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A correlated many-body calculation is presented to characterize the Shannon information entropy of trapped
interacting bosons. We reformulate the one-body Shannon information entropy in terms of the one-body
probability density. The minimum limit of the entropy uncertainty relation is approached by making N

very small in our numerical work. We examine the effect of correlations in the calculation of information
entropy. Comparison with the mean-field result shows that the correlated basis function is indeed required
to characterize the important features of the information entropies. We also accurately calculate the point of
critical instability of an attractive BEC, which is in close agreement with the experimental value. Next, we
calculate two-body entropies in position and momentum spaces and study quantum correlations in the attractive
BEC.
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I. INTRODUCTION

In recent years, the information theoretic methods play
an interesting and important role in the study of quantum
mechanical systems such as nuclei, atomic cluster, confined
atoms, etc. [1–6]. The extraction of probability densities in
both the position and momentum spaces and the associated
calculation of information entropy provide some additional
relevant information of the system. Recent experimental
achievement of Bose-Einstein condensation (BEC) in the
dilute alkali atomic vapor [7–9] opens a new avenue of research
in this direction. The system of ultracold trapped atoms
obey Bose-Einstein statistics and a finite fraction of particles
condense to the ground state below the critical temperature.
The accumulated atoms in the single state can be described
as a single quantum particle having nonlinear interaction.
The presence of an external harmonic trapping potential
allows for measurement both in the coordinate and momentum
spaces. The interparticle interaction and the confining potential
strongly influence the static and dynamic properties of the
condensate. Correlations among the atoms in the external
trap also play a key role even though the laboratory BEC
is extremely dilute.

In this paper, we present the results of numerical studies of
Shannon information entropy of ultracold trapped interacting
bosons in both the coordinate and momentum spaces. We adopt
a two-body correlated basis function together with the realistic
van der Waals potential for the description of the condensate
at zero temperature. From the condensate wave function we
calculate the one-body density R1(�rk) and two-body density
function R2(rij ), where �rk is the distance of the kth boson from
the center of mass of the condensate and rij is the relative
separation of the (ij ) pair of bosons. The Shannon entropy in
position space is defined as

Sr = −
∫

ρ(�r) ln ρ(�r)d�r, (1)

where ρ(�r) is either the one body or the pair density in the
coordinate space. The momentum space Shannon entropy is
described in similar way as

Sp = −
∫

φ( �p) ln φ( �p)d �p, (2)

where φ( �p) represents the one-body or pair-momentum
density. ρ(�r) and φ( �p) are normalized to unity. Throughout
this paper, we adopt the units, referred to as the oscillator
units (o.u.), in which length and energy are expressed in

units of aho =
√

h̄
mω

and h̄ω, respectively, ω being trapping
frequency. As densities are measured in this unit, all the
entropy values presented here are also in o.u. The Shannon
information entropies basically measure the uncertainty of
the probability distribution in the respective spaces. Using
the position and momentum space entropies (Sr and Sp,
respectively), Bialynicki-Birula and Mycielski (BBM) derived
a stronger version of the Heisenberg uncertainty relation [10].
For a three-dimensional system, the total entropic sum has the
form

S = Sr + Sp � 3[1 + ln (π )] � 6.434. (3)

This means that the conjugate position and momentum
space information entropies Sr and Sp maintain an inverse
relationship with each other. It signifies that when a system
is strongly localized in position space, the corresponding
information entropy and uncertainty in position space de-
creases. The corresponding momentum distribution becomes
delocalized, therefore the information entropy and uncertainty
in momentum space increases. It is important to note that
the BBM inequality [Eq. (3)] presents a lower bound and the
equality is maintained for a Gaussian wave function.

It is to be noted that information theory of correlated
bosons in the external trap has been studied using uncorrelated
mean-field theory [11]. The universal expression for the
total entropy in different quantum systems takes the form
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S = a + b ln N , where a and b are the parameters that depend
on the given system [2]. Although the choice of our system
is quite similar to that of earlier studies, but the motivation of
our present work is quite different and is as follows. First: As
the interacting bosons in the external trap are correlated, the
uncorrelated mean-field Gross-Pitaevskii (GP) equation may
not reveal the correct information and characteristic features
in the measures of Shannon entropy. In the GP equation, the
interparticle interaction is taken as a contact interaction, whose
strength is given by a single parameter as , the s-wave scattering
length. However, the importance of a realistic, finite-range
interaction has been pointed out [12,13]. Hence, the presence
of a long attractive tail in a realistic interaction, such as the
van der Waal interaction will have important contributions to
correlation function and will provide more realistic aspects.
Thus, our present calculation, keeping all possible two-body
correlations and realistic interatomic interaction will provide
more accurate results than those obtained from GP and we may
observe new features in the calculation of Shannon entropy and
correlation properties of the confined bosons. Second: For the
repulsive condensate, as is positive, therefore with increase in
as or increase in number of bosons N , the effective interaction
parameter Nas increases. Thus, for the repulsive condensate,
with increase in Nas the system becomes less correlated, as the
central density decreases. However, for attractive condensate
as < 0, the trend is in the opposite direction. It is well known
that for attractive BEC, the condensate collapses when N

