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Adiabatic preparation of vortex lattices
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By engineering appropriate artificial gauge potentials, a Bose-Einstein condensate (BEC) can be adiabatically
loaded into a current-carrying state that is analogous to a vortex lattice of a rotating uniform Bose gas. We
give two explicit, experimentally feasible protocols by which vortex lattices can be smoothly formed from a
condensate initially at rest. In the first example we show how this can be achieved by adiabatically loading a
uniform BEC into an optical flux lattice, formed from coherent optical coupling of internal states of the atom.
In the second example we study a tight-binding model that is continuously manipulated in parameter space such
that it smoothly transforms into the Harper-Hofstadter model with 1/3 flux per plaquette.
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I. INTRODUCTION

One of the most striking signatures of the quantum coher-
ence of a Bose-Einstein condensate (BEC) is the formation of
a lattice of quantized vortices when the condensate is forced
to rotate [1,2]. In the rotating frame of reference, the particles
experience a Coriolis force which plays the same role as the
Lorentz force on a charged particle in a uniform magnetic field.
Hence, the vortex lattice of a rotating BEC has a similar origin
to the vortex lattice of a superconductor in a magnetic field.
The density of vortex lines is set by the (effective) magnetic
flux density, which is ngy = 2MQ/h for atoms of mass M
rotating at angular frequency 2.

There are two common ways in which to form a vortex
lattice. In one method, commonly used in superconductors, one
starts from the normal (uncondensed) phase already subjected
to the magnetic field. On cooling, the system undergoes
a phase transition directly into the superfluid (condensed)
phase with a vortex lattice of nonzero density ng # 0. In
another method, commonly used for liquid helium [3] and
for dilute atomic gases, the system is first cooled into the
condensed phase in the absence of any effective magnetic
field, ny = 0. The effective magnetic field is then gradually
increased, for example, by imposing a rotating deformation.
As the field strength increases, vortices must enter from outside
the condensate [4-7]. For atomic BECs, this is achieved via
surface wave instabilities and involves an interesting and
complex dynamical evolution [8-10], including periods in
which the vortex lattice is highly disordered and far from
equilibrium. Nevertheless, by the transfer of energy from the
disordered vortex lattice into phonon modes (i.e., heating of the
BEC) or by additional evaporative cooling, the system can be
stabilized into ordered arrays of vortices. This has been shown
in various experiments, using rotation or Raman coupling to
generate the effective magnetic flux density [4-6,11].

In this paper we propose an alternative route to creating
a dense vortex lattice in an atomic BEC: by adiabatic
manipulation of optical lattice potentials with artificial gauge
fields. Recently, new ways to create strong magnetic fields
for cold atoms have been put forward, and are now within
reach of experiments [12-23]. These methods lead to very
high flux densities, about two orders of magnitude larger than
previous experimental works. Thus, following the standard
approach for cold gases and increasing the flux density from
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ng =0 would require a very large number of vortices to
enter the system, potentially driving the system very far from
equilibrium and requiring significant cooling to maintain BEC.
Our proposal shows that these very dense vortex arrays can
in fact be formed adiabatically, maintaining the system at
ultracold temperatures without requiring any further cooling.

We describe two generic experimental protocols by which
a vortex lattice can be adiabatically created from a uniform
BEC. The first setup involves loading a BEC into an optical
flux lattice [14—17], based on the coherent (Rabi) coupling
of internal atomic states. We describe the density and current
patterns in the system following loading, and show that these
are as expected for the dense vortex lattice. In the second part
of the paper, we turn to consider the formation of vortex lattices
in the Harper-Hofstadter model [24,25] for atoms moving on a
tight-binding lattice. We present an experimental protocol by
which the uniform BEC for vanishing flux per plaquette can be
adiabatically transformed into the vortex-lattice ground state
of a lattice with 1/3 flux per plaquette.

