, or FFLO phase while
the remaining (imbalanced) atoms are in the normal phase.
Here, we only consider a configuration in which a fraction
(1 − x) are in the BCS phase, which requires equal numbers
of |↑〉 and |↓〉 states with opposite momenta. The free energy
in this mixed or phase separation (PS) state is

FPS = xFN + (1 − x)FBCS, (15)

where

FBCS = �BCS + μ(1 − x)f̃ , (16)

(1 − x)f̃ is the filling-factor fraction of fermions in the BCS
superfluid state, and μ is the chemical potential with similar
expressions for the filling-factor fraction in the normal phase
given by

FN = �N + μ↑[f↑ − (1 − x)f̃ ] + μ↓[f↓ − (1 − x)f̃ ],

(17)

where the thermodynamic potential in the normal phase is

�N = − 1

β

∑
k

{ln[(1 + e−β�↑ )(1 + e−β�↓ )]}. (18)

The free energy is now also a function of x, f̃ , and μ,
i.e., FPS = FPS(x, f̃ ,μ,μ↑,μ↓,
). The minimum of FPS with
respect to variations in the normal fraction x and f̃ results in
the following two additional relations:

f̃ (μ↑ + μ↓) = �N − �BCS + μ↑f↑ + μ↓f↓,
(19)

μ(1 − x) = x(μ↑ + μ↓),

which together with Eqs. (14) provide a system of six equations
that define the equilibrium values of the thermodynamic
variables. Since at a finite temperature the FFLO, Sarma, PS
and normal states compete with each other, we have calculated
the regions in the P vs T plane that minimize the free energy.
Here, P is the polarization defined by

P = f↑ − f↓
f↑ + f↓

. (20)

In Fig. 1 we exhibit the phase diagram of a 3D imbalanced
system for a total filling factor f = f↑ + f↓ = 0.4, J =
0.07 ER, and U/J = 3.72, where ER = h̄2(2π/λ)2/2m is the
recoil energy. We first chose these values for the parameters
in order to compare with the results of Ref. [11] where
λ = 1010 nm. At low temperatures and polarization P � 0.25
the FFLO states are shown to be more stable than the Sarma
phase, where the latter is characterized by q = 0, 
 �= 0, and
P �= 0. The stable phase region of the FFLO states extends to
temperatures up to kBT /ER ≈ 0.015, albeit over a narrower
polarization interval compared to that obtained in Ref. [11].
This difference may be due to the definition of the phase
separation given in Eq. (15). In the BCS phase, q = 0 and the
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0 0.01 0.02
0

0.1

0.2

0.3
J = 0.07 ER ,  f = 0.4,
U/J = 3.72

T /ER

P

Sarma
PS

FFLO

FIG. 1. (Color online) Phase diagram of a polarized 6Li gas in a
3D optical lattice with λ = 1010 nm and filling factor f = 0.4: FFLO
(yellow), phase separation (red), and Sarma (blue). The Hubbard
parameters are J = 0.07 ER and the attractive on-site attractive
interaction is U/J = 3.72.

number of particles of each species is the same, i.e., P = 0.

There is also the mixed-phase region composed of normal and
superfluid states where a fraction of the fluid is in the normal
phase while the remaining fraction is in the BCS phase [18].

In Fig. 2 we show the phase diagram for the same system but
with a weaker attraction term U/J = 2.64, f = 0.4685, and
λ = 1030 nm. This value for the on-site attraction coincides
with our previous results [16] in 2D as we are interested in
analyzing the effects of dimensionality on these systems. A
decrease in U and a slight increase in J enhances the hopping
between nearest-neighboring sites. The overall effect is to
expand the stability region of the FFLO phase in relation to the
Sarma states compared to the phase diagram of Fig. 1. Note
that the wavelength difference (1010 nm vs 1030 nm) does
not invalidate the previous comparison because the 3D phase
diagram is almost insensitive to small changes in the lattice
parameter [11]. The largest polarization that the system can
support before it becomes a normal fluid is P = 0.124. In this
case, the FFLO states lower the system free energy over quite a
large phase region compared to the corresponding Sarma states
at low temperatures. As the temperature increases, a sliver of
Sarma states provides the minimum of the free energy. If the
temperature is increased even further, the normal polarized
Fermi gas becomes the energetically favored phase. Here, the
phase-separation region and the FFLO phase dominate over
the Sarma states. Furthermore, since the FFLO phase is below
T/ER � 0.012 with ER/kB = 1.5 μK as shown in Fig. 2, this
phase would be observable at temperatures below 18 nK.