becomes equal to some critical number Ncr . Thus, when
N is close to but less than Ncr , the condensate is highly
correlated and for N � Ncr the condensate collapses. This is
a very crucial point where the study of information entropy
may provide some new characteristic features of Shannon
entropy, and from that we may get very accurate value of
the stability factor which is experimentally known [8]. This is
beyond the scope of study of the mean-field GP equation. We
will also introduce correlation features to study the correlation
properties of the attractive condensate.

This paper is organized as follows. In Sec. II, we briefly
review our theoretical approach. In Sec. III, we present our
calculation and results of information entropy of the one-body
density, entropy uncertainty relation (EUR), and the universal
property of total entropy. This section also presents results of
pair correlation and Shannon information entropy of two-body
density and statistical correlation function. Finally, in Sec. IV,
we draw our conclusions.

II. METHODOLOGY

A. Many-body calculation with correlated
potential harmonic basis

In this work, we have employed our newly developed
correlated potential harmonic expansion method (CPHEM)
which we have successfully used in our earlier studies of
different properties of condensate [14–18]. Here, we briefly
describe the method. Details can be found in Refs. [19–21].

We consider a system of N identical bosons interacting
through a two-body potential V (�rij ) = V (�ri − �rj ) and con-
fined in an external harmonic potential of frequency ω. The
time-independent quantum many-body Schrödinger equation

is given by[
− h̄2

2m

N∑
i=1

∇2
i +

N∑
i=1

Vtrap(�ri) +
N∑

i,j>i

V (�ri − �rj ) − E

]

×�(�r1, . . . ,�rN ) = 0, (4)

where m is the mass of each boson, E the energy of the
condensate, and the trapping potential Vtrap(�ri) = 1

2mω2r2
i . We

can eliminate the center-of-mass motion by using the standard
Jacobi coordinates [22–24] defined as

�ζi =
√

2i

i + 1

(
�ri+1 − 1

i

i∑
j=1

�rj

)
(i = 1, . . . ,N ). (5)

The center-of-mass coordinate is �R = 1
N

∑N
i=1 �ri . The relative

motion of the bosons is given by[
−h̄2

m

N∑
i=1

∇2
ζi

+ Vtrap + Vint(�ζ1, . . . ,�ζN ) − ER

]

×�(�ζ1, . . . ,�ζN ) = 0, (6)

where N = N − 1. Here, Vtrap is the effective trapping poten-
tial and Vint(�ζ1, . . . ,�ζN ) is the sum of all pairwise interactions
expressed in terms of Jacobi coordinates. ER(= E − 3

2h̄ω) is
the relative energy of the system.

Hyperspherical harmonic expansion method (HHEM) is an
ab initio many-body tool to solve the many-body Schrödinger
equation. The hyperspherical variables are constituted by

the hyperradius r =
√∑N

i=1 ζ 2
i and (3N − 1) hyperangular

variables which are comprised of 2N spherical polar angles
(ϑj ,ϕj ; j = 1, . . . ,N ) associated with N Jacobi vectors and
(N − 1) hyperangles (φ2,φ3, . . . ,φN ) giving their relative
lengths. The total wave function is expanded in the complete
set of hyperspherical harmonic (HH) functions [23]. Therefore,
HHEM is a complete many-body approach and includes all
possible correlations. However, there are serious difficulties for
a large number of particles. The calculation of potential matrix
elements of all pairwise potentials becomes a formidable
task and the convergence rate of the hyperspherical harmonic
expansion becomes extremely slow in the large particle
limit, due to rapidly increasing degeneracy of the basis.
For these reasons, HHEM can be used for the three-body
systems only and it is not suitable for the description of the
experimental BEC containing a few thousand to a few million
particles. However, for the achievement of a stable BEC in
the laboratory, the atomic cloud must be extremely dilute
physically, so as to preclude three-body collisions, which lead
to molecule formation and consequent depletion [25]. Hence,
the interparticle separation must be very large compared to
the range of the effective potential (which is |as |). Thus,
n|as |3 � 1, where n is the number density ∼ N/(aho)3, with
aho being the oscillator length of the trap. In the original
JILA experiment, as/aho = 0.00433 and this condition is well
satisfied by N up to ∼106. As a consequence, three- and higher-
body correlations are not relevant in the condensate wave
function �. Now, as only two-body interactions are present,
� can be decomposed into Faddeev components. Since only
two-body correlations are relevant, the Faddeev component
corresponding to the (ij )-interacting pair is a function of
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�rij and r only and can be expanded in the subset of HH,
called the potential harmonics (PH) subset, which is sufficient
for the expansion of V (�rij ), as a function of hyperspherical
variables [19,20]. This leads to a dramatic simplification: For
any N , the active degrees of freedom is effectively reduced
to only four, viz., �rij and r for each of the N (N − 1)/2
Faddeev components (the remaining irrelevant degrees of
freedom in the dilute condensate being frozen). Since � is
decomposed into all interacting pair Faddeev components, all
two-body correlations are included. The emerging picture for a
given Faddeev component is that when two particles interact,
the rest of the particles in the condensate behave simply as
inert spectators. The fact that only a few degrees of freedom
are relevant is consistent with the collective motion of the
condensate as a single quantum entity.