II. OPTICAL FLUX LATTICE

We consider bosonic atoms with two internal states, which
we label by the (pseudo)spin 1 and |. The atoms are
subjected to coherent optical fields which, in the rotating
wave approximation, are described by the potential V (r) =
Zi:x.m A;(r)6; with &, , . the Pauli matrices acting on the
internal states. The amplitudes A;(r) describe the strengths of
the local optical coupling of the two internal levels A, , and
of a state-dependent potential A,. Various implementations of
such couplings are possible, using electronic states, hyperfine
levels, or even vibrational states [26,27]. When the optical
coupling is dominant (compared to the kinetic energy EL
defined below), the internal state of the atom is restricted
to the lowest energy eigenstate of V, which we denote
by the dressed state |0;) = a,|1) + B¢|{). In this limit, the
atom moves through space adiabatically with overall wave
function |W(r)) = ¥(r)|0;). The Berry curvature associated
with spatial variations of the dressed state |0.) causes the
motion of the atom, as described by the positional wave
function y¥(r), to experience an effective magnetic field [26].

An optical flux lattice is a periodic configuration of the
optical fields which cause the atom to experience a nonzero
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FIG. 1. (Color online) A cut through the dispersion of the lowest
band in the optical flux lattice along k, with k, = 0 (passing through
the minima) for lattice depths V,/EL = 0,2,4 (top). The dressed
states of the lowest band are superpositions of spin-1 (shown in blue)
and spin-|, (red) states. The dispersion y axis has units of E;. The
dispersion (bottom) shown here is for a lattice depth of Vy/E = 4.

number of flux quanta, Ny # 0, per unit cell [14]. We focus on
a simple, but representative, example of an optical flux lattice,
introduced in Ref. [14]:

V(x,y) = Vo[6 cos(k; - 1) + &, cos(k; - r) + 6, cos(ks - )],
(1)

with k| = 2(2/+/3,0), ko = Z(1/+/3,1), and k3 = k> — k;
defining three reciprocal lattice vectors in the xy plane. In real
space, this lattice has triangular symmetry, with lattice vectors
a; =a(0,1)and a, = a(\/§/2, 1/2). Within this unit cell, the
lowest energy dressed state experiences Ny = 2 flux quanta.
Thus, one expects that a BEC in this lowest energy dressed
state will exhibit Ny = 2 vortices per unit cell.

The energy bands follow from the eigenstates of the
Hamiltonian including the kinetic energy, H = %]Alz + V(r).
(We focus on the motion in the xy plane; motion normal to this
plane, along z, remains free and in the Bose-condensed phases
we describe, the atoms will simply condense in the p, =0
state.) The band structure depends on the lattice depth V,/EL
where Ey = h?7?/(2Ma?). A cut through the energy bands is
shown in Fig. 1 (top) for three values of Vy/Ey. At all lattice
depths, the single-particle states have two degenerate minima.
This degeneracy is a consequence of the discrete symmetry
operations [14]

(a1/2)-V

7,\11 = G.e fg = 6xe(32/2)'v 2)

involving translations by a;/2 and a,/2 combined with spin
rotations, for which 7y 7 = — 7> 7). Since [f"l,fzz] = 0, energy
eigenstates can be made simultaneous eigenfunctions of 7} and
Tzz, so the magnetic unit cell can be chosen to have sides a; /2
and a,, containing Ny = 1 flux quantum. This leads to the
magnetic Brillouin zone in Fig. 1 (bottom), with a reciprocal
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lattice spanned by 2k; and ks. The states of minimum kinetic
energy, which we label &, are located atky = 0 and k_ = k;.
These continuously evolve into the eigenstates of 6, with zero
kinetic energy as Vy/Ey — 0 [28].