In Figs. 3 and 4 we exhibit the variation with the polarization
of the chemical potential of each species, the pair momentum,
and the gap at a fixed temperature kBT = 10−4 ER. Figure 3
shows the results for a 3D system where it remains as a FFLO
superfluid up to P � 0.124. At this value of the polarization the

0 0.004 0.008 0.012
0

0.04

0.08

0.12

0.16

S

J = 0.078 ER ,  f = 0.4685,
U/J = 2.64

T/ER

P

FFLOPS

FIG. 2. (Color online) FFLO (yellow), phase-separation (red),
and Sarma (blue) phases of a polarized 6Li gas in a 3D optical
lattice with λ = 1030 nm and filling factor f = 0.4685. The Hubbard
parameters are J = 0.078 ER and the attractive on-site attractive
interaction is U/J = 2.64.

gap vanishes and therefore it enters a normal phase. In contrast,
Fig. 4 shows the behavior of these quantities in a 2D system
with the same parameters: U, J , and f . It is interesting to note
that even though the variation of μ↑, μ↓, 
, and qx follows
the same trend as in the 3D case, the system remains a FFLO
superfluid up to a somewhat higher value of the polarization,
P � 0.18, in the 2D regime.

0 0.04 0.08 0.12
0

0.01

0.02

0.03

0.04

0.31

0.33

0.35

U/J = 2.64
T = 10-4 ER 
 f = 0.4685

P

qxa/π

Δ/ER

μ↓/ER

μ↑/ER

3D

FIG. 3. Chemical potentials, the pair momentum, and the gap for
an imbalanced fermion gas loaded in a 3D optical lattice at kBT =
10−4 ER .
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0 0.04 0.08 0.12 0.16
0

0.02

0.04

0.06

0.16

0.18

0.2

0.22

U/J = 2.64
T = 10-4 ER 
 f = 0.4685

P

Δ/ER

qxa/π

μ↓/ER

μ↑/ER

2D

FIG. 4. Chemical potentials, the pair momentum, and the gap
for an imbalanced fermion gas loaded in a 2D optical lattice with
kBT = 10−4 ER.

IV. COLLECTIVE STATES

Unlike the population-balanced systems, for which the
spectrum of the collective excitations has been obtained by
linearizing the Anderson-Rickayzen equations [20], by the
Kadanoff and Baym approach [21], and by the Bethe-Salpeter
(BS) formalism [22], the FFLO collective modes have been
studied in (i) a 1D population-unbalanced trapped system [13]
by using the linear response of the equilibrium system by
supplementing the Bogoliubov-de Gennes (BdG) equations
with a self-consistent random phase approximation, (ii) a
1D superconductor [23] by transforming slow deformations
of the order parameter into small corrections to the BdG
Hamiltonian, and (iii) a cold-atom rotated system [24] by
locating the poles of the many-body scattering function.
Here, we present a theory that goes beyond the mean-field
approaches to find the spectrum of the collective excitations in
the presence of the FFLO phase by solving the BS equations
for this spectrum in the general random-phase approximation
in a 3D optical lattice [16].

The spectrum of the collective modes can be obtained from
the poles of the two-particle Green’s function K(1,2; 3,4),
where we use the compact notation 1 = {σ1,r1,t1}, 2 =
{σ2,r2,t2}, . . . , with σi denoting the spin variables, r i the
vector for lattice site i, and ti the time variable. K satisfies
the following Dyson equation:

K = K0 + K0IK, (21)

where K0(1,2; 3,4) is the two-particle free propagator which
is defined by a pair of fully dressed single-particle Green’s
functions,

K0(1,2; 3,4) = G(1; 3)G(4; 2).