Thus, we decompose the total wave function � into two-
body Faddeev components for all interacting pairs as

� =
N∑

i,j>i

φij (�rij ,r). (7)

As we discussed earlier, due to the presence of two-body cor-
relations only, φij is a function of interacting-pair separation
(�rij ) and the global hyperradius r only. φij is symmetric under
Pij for bosons and satisfies the Faddeev equation

[T + Vtrap − ER]φij = −V (�rij )
N∑

k,l>k

φkl, (8)

where T = − h̄2

m

∑N
i=1∇2

ζi
is the total kinetic energy. Applying

the operator
∑

i,j>i on both sides of Eq. (8), we get back the
original Schrödinger equation. In this approach, we assume
that when the (ij ) pair interacts, the rest of the bosons are inert
spectators. Thus, the total hyperangular momentum quantum
number as also the orbital angular momentum of the whole
system is contributed by the interacting pair only. Next, we
expand φij in the PH subset

φij (�rij ,r) = r−( 3N−1
2 )

∑
K

P lm
2K+l

(



ij

N
)
ul

K (r). (9)



ij

N denotes the full set of hyperangles in the 3N -dimensional
space for the (ij ) partition, in which the (ij ) pair interacts and
P lm

2K+l(

ij

N ) is a member of the PH basis. It has an analytic
expression [22] given by

P l,m
2K+l

(



(ij )
N

) = Ylm(ωij ) (N )P
l,0
2K+l(φ)Y0(D − 3),

(10)
D = 3N

Y0(D − 3) is the HH of order zero in the (3N − 3) dimensional
space spanned by {�ζ1, . . . ,�ζN−1} Jacobi vectors; φ is the
hyperangle given by rij = r cos φ. For the remaining (N − 1)
noninteracting bosons, we define a hyperradius as

ρij =
√√√√N−1∑

k=1

ζ 2
k = r sin φ (11)

so that r2 = r2
ij + ρ2

ij . The relevant set of (3N − 1) quantum
numbers of HH is now reduced to only three and the remaining

ones vanish:

l1 = l2 = . . . = lN−1 = 0, (12)

m1 = m2 = . . . = mN−1 = 0, (13)

n2 = n3 = . . . = nN−1 = 0, (14)

and for the interacting pair lN = l, mN = m, and nN = K .
Thus, the 3N -dimensional Schrödinger equation reduces
effectively to a four-dimensional equation with the relevant
set of quantum numbers: principal quantum number n, orbital
angular momentum quantum number l, azimuthal quantum
number m, and grand orbital quantum number 2K + l for any
N . Substituting Eq. (9) into (8) and projecting on a particular
PH, a set of coupled differential equations (CDE) for the partial
wave ul

K (r) is obtained as[
−h̄2

m

d2

dr2
+ Vtrap(r) + h̄2

mr2
{L(L + 1)

+ 4K(K + α + β + 1)} − ER

]
UKl(r)

+
∑
K ′

fKlVKK ′ (r)fK ′lUK ′l(r) = 0, (15)

where L = l + 3N−6
2 , UKl = fKlu

l
K (r), α = 3N−8

2 , and β =
l + 1/2. fKl is a constant and represents the overlap of the PH
for interacting partition with the sum of PHs corresponding
to all partitions [24]. The potential matrix element VKK ′ (r) is
given by

VKK ′ (r) =
∫

P lm∗
2K+l

(



ij

N
)
V (rij )P lm

2K ′+1

(



ij

N
)
d


ij

N . (16)

B. Introduction of a short-range correlation function

As the two-body interaction is represented by a contact
interaction, whose strength is given by the s-wave scatter-
ing length as only, the mean-field GP equation completely
disregards the detailed structure of the interatomic potential.
The sign of as determines nature of the interaction: a positive
(negative) value of as represents the repulsive (attractive)
interaction. But, in realistic interatomic interactions, such as
the van der Waals potential, there is always an attractive −C6

r6
ij

type tail part at large separations and a strong repulsion at short
separations [26]. Depending on the nature of these two parts,
as can either be positive or negative. In an earlier many-body
calculation [27], we observed an appreciable effect of shape
dependence of the interatomic interaction, for larger values of
N , even for the dilute condensate. Moreover, in the mean-field
GP equation for an attractive condensate, the Hamiltonian is
unbound from below and an approximate solution is obtained
only in the metastable region. So, in our present many-body
calculation, we use a realistic interatomic potential, viz., the
van der Waals (vdW) potential with a hard core [26].