This continuous evolution of the band structure with
varying Vy/Ep allows the adiabatic preparation of a BEC
in the minima of the lowest band of the optical flux lattice.
We consider a protocol where the lattice lasers are ramped
up slowly from Vj = 0, thereby loading a weakly interacting
BEC into the lattice. As the Rabi coupling is mixing the spin
degrees of the two-component BEC, for adiabaticity, we have
to ensure that as the lattice is turned on, the BEC remains in the
mean-field ground state. Consider, first, noninteracting bosons
in an ideal infinite (untrapped) system. Let us start with a BEC
of spin-1 atoms, that is with condensate wave function

1
¢i=\/n_o<0), 3)

where ng = N /A is the number of atoms N per area A. Now,
increasing Vj/Er from zero will cause the condensate wave
function to evolve continuously into that of the k, state,
thereby adiabatically loading the atoms into a BEC in this
minimum. Similarly, a BEC in any initial superposition of
spin 1 and spin | will evolve into a BEC in a superposition
state of the degenerate minima at k. For a finite system in a
trap, when Vj is nonzero the trap potential can cause scattering
of particles between the two degenerate minima. Then, other
considerations are required in order to ensure adiabatic loading
of the BEC. One way to achieve adiabaticity is to detune
the laser(s) providing the Rabi coupling from resonance by
an amount §. This adds a spatially uniform term —(%5/2)6,
to the optical coupling (1) which breaks the degeneracy
of the two minima. The lowest energy band has a single
nondegenerate minimum for all lattice depths, which may be
adiabatically loaded without sensitivity to scattering processes.
Alternatively, one can make use of the fact that interparticle
interactions can lift the degeneracy of BECs with two internal
states. Specifically, we consider the effects of state-dependent
interactions, for which the mean-field interaction energy is
given by

Ep = / 4’ %n%(r) n %ni(r) +grm@n ), @)
where n4 | (r) are the spin-1 / | densities of the condensate
wave functions and g44/g, (g¢,) are the intra- (inter-) species
interactions. Under the assumption of weak interactions, the
condensate wave function is a linear combination of the Bloch
states of the two degenerate minima, =+. The relative sizes of
the state-dependent interactions determine the spin state of the
lowest energy BEC. For simplicity, consider the regime where

814 > 8y > 811 > 0. o)

Then, for Vjy = 0 the lowest energy BEC involves a condensate
with only [1), as in Eq. (3). This condensate wave function
minimizes the interaction energy of the free Bose gas.
As above, the condensed state continuously evolves with
increasing Vp/Ep, remaining the unique mean-field ground
state of the lattice potential.

In Fig. 2 we show the condensate wave function formed
by adiabatically loading a BEC into the +-minimum, to
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FIG. 2. (Color online) (a) Total density and current density for the
condensate wave function described in the main text at lattice depth
Vo/EL = 4 [light (dark) colors correspond to high (low) density].
The large black arrows denote the Bravais lattice vectors aj,a, of
the flux lattice. In the deep lattice limit, the atoms are localized at
the lattice sites marked by the red dots. (b) Density of the analog
condensate wave function for the corresponding tight-binding lattice
model (large blue dots indicate high density). The arrows indicate the
direction of mass currents (all currents have the same magnitude).

a lattice depth of Vy/Ep = 4. This figure shows both the
particle density (shading) and the current density (arrows). An
inspection of the pattern of densities and currents shows that
these have the expected features of a vortex lattice. In the unit
cell of sides a; , the lowest energy dressed state experiences
Ny =2 flux quanta, so we expect that there should appear
two quantized vortices. Indeed, clear signatures of these two
vortices appear: there are two points around which the current
circulates (in an anticlockwise sense) and at the center of which
the particle density falls to a small value. There are also two
stagnation points, around which the current density circulates
in a clockwise sense. These are required by the periodicity of
the flow field (in the rest frame of the vortex lattice there is no
net flow), so they appear also for a rotating superfluid. They
are not quantized vortices (or antivortices) since the particle
density remains large at the centers of these points, so the
velocity field is regular and has zero net circulation around
these points.

It is clear from Fig. 2 that the vortices do not form
a triangular lattice, familiar for rotating BECs. Rather, the
vortices are arranged in a rectangular array. This is due
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to the fact that the dominant energy is the lattice potential,
so the vortices arrange in order to minimize the energy of
the optical coupling (1). The rectangular arrangement of the
vortices leads to a particle density with a stripelike variation in
the direction perpendicular to the vector a;. This reflects the
fact that, when condensed in the Bloch wave function at the
+-minimum, the atoms have large magnetization along the z
direction. The energy of the optical coupling (1) is minimized
by the pinning of the density wave with density maxima along
lines where cos(kz - r) = —1.