The interaction kernel I is given by the functional derivatives
of the mass operator �(1; 2) = �D(1; 2) + �E(1; 2) obtained
from the direct (or Fock) and exchange (or Hartree) parts,

I = δ�
δG

= δ�D

δG
+ δ�E

δG
. The Dyson equation for G is

Ĝ = G0 + G0�Ĝ (22)

and, therefore, the equation for the two-particle Green’s
function (21) must be solved self-consistently with (22). Since
we are interested in the collective energy ω( Q) and momentum
Q excitations which are given by the poles of the two-particle
fully dressed Green’s function, we write the latter using the
spectral representation

K(1,2; 3,4)

=
∑
ωp

e−iωp(u1−u3)

× �Q;σ1,σ2

(
r i1 ,r i2 ; u1 − u2

)
�∗

Q;σ3,σ4

(
r i3 ,r i4 ; u3 − u4

)
iωp − ω( Q)

,

(23)

where �Q;σ1,σ2 (r i1 ,r i2 ; u2 − u1) are the BS amplitudes:

�Q;σ1,σ2

(
r i1 ,r i2 ; u2 − u1

)
= ei Q·(r i1 +r i2 )/2φQ;σ1,σ2

(
r i1 − r i2 ; u1 − u2

)
.

In the momentum-space representation and with equal time
components, u1 = u2, we have

φQ;σ1,σ2

(
r i1 − r i2 ; 0

) = 1

N

∑
k

eik·(r i1 −r i2 )φσ1,σ2 (k, Q). (24)

It is widely accepted that the generalized random phase
is a good approximation for the collective excitations in
a weak-coupling regime, and therefore, it can be used to
separate the solutions of the Dyson and the BS equations. In
this approximation, the single-particle excitations are replaced
with those obtained by diagonalizing the Hartree-Fock (HF)
Hamiltonian, while the collective modes are obtained by
solving the BS equation in which the single-particle Green’s
functions are calculated in HF approximation and the BS
kernel is obtained by summing ladder and bubble diagrams.

Inserting expansion (24) in Eq. (21) using (23),

φq,σ1,σ2 (k, Q) =
∑

σ3,σ4,σ
′
1,σ

′
2

∑
iωm

Gσ1σ3
q (k + Q,iωm + ω( Q))

×Gσ4σ2
q (k,iωm)Iσ3,σ4,σ

′
1,σ

′
2

∑
p

φq,σ ′
1,σ

′
2
( p, Q),

where the kernel represents the direct and exchange interac-
tions:

Iσ1,σ2,σ3,σ4 = I d
σ1,σ2,σ3,σ4

+ I exch
σ1,σ2,σ3,σ4

,

I d
σ1,σ2,σ3,σ4

= −Uδσ1,σ3δσ2,σ4 , (25)

I exch
σ1,σ2,σ3,σ4

= Uδσ1,σ2δσ3,σ4 .

We now introduce the compact notation φ̂q(k, Q) =
[ φq,↓,↑ (k, Q), φq,↑,↓ (k, Q), φq,↑,↑ (k, Q), φq,↓,↓ (k, Q) ]T
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(where T means the transpose vector). Then, the equation for the BS amplitudes becomes

φ̂q(k, Q) = −UD̂
∑

p

φ̂q(p, Q) + UM̂
∑

p

φ̂q(p, Q). (26)

Here, UD̂ and UM̂ represent the direct and exchange interactions, respectively:

D̂ =

⎛⎜⎜⎜⎜⎝
K

(↓,↓,↑,↑)
q (k,Q,iωp), K

(↓,↑,↓,↑)
q (k,Q,iωp) 0 0

K
(↑,↓,↑,↓)
q (k,Q,iωp), K

(↑,↑,↓,↓)
q (k,Q,iωp) 0 0

K
(↑,↓,↑,↑)
q (k,Q,iωp), K

(↑,↑,↓,↑)
q (k,Q,iωp) 0 0

K
(↓,↓,↑,↓)
q (k,Q,iωp), K

(↓,↑,↓,↓)
q (k,Q,iωp) 0 0

⎞⎟⎟⎟⎟⎠ , M̂ =

⎛⎜⎜⎜⎜⎝
0 0 K

(↓,↓,↓,↑)
q (k,Q,iωp), K

(↓,↑,↑,↑)
q (k,Q,iωp)

0 0 K
(↑,↓,↓,↓)
q (k,Q,iωp), K

(↑,↑,↑,↓)
q (k,Q,iωp)

0 0 K
(↑,↓,↓,↑)
q (k,Q,iωp), K

(↑,↑,↑,↑)
q (k,Q,iωp)

0 0 K
(↓,↓,↓,↓)
q (k,Q,iωp), K

(↓,↑,↑,↓)
q (k,Q,iωp)

⎞⎟⎟⎟⎟⎠ .

Here, ωp = (2π/β)p; p = 0,±1,±2, . . . is a Bose frequency, and we have introduced the two-particle propagator
K

(i,j,k,l)
q (k,Q,iωp) = ∑

ωm
G

i,j
q (k + Q; iωp + iωm)Gk,l

q (k; iωm), where i,j,k,l = {↑, ↓}. The condition for the existence of a
nontrivial solution of the BS equations leads to the following secular determinant:

Z =

∣∣∣∣∣∣∣∣∣∣
U−1 + (Iγ,γ − Lγ̃ ,γ̃ ) (Jγ,l − Km,γ̃ ) (Iγ,γ̃ + Lγ,γ̃ ) (Jγ,m + Kl,γ̃ )

(Jγ,l − Km,γ̃ ) U−1 + (Il,l − Lm,m) (Jl,γ̃ + Km,γ ) (Il,m + Ll,m)

(Iγ,γ̃ + Lγ,γ̃ ) (Jl,γ̃ + Km,γ ) −U−1 + (Iγ̃ ,γ̃ − Lγ,γ ) (Jγ̃ ,m − Kγ,l)

(Jγ,m + Kl,γ̃ ) (Il,m + Ll,m) (Jγ̃ ,m − Kγ,l) U−1 + (Im,m − Ll,l)

∣∣∣∣∣∣∣∣∣∣
, (27)

where the following symbols are used:

Ia,b = 1

2N

∑
k

a
q
k,Qb

q
k,Q

[
1 − f (ω−(k,q)) − f (ω+(k + Q,q))

ω + �q(k,Q) − εq(k,Q)
− 1 − f (ω+(k,q)) − f (ω−(k + Q,q))

ω + �q(k,Q) + εq(k,Q)

]
,

Ja,b = 1

2N

∑
k

a
q
k,Qb

q
k,Q

[
1 − f (ω−(k,q)) − f (ω+(k + Q,q))

ω + �q(k,Q) − εq(k,Q)
+ 1 − f (ω+(k,q)) − f (ω−(k + Q,q))

ω + �q(k,Q) + εq(k,Q)

]
,

Ka,b = 1

2N

∑
k

a
q
k,Qb

q
k,Q

[
f (ω−(k,q)) − f (ω−(k + Q,q))

ω + �q(k,Q) + εq(k,Q)
+ f (ω+(k,q)) − f (ω+(k + Q,q))

ω + �q(k,Q) − εq(k,Q)

]
,

La,b = 1

2N

∑
k

a
q
k,Qb

q
k,Q

[
f (ω−(k,q)) − f (ω−(k + Q,q))

ω + �q(k,Q) + εq(k,Q)
− f (ω+(k,q)) − f (ω+(k + Q,q))

ω + �q(k,Q) − εq(k,Q)

]
.