The strong short-range repulsion of the realistic potential
produces a short-range correlation in the (ij ) interacting pair
Faddeev component φij , which forbids the interacting pair to
come too close. To include the effect of this strong repulsion,
we introduce an additional short-range correlation function
(SRCF) η(rij ) in the PH expansion basis for φij . The SRCF
is obtained as the zero-energy solution of the interacting pair
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Schrödinger equation

−h̄2

m

1

r2
ij

d

drij

(
r2
ij

dη(rij )

drij

)
+ V (rij )η(rij ) = 0. (17)

The asymptotic form of η(rij ) quickly attains C(1 − as/rij ),
from which as is calculated [26]. The hard-core radius of
the vdW potential is adjusted to give the appropriate value
of as . This ensures that the short-range repulsion is correctly
accounted for. The inclusion of SRCF has the same effect as
the Jastrow function in other many-body approaches. The zero-
energy two-body wave function η(rij ) is a good representation
of the short-range behavior of φij , as in the experimental
BEC the energy of the interacting pair is negligible compared
with the depth of the interatomic potential. Since η(rij ) has
the correct short-separation behavior of the (ij ) interacting
pair, the rij → 0 behavior of φij is correctly reproduced [21].
As a result, the rate of convergence of the PH expansion is
dramatically enhanced.

With the inclusion of SRCF, we replace Eq. (9) by

φij (�rij ,r) = r−( 3N−1
2 )

∑
K

P lm
2K+l

(



ij

N
)
ul

K (r)η(rij ), (18)

and the correlated PH (CPH) basis function is given by[
P l,m

2K+l

(



(ij )
N

)]
correlated = P l,m

2K+l

(



(ij )
N

)
η(rij ). (19)

The potential matrix element VKK ′ (r) in the CPH basis is now
given by

VKK ′ (r) = (
h

αβ

K h
αβ

K ′
)− 1

2

∫ +1

−1

{
P

αβ

K (z)V

(
r

√
1 + z

2

)

×P
αβ

K ′ (z)η

(
r

√
1 + z

2

)
Wl(z)

}
dz. (20)

Here, P αβ

K (z) is the Jacobi polynomial, and its norm and weight
function are h

αβ

K and Wl(z), respectively [28].
Note that the inclusion of η(rij ) makes the CPH basis

nonorthogonal. One may surely use the standard procedure
for handling the nonorthogonal basis. However, in the present
calculation we have checked that η(rij ) differs from a constant
value only in a very narrow interval near the origin, in the BEC
length scale aho (which is much larger than the interatomic
interaction length scale). As a result, the overlap matrix
becomes a constant matrix for relevant values of r (which
is ∼√

3N aho). The effect of the constant matrix is taken by a
suitable choice of the asymptotic constant C [29].

III. RESULT

A. Choice of two-body potential and
calculation of many-body effective potential

As mentioned in the last section, the interatomic potential
has been chosen as the van der Waals potential with a hard
core of radius rc, viz., V (rij ) = ∞ for rij � rc and = −C6

r6
ij

for

rij > rc. C6 is known for a specific atom and in the limit of
C6 → 0, the potential becomes a hard sphere and the cutoff
radius exactly coincides with the s-wave scattering length as .
By utilizing the Feshbach resonance, one can effectively tune
the scattering length as . In our choice of two-body potential

we tune rc to reproduce the experimental scattering length.
As we decrease rc, as decreases and at a particular critical
value of rc it passes through an infinite discontinuity, going
from −∞ to ∞ [21]. For our present calculation, we choose
Rb atoms with C6 = 6.4898 × 10−4 o.u. [26]. With this V (rij )
we solve the zero-energy two-body Schrödinger equation and
tune rc to obtain the as correctly. We choose rc such that
it corresponds to the zero node in the zero-energy two-body
wave function for as < 0 and one node for as > 0 [21,26].
With this set of parameters, we solve the coupled differential
equation by hyperspherical adiabatic approximation (HAA)
[30]. In HAA, we assume that the hyperradial motion is slow
compared to the hyperangular motion and the potential matrix
together with the hypercentrifugal repulsion is diagonalized
for a fixed value of r . Thus, the effective potential for the
hyperradial motion is obtained as a parametric function of r .
We choose the lowest eigenpotential ω0(r) [the corresponding
eigencolumn vector being χK0(r)] as the effective potential
in which the condensate moves collectively. We solve the
adiabatically separated hyperradial equation in the extreme
adiabatic approximation (EAA)

[
− h̄2

m

d2

dr2
+ ω0(r) − ER

]
ζ0(r) = 0, (21)

subject to approximate boundary condition and obtain the
hyperradial wave function ζ0(r). For our numerical calculation,
we fix l = 0 and truncate the CPH basis to a maximum
value K = Kmax requiring proper convergence. Finally, the
many-body condensate wave function � can be constructed in
terms of ζ0(r) and χK0(r).