Since the formation of the vortex is adiabatic, as the lattice
depth is ramped up, the density modulation and current pattern
both grow smoothly and continuously, starting from uniform
density and vanishing current for Vy = 0. To quantify the mass
flow in the flux lattice, we study the (gauge invariant) total mass
current density

Jr) = jp (r) £ j (r), (6)

where j;,, (r) =h/M Im[wr/l(r)arl//TN(r)]. To demonstrate
that currents smoothly increase from zero, we plot as a measure
of flow the line integral of j along the edges of the contour C
(see the inset to Fig. 3):

[ = f dr - j(r). 7)
C

As can be seen in Fig. 3, the currents increase continuously
from zero as the lattice depth is increased, thus demonstrating
the adiabatic creation of a vortex lattice.

How can a vortex lattice of fixed density (Ny = 2 per unit
cell) build up continuously? This might seem impossible. After
all, recall that a quantized vortex is associated with a singularity
at the vortex core (pointlike in two-dimensions or linelike in
three dimensions) at which the condensate density vanishes.
How can one smoothly transform from a uniform BEC into
a vortex lattice with zeros in the density? The resolution lies
in the fact that it is only for a one-component superfluid that
the vortex core need have vanishing density. For a two- (or
more) component superfluid it is possible for the particle
density to remain nonzero everywhere, in so-called “coreless
vortices” [29-31]. For the optical flux lattice, in general, the
condensate has a two-component wave function, which we
may write as |W(r)) = Yo(r)|0y) + ¥ (r)|1;) in terms of the

1 ,,,,,,,, ——

I/1y
[\®] W

0 2 4 6 8 10
Vo/EL

FIG. 3. (Color online) As the depth of this optical flux lattice is
ramped up, currents appear smoothly in the condensate. We quantify
the mass flow by calculating the line integral I [Eq. (7)] over total
current density j = j; + j, along the contour shown in the inset. We
have normalized I with Iy = hng/M.
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two dressed states (|0;) and |1,)). For any finite lattice depth
Vo/EL < oo this two-component condensate has coreless
vortices, so the density does not vanish at the vortex core. (In
Fig.2(a), Vy/ EL = 4 is finite so, although strongly suppressed,
the density remains nonzero at the vortex cores.) As the lattice
depth Vy/EL is increased, the density suppression at the
vortex core gradually develops. In the limit V/Ep > 1 for
which |W(r)) = o(r)|0;), the condensate is a one-component
function vy(r) which must have zeros at the vortex core.

In addition to the developing vortex core, in the limit
Vo/EL > 1 the scalar potential experienced by the lowest
energy dressed state |0;) causes the atoms to become tightly
confined to lattice sites of a triangular lattice (with spacings
a;2/2). In this limit, the optical flux lattice maps onto
a triangular tight-binding lattice model with 1/4 flux per
plaquette [14]. The tight-binding limit of the condensate wave
function in the optical flux lattice is shown in Fig. 2(b). The
vortices reside along rows of reduced density as marked by the
arrows with one vortex per four lattice sites.

III. TIGHT-BINDING MODEL

We will now describe a complementary protocol for
adiabatically transforming a condensate in a tight-binding
lattice into a vortex lattice.

Consider a condensate subjected to a deep optical lattice
(without any applied artificial gauge potentials), in such a way
that the atomic motion is well described by hopping between
states localized at the lattice sites. As we will show below, by
turning on appropriate photon assisted hoppings [32] between
nearest neighbor lattice sites with the geometry of Fig. 4,
the mean-field ground state can be smoothly evolved into the
ground state of the Harper-Hofstadter model. We will focus on
a square lattice with 1/3 flux per plaquette. As a consequence
of magnetic translation invariance, the single-particle states for
alattice with p/q flux per plaquette are g-fold degenerate. The
mean-field condensate wave function for a weakly interacting
BEC is a linear superposition of the Bloch states at the g = 3
minima of the dispersion relation. The (infinite) degeneracy
of all different superposition states is lifted by interactions.