Here, εq(k, Q) = Eq(k + Q) + Eq(k), εq(k, Q) = Eq(k + Q) − Eq(k), �q(k, Q) = ηq(k) − ηq(k + Q), and a and b are one
of the following form factors:

γ
q
k, Q = u

q
ku

q
k+ Q + v

q
kv

q
k+ Q, l

q
k, Q = u

q
ku

q
k+ Q − v

q
kv

q
k+ Q, γ̃

q
k, Q = u

q
kv

q
k+ Q − u

q
k+ Qv

q
k , m

q
k, Q = u

q
kv

q
k+ Q + u

q
k+ Qv

q
k .

According to the well-known Goldstone theorem, as Q → 0,
there exists a solution ω → 0. In this limit all J , K , and L

vanish, and the secular equation reduces to the gap equation
written as 0 = 1 + UIγ=1,γ=1.

For Q �= 0, we use a 3D Gaussian integration in each term
in the secular determinant (27) and search for the solution
when Z = 0. Without loss of generality, we fix the collective
excitation momentum Q in the x direction (Qx,0,0). For small
values of Qx the excitation energy is the linear, low-energy
(Goldstone) mode in the FFLO state corresponding to the
fluctuations of the order parameter phase, but since the FFLO
state breaks both gauge and translational symmetry there are
two distinct modes as shown in Fig. 5. In this case, the
polarization is P = 0.093 883; the filling-fraction parameters
are f↑ = 0.256 248 and f↓ = 0.212 263, and U/J = 2.64
at a temperature kBT /ER = 10−4. The two distinct sound
velocities in the long-wavelength limit are 8.56 and 6.14 mm/s
as shown for the negative and positive wave numbers, respec-
tively. The results from our numerical solutions of the BS

equation also show that the Goldstone modes have rotonlike
minima, ωr = 0.0077ER and ωr = 0.004ER .

In Fig. 5, the rotonlike structure is clearly seen and
the minimum requirements on the flow velocities to be
able to slow down (obtained from the two roton slopes)
are v1 = 0.725 mm/s and v2 = 0.41 mm/s, respectively.
The asymmetry of the sound mode and the roton minima
originates from the fact that the population imbalance is
achieved when either ω+(k + Q,qx) or ω−(k + Q,qx) is
negative in some regions of momentum space, but the regions
are different for positive and negative Qx . The answer to the
question how this asymmetry is related to f↑,f↓ and U/J

requires analytical expressions for the two regions which are
beyond the goals of the present work.

V. CONCLUSIONS

In this paper we have presented the phase diagram and the
collective excitations of an imbalanced system of 6Li atoms
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FIG. 5. Excitation energy for collective modes of a polarized 6Li
gas in a 3D optical lattice with λ = 1030 nm and total filling factor
f = 0.4685. The Hubbard parameters are J = 0.078 ER and the
attractive on-site interaction is U/J = 2.64.

loaded in a cubic optical lattice. Upon minimization of the free
energy, the stability regions of BCS, Sarma, FFLO, and BCS-
normal mixed-state phases were obtained. We also showed that

the FFLO phase can be quite large compared to both the Sarma
and the phase-separation regions when the hopping strength
in the single-band Hubbard model is increased and the on-site
attraction is decreased. The effects of dimensionality were
also analyzed by contrasting the phases of a system loaded in
a 3D optical lattice with an identical, 2D system where we
showed that the lower dimensionality gas can sustain larger
polarizations in the FFLO phase.

We also derived a BS equation for the attractive Hub-
bard Hamiltonian based on the generalized random-phase
approximation to calculate the collective mode spectrum of
the Fermi gas in a deep optical lattice. Using a contact
interaction, an algebraic equation for the BS amplitudes
was obtained. The solution for the excitation spectrum of
collective modes was derived by calculating the roots of
the corresponding secular 4 × 4 determinant. For Q → 0 we
obtained two distinct Goldstone modes and their respective
sound velocities. For shorter wavelengths, we showed that
the Goldstone modes have an asymmetric rotonlike spectrum.
The critical flow velocities in this region were calculated to
show that superfluidity can survive in a polarized fermion gas
in 2D and 3D optical lattices.
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