The accuracy of HAA has been tested against exact results
for various nuclear and atomic systems. Since exact HHE
calculations are possible only for the three-body systems, the
tests were done for trinuclei, two-electron atoms, and exotic
three-body Coulombic systems. The accuracy was found to be
better than 1% even for the infinite-range Coulomb potential
[31]. In our calculation, the van der Waals potential has
shorter range and hence HAA is expected to be better [30].
Moreover, the confining harmonic potential is smooth and for
this potential alone, the hyperradial equation is completely
decoupled. Since the trapping potential has a dominant effect,
this also improves the accuracy of HAA for application to
BEC. For BEC with N � 20, for which exact DMC results
were available, the CPHEM together with HAA were found to
be very close to the exact DMC calculations [20]. Moreover,
results of our previous BEC calculations using HAA for quite
large N agree well with earlier calculations and experiments
[14–21,27,29,32,33]. Thus, we can safely use HAA in our
calculation and this reduces the numerical complications to
a great extent. In addition, the HAA produces an effective
hyperradial potential, in which the collective motion takes
place.

For the attractive condensate, the many-body effective po-
tential strongly differs from the effective mean-field potential.
In GP, the choice of a contact δ interaction in the two-body
potential gives rise to the pathological singularity in the
effective potential [19,21]. Thus, the study of post-collapse
scenario of the attractive condensate is beyond the scope of
the GP theory. Whereas the presence of a short-range hard
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core in the van der Waals interaction does not only remove the
singularity, it gives the realistic scenario and can describe the
formation of atomic cluster after the collapse.

B. Information entropy of one-body density

For repulsive BEC, we consider 87Rb atoms in the external
spherical harmonic trap of trap frequency 77.87 Hz. The cutoff
radius rc in the van der Waals potential is adjusted to get the
scattering length as = 0.00433 o.u. = 100 a0 (a0 is the Bohr
radius) which corresponds to the JILA experiment [7]. For
attractive BEC, our choice is 85Rb atoms in the JILA trap with
as = −1.832 × 10−4 o.u. From the condensate wave function
�, we calculate the one-body density R1(�rk) [33] as

R1(�rk) =
∫

τ ′
|�|2dτ ′. (22)

The one-body density basically measures the probability
density of finding a particle at a distance �rk from the center of
mass of the condensate. The integral over the hypervolume τ ′
excludes the variable �rk and dτ ′ is given by

dτ ′ = r ′3N−4 cos2 φ sin3N−7 φ dr ′dφ dωijd
N−2, (23)

where r ′ is obtained from r2 = r ′2 + 2r2
k . After a lengthy but

straightforward calculation, we arrive at a close form given by

R1(�rk) =
√

2
∫ ∞

0

∫ 1

−1
2α

[
1

π3/2

�[(D − 3)/2]

�[(D − 6)/2]

]
[ζ0(r ′)]2

×
∑
KK ′

χK0(r ′)χK ′0(r ′)(fKlfK ′l)
−1

(
h

αβ

K h
αβ

K ′
)−1/2

×P
αβ

K (z)P αβ

K ′ (z)r ′D−4

√
1 + z

2

(√
1 − z

2

)D−8

× (√
r ′2 + 2r2

k

)−(D−1)
dr ′dz, (24)

where D = 3N − 3 and h
α,β

k is the norm of the Jacobi poly-
nomial. The integral is computed by numerical computation
using a 32-bit Gaussian quadrature. R1(�rk) basically contains
all the information of the one-body density correlation. In
Fig. 1(a), we plot the one-body density distribution as a
function of �rk (in o.u.) for several numbers of bosons N = 50,
500, and 5000. For small-particle number, the density is
sharper and with increase in particle number the density
distribution gradually pushed out as the effective repulsion
increases. Next, taking the Fourier transformation of R1(�rk),
we obtain the one-body momentum distribution �1( �pk) and
plot in Fig. 1(b) for the same set of particle numbers as in
Fig. 1(a). We see the expected reciprocal behavior between
the position and momentum space wave function is accordance
with the Heisenberg’s uncertainty principle. For very small N