(a) (b)
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FIG. 4. (Color online) (a) Illustration of hopping matrix elements
for the tight-binding lattice model in the gauge described in the text.
The area enclosed by the red dashed line is a unit cell containing three
lattice sites. (b) Flux per plaquette for the lattice shown in (a). When
o = 21 /3, the flux through each plaquette is 1/3 of an elementary
flux quantum.
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FIG. 5. (Color online) (a) When adiabatically ramping with the
hopping matrix elements of Eq. (10), the angle 6 selects between
different translations of the vortex lattice. To be adiabatic, coming
from » = 1 (circle), one has to avoid crossing the dashed lines when
approaching r = 0 (center) as shown, for example, by the solid
red path. (b) Normalized average current for the square lattice as
a function of 1 — r along 8 = 0.

We assume that interactions are sufficiently weak that the
atoms only occupy states in the three degenerate minima.
Minimizing a mean-field on-site repulsive interaction Ej, =
% > . ni(n; — 1) favors a condensate with density that is as
uniform as possible, giving rise to a ground state with rows
of vortices along the diagonal of the square lattice with one
vortex per three lattice sites [33—35]. The infinite degeneracy
is lifted, and replaced by a residual sixfold degeneracy, arising
from transformations of the vortex lattice configuration by
translations and rotations by 90° [36].

Our goal is to describe a protocol by which smooth vari-
ations of experimentally controlled parameters adiabatically
transform a condensate in the lattice without gauge potential
into the mean-field ground states shown in Fig. 5(a). Care is
required to ensure that the adiabatic route takes the system
directly into one of the six (degenerate) ground states that
are favored by repulsive interaction. We achieve this by
following a route which breaks translational symmetry in such
a way that the system is guided directly into a chosen vortex
lattice configuration. To this end, we consider a square lattice
tight-binding model with Hamiltonian

H==>" Ky} tnsim—KY al anme +He., 8)

n,m n,m

where afﬂn are bosonic destruction (creation) operators with
the integers (n,m) labeling the site in the (x,y) directions,
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respectively. For flux 1/3 per plaquette, the hopping matrix
elements along x can be chosen as

K, m+n=0,3,...
K,?.mz Ke 23 m4n=14,... )
Ke™3 m4+n=205,...,

with real K > 0 setting also the (uniform) hopping matrix
elements along the y axis. This particular gauge is the most
straightforward to implement experimentally when using pho-
ton assisted tunneling as described in Refs. [18,20]. Additional
control of the tunneling matrix elements can be achieved
by combining this with a second source of photon-assisted
hopping, but with a spatially uniform phase pattern [37], which
can be achieved by shaking the lattice along the x axis [38] or
alternatively by lattice modulation. The combined effects lead
to net tunneling matrix elements

Kyw=Ker+(1 -1k, (10)

where 6 is the relative phase of the two drives.

For r = 1 this is simply the nearest neighbor tight-binding
model on a square lattice with no net flux. (The phase 6
can be removed by a gauge transformation.) The ground
state is a simple condensate without any flow. Reducing
the control parameter to » = 0 smoothly interpolates to the
Harper-Hofstadter lattice model with flux 1/3 per plaquette
for which the ground state is a vortex lattice. Crucially,
trajectories can be found for r in the range 1 > r > 0,
such that there is always a unique many-body ground state,
and the system is adiabatically transferred into a stable
vortex lattice phase at r = 0 with high fidelity. At the final
point, » = 0, the many-body state is (sixfold) degenerate,
corresponding to the different translations/rotations of the
vortex lattice. However energy barriers of order U per par-
ticle from interactions exist between these states, preventing
the formation of domains. Depending on the trajectory, the
system can be prepared in different translations of the vortex
lattice. For example, if we take 6 = 0, the hopping matrix
elements take the form

K, m+n=20,3,...