(∼100), as the net effective repulsion is small, the condensate
wave function is close to Gaussian in both the spaces. However,
with increase in N , when the condensate wave function in
the coordinate space spreads out due to increase in effective
interaction Nas , the corresponding momentum space wave
function squeezes accordingly. Next, to compare our many-
body results with the mean field we numerically solve the GP
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FIG. 1. (Color online) Plot of one-body density as a function of
rk (in o.u.) and the corresponding one-body momentum distribution
as a function of pk (in o.u.) for different N .

equation of the form[
− h̄2

2m
∇2 + 1

2
mω2r2 + g|ψ(�r)|2

]
ψ(�r) = μψ(�r) (25)

for the same set of particles as chosen in the many-body
calculation. Here, g = 4πh̄2asN

m
is the mean-field interaction,

m being the mass of the particle. The corresponding one-body
density both in the coordinate and momentum spaces are
presented in Figs. 2(a) and 2(b), respectively. The expected
reciprocal behavior is also seen.

Next, we calculate the Shannon information entropy in the
coordinate space using Eq. (1) and the same in momentum
space using Eq. (2). In Table I, we present the values of Sr and
Sp and the total entropy S = Sr + Sp versus the number of
particle N for the 87Rb condensate. For comparison, we also
calculate the same for the mean-field and present in Table I.

For small N , the net effective interaction Nas is very small
compared to the trap energy (∼h̄ω) and the total entropy is
very close to the lower bound of the EUR. However, with
increase in particle number N , S smoothly increases. With
increase in net repulsive interaction Nas , the coordinate space
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FIG. 2. (Color online) Plot of condensate density |ψ |2 as a
function of r (in o.u.) [panel (a)] and the corresponding momentum
distributions |φ|2 as a function of p (in o.u.) [panel (b)] obtained from
mean-field GP equation for different N .

wave function delocalizes, consequently, the position space
entropy Sr gradually increases. It signifies that the associated
uncertainty in the coordinate space increases. The correspond-
ing momentum space wave function is localized, and the
associated entropy Sp gradually decreases with increase in
Nas . It indicates that the associated uncertainty in momentum

TABLE I. One-body entropy in coordinate space Sr , in momen-
tum space Sp , and total one-body entropy S for some typical N for
repulsive BEC. All entropy values are given in o.u.

N GP theory CPHEM

Sr Sp S Sr Sp S

100 3.369 3.087 6.456 3.431 3.004 6.4343
500 3.834 2.630 6.465 3.782 2.653 6.435
1000 4.102 2.398 6.494 4.049 2.389 6.437
3000 4.601 1.968 6.569 4.544 1.921 6.465
5000 4.858 1.750 6.601 4.804 1.674 6.478
7000 5.032 1.620 6.627 4.987 1.495 6.483

 6.4

 6.45

 6.5

 6.55

 6.6

 6.65

 6  6.5  7  7.5  8  8.5  9
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ln N

many-body
GP

FIG. 3. (Color online) Plot of the one-body entropy S (in o.u.) as
a function of ln N . The many-body result is plotted as the red smooth
curve and the green dashed curve corresponds to the mean-field GP
result.

space decreases. Although we observe the same trend both in
the many-body and mean-field results, however, quantitative
disagreement occurs. Next, to address the universal relation
for Shannon information entropy, we plot it as a function of
ln N in Fig. 3 where our CPHEM result is presented as the
red smooth curve and the green dashed curve corresponds to
the mean-field GP result. It has been proposed in an earlier
calculation [11] that for a system of fermions, the universal
relation is maintained and has the form

S = a + b ln N. (26)

In the mean-field results (green dashed curve in Fig. 3),
we can get back the straight line in the plot of S ver-
sus ln N and the calculated values of a = 6.059 and b =
0.065. In the many-body calculation, we fail to retrieve
the linear relation [Eq. (26)] for the entire particle range.
However, in the large-particle limit we observe the straight
increase in the total entropy as a function of ln N . It shows
that in the small- and finite-particle limits, the many-body
calculation exhibits finite-size effect, whereas in the large-
particle limit the mean-field results are close to the many-body
results for repulsive condensates, as expected.

As pointed out earlier, for repulsive bosons, there is no
upper limit of the number of atoms in the trap and the
condensate is always stable for any number of atoms. However,
in the case of an attractive BEC, the condensate tends to
increase its density in the center of the trap in order to lower
its interaction energy with increase in the atom number. This
tendency is balanced by the zero-point kinetic energy which
can stabilize the system. However, for large number of bosons,
the central density becomes too high and the kinetic energy
can not balance it anymore. The condensate thus collapses
beyond a critical number Ncr and the corresponding stability
factor is defined as kcr = Ncr |as |

aho
. In Fig. 4, we plot Sr and

Sp as a function of Nas , where the scattering length as is
gradually tuned from large repulsive (when the condensate
is absolutely stable) to attractive (when the condensate is
metastable for smaller N |as | and finally collapses at the
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FIG. 4. (Color online) Plot of the one-body entropy in position
space Sr (in o.u.) and in momentum space Sp (in o.u.) against effective
interaction Nas in o.u.

criticality). The inverse behavior between the position and
momentum space entropies is the consequence of the EUR. At
Nas = 0, we reach the noninteracting limit when the system
behaves as an ideal Bose gas (IBG). For IBG in a harmonic
trap, both the position and momentum space wave functions
become perfectly Gaussian. Hence, the Shannon information
entropy in position space Sr and that in momentum space
Sp become equal to each other and the minimum uncertainty
limit is obtained. We have checked the numerical values
of Sr and Sp. They are Sr = Sp = 3.217; the total entropy
S = 6.434, which is the lower bound of EUR. However,
for attractive BEC, as is negative and the condensate is
metastable as described earlier. For our present calculation,
we keep as = −1.832 × 10−4 o.u. which is chosen from the
controlled collapse experiment [8,9] and go on increasing
N to make more and more attractive condensate. Thus,
the condensate density in the coordinate space contracts near
the center of the trap, whereas the corresponding momentum
space wave function spreads out as expected. It signifies that
the associated uncertainty in position space decreases and that
in momentum space increases. Thus, with increase in N , Sr

starts to fall and Sp starts to increase. At the critical point, the
metastable region is no longer able to bound the condensate
due to very strong attractive interaction energy. Hence, the
condensate wave function in coordinate space squeezes to
a δ function and the corresponding momentum space wave
function is completely delocalized. This is reflected in a
very sharp fall in Sr and very steep increase in Sp (Fig. 4).
Thus, at the point of collapse, Sr and Sp diverge in opposite
directions. This point of divergence is used to calculate the
stability factor which we found to be k

many-body
cr = 0.457 and

is in very close agreement with the experimental value of
k

expt
cr = 0.459 ± 0.012 ± 0.054 [8]. In the mean-field GP, the

equation stability factor is determined in the following way.
When N < Ncr , the condensate is metastable and the energy
functional has a local minimum [25]. When N increases, the
depth of local minimum decreases and exactly at N = Ncr , the
minimum vanishes and the GP equation has no solution. The
calculated stability factor is kGP

cr = 0.575. Thus, our present
many-body calculation not only calculates the stability factor

accurately, but also manifests the collapse of the attractive
BEC as the simultaneous divergence in Sr and Sp.

C. Information entropy of the two-body density

The two-body Shannon information entropies in position
and momentum spaces are defined as [34]

S� = −
∫

R2(rij ) ln R2(rij )drij (27)

and

SP = −
∫

�2(pij ) ln �2(pij )dpij , (28)

where R2(rij ) is the two-body density distribution in the coor-
dinate space and the corresponding pair density in momentum
space �2(pij ) is obtained by taking Fourier transformation
of R2(rij ). The pair-distribution function determines the
probability of finding the (ij )th pair at a relative separation
rij in the coordinate space and likewise for the momentum
space also. We calculate it as follows:

R2(rij ) =
∫

τ ′′
|�|2dτ ′′, (29)

where � is the many-body condensate wave function. As
before, τ ′′ excludes integration over rij . After a lengthy
calculation, we obtain the closed analytic form of R2(rij ) [33]
as

R2(rij ) =
√

2
∫ 1

−1

(
1 − z

2

)α[
ζ0

(
rij

√
2

1 + z

)]2

×
∑
KK ′

(
h

αβ

K

2α

)−1/2(
h

αβ

K ′

2α

)−1/2

(fKlfK ′l)
−1

×χK0(r)χK ′0(r)P αβ

K (z)P αβ

K ′ (z)dz. (30)

Taking Fourier transformation of R2(rij ) we get �2(pij ), which
gives the pair density in momentum space. Now, utilizing these
in Eqs. (27) and (28) we calculate S� and SP for various particle
number keeping as fixed at 0.00433 o.u. for repulsive BEC and
at −1.832 × 10−4 o.u. for attractive BEC. We again observe
the reciprocal behavior in S� and SP . S� gradually increases
with an increase in Nas and the corresponding SP gradually
decreases. We again observe the diverging behavior in both
S� and SP near the point of critical instability (Fig. 5). Now,
it would be interesting to compare the two-body information
entropies with those of one body. We observe overall similar
behavior between the one- and two-body quantities, however,
quantitative disagreement persists. In Fig. 4, we see that the rate
of increase in Sr is not completely balanced by the decrease in
Sp, which makes an overall slow increase in the total entropy
S. However, in Fig. 5 we observe that although S� steeply
increases with Nas as in one-body, still the rate of decrease
of SP is very slow. The interatomic interaction with a short-
range hard-core repulsion and long-range attractive tail plays
an important role here. Especially for the attractive condensate,
when the atoms try to form clusters, the strong short-range
repulsion comes into play.
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FIG. 5. (Color online) Plot of pair entropy in position space S�

(in o.u.) (red smooth curve) and in momentum space SP (in o.u.)
(green dashed curve) against the effective interaction Nas (in o.u.).