Ke ™ m4n=1,4,... an
Keé® m+n=25,...,

with K'/K = /14+3r(1 —r),a« = arg[r + (1 — r)et? /3],

To demonstrate adiabaticity, in Fig. 5(b) we show the sum
of the magnitude of the currents J;; between lattice sites i and
J per bond,

Kn,m =

] =
N bonds

> 11, (12)
(i,))

as a function of 1 — r. (As above, we assume that interactions
are sufficiently weak that the atoms only occupy the lowest
energy single-particle state, which is nondegenerate forr # 0.)
In the lattice with uniform flux (i.e., r = 0), these vortex lattice
states have J;; = £(3K /2)ng. along any bond with nonzero
current (here ngj. denotes the average number of particles per
lattice site). We normalized J in Fig. 5(b) by its value atr = 0,
Jo = ngie K /2. In the more general case, while single-particle
states are always nondegenerate, different choices of the
relative phase 6 will load into one of the three ground states
of the model with uniform flux shown in Fig. 5(a) [39]. The
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loading process is adiabatic as long as the trajectory in (7,0)
space avoids crossing the lines along 60 = 2n/6,w, — 27 /6
with 0 <r < 1/2 where the lowest energy single-particle
states change discontinuously in k space. These ground states,
shown in Fig. 5(a), respect the (reduced) translation symmetry
of the unit cell in Fig. 4(a) and are related by translations by
one lattice site.

IV. CONCLUSION

We have described two protocols by which artificial gauge
potentials can be used to load cold bosonic atoms adiabatically
into a vortex lattice. In essence our strategy is to find
ways by which the single-particle band structure interpolates
between that of a free particle (or simple, nontopological, band
structure) and that of a particle in an effective magnetic field.
A BEC formed in the minimum of this band can then be
adiabatically transformed into a dense vortex lattice. As we
have emphasized, additional care is required when the final
vortex lattice breaks a symmetry of the system (e.g., spin
rotation, or translation). Then, to prevent domain formation
and ensure adiabatic loading, a route must be found which
transfers the BEC directly into one of these symmetry-broken
phases. We have shown how this can be done both for the
optical flux lattice (by lifting the spin degeneracy) and for
the tight-binding model (by using a route which breaks the
translational symmetry).

If loaded successfully into the desired ground-state vortex
lattice configurations, time-of-flight expansion after rapidly
turning off the optical lattice will reveal a pure condensate
in a single momentum state. In the first example, this will
result in peaks at momenta (2ik; + jks)at/M (with i,j =
0,£1,%£2,...) in the total density n(r) = n4(r) + n (r) after
expansion time ¢. In general, time-of-flight images of cold
atoms in artificial gauge potentials will be gauge dependent
[6,18,40]. Observing a condensate in a single momentum state
(rather than a linear combination of the minima) indicates
that the condensate has the same translational symmetries
as the implemented gauge. For example for the protocol
for loading into the tight-binding lattice Eq. (9), finding a
condensate in one of the three degenerate minima of the
dispersion means that one of the three vortex lattices shown in
Fig. 5(a) was realized. The other three degenerate mean-field
ground states are rotated by 90° and have a different unit
cell than the one shown in Fig. 4(a), and therefore are
superpositions of the single-particle states at the minima of the
dispersion in this particular gauge. Other detection techniques
would naturally rely on detecting the density wave associated
with the vortex lattice, which could be detected by in-situ
probes such as as light scattering or single site resolution
imaging [41-44].

Finally, we note that our protocols will also help to
reach interesting regimes of strong correlations for bosons
at high magnetic flux density. By first loading adiabatically
into a dense vortex lattice at weak interaction strength and
subsequently ramping to strong interactions, it may be possible
to observe novel strongly correlated phases, e.g., fractional
quantum Hall states of bosons in quasi-2D systems [2], which
typically require low entropies.
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