D. Correlation in dilute BEC

As pointed out earlier for attractive BEC, both the inter-
atomic correlation and realistic interatomic interaction play
important roles. Due to the attractive interaction, even in
the weakly interacting gas, the effect of correlation becomes
important and we expect to get new physics in the study of
correlation properties. The mean-field Gross-Pitaevskii (GP)
equation with a contact δ interaction is adequate for the
description of weakly interacting repulsive Bose gas. However,
our correlated basis function is more rigorous and will provide
a realistic picture for the study of correlation properties,
especially in attractive condensates. To characterize the effect
of correlations, in Fig. 6 we plot the pair-distribution function
R2(rij ) for the attractive interaction with various particle
number. Pair correlation vanishes as rij → 0, when the atoms
try to form cluster due to strong interatomic correlation, but the
strong short-range repulsion tries to separate them. This real-
istic picture is observed due to the use of realistic interatomic
interaction. Again, due to the presence of an external trapping
potential, R2(rij ) does not extend beyond the size of the
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FIG. 6. (Color online) Plot of the pair-distribution functions
R2(rij ) as a function of rij (in o.u.) for different N for attractive
BEC.
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FIG. 7. (Color online) Plot of healing length ξ (in o.u.) with N

for attractive BEC.

condensate. Thus, R2(rij ) is peaked at some intermediate value
of rij . Thus, our results are different from the earlier findings
of the Lieb-Linger (LL) model which treats one-dimensional
uniform Bose gas, and particles interact via a δ-function
repulsive potential [35,36]. For weak interactions (when the
number of particles is much less than the critical number), the
correlation length is large, which indicates weak correlation.
However, for particle numbers close to the critical point,
the condensate becomes strongly correlated, pair-correlation
length sharply decreases, and the correlation function becomes
sharply localized. It leads to the possibility of formation of
atomic clusters due to large two-body correlations. Next, we
calculate the healing length ξ , which is considered as the
most relevant quantity to quantify the correlation of such
highly correlated BEC near the critical point of collapse. It
basically measures the minimum distance over which the order
parameter can heal [25,26]. We calculate ξ by balancing the
quantum pressure and the interaction energy of the condensate
and plot it in Fig. 7. ξ steeply decreases with N when the
number of atoms is very close to the critical number.

Next, we calculate another useful quantity: the correlation
length L. We define L as the half-width of correlation function
and plot it in Fig. 8. The smooth decrease in L with the particle
number N again confirms the presence of stronger correlations
with increase of N in the attractive BEC.

As the attractive condensate becomes highly correlated
near the critical point, it is relevant to study its stability
by calculating the decay rates due to two- and three-body
collisions. The loss rate due to two-body dipolar collisions
and three-body recombinations is given by

� = �two + �three = K2

∫
dτ |ψ |4 + K3

∫
dτ |ψ |6, (31)

where K2 is the two-body dipolar loss rate coefficient and
has the value (1.87 ± 0.95 ± 0.19) × 10−14 cm3/s. The three-
body recombination loss rate coefficient K3 = (4.24+0.70

−0.29 ±
0.85) × 10−24 cm6/s [37]. ψ is the condensate wave function
in coordinate space and can be calculated as described in
Sec. III B. As for an attractive condensate, there is a rapid
increase in condensate density with increase in number of
atoms, and we may expect a large loss rate near the critical

033602-8



CORRELATED MANY-BODY CALCULATION TO STUDY . . . PHYSICAL REVIEW A 88, 033602 (2013)

 0.75

 0.8

 0.85

 0.9

 0.95

1

 1.05

 1.1

 1.15

 1.2

0  500  1000  1500  2000  2500

L

N
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point. It is also important to observe the separate contributions
coming from the two-body dipolar loss rate and three-body
recombination. In Fig. 9, we plot the two-body dipolar loss rate
�two and the loss rate due to three-body recombination �three.
For small particle numbers, as the condensate density is not too
high, the three-body loss rate is almost negligible compared
to the two-body loss rate. On the other hand, near the critical
point when the condensate is highly correlated, we observe
a steep increase in the two-body loss rate. The contribution
coming from the three-body recombination is still insignificant
compared to the sharp change in the dipolar loss rate. Thus,
the total loss rate of the attractive condensate is dominated
by the two-body loss rate only. This indicates that for the
present choices of scattering length of the controlled collapse
experiment [8,9], the condensate is sufficiently dilute. Figure 9
also justifies and establishes that in the sufficiently dilute limit,
the condensate is affected only by two-body correlations. This
also justifies a posteriori our use of the two-body correlated
basis function (CPH). However, near the Feshbach resonance,
where the condensate is strongly correlated the higher-body
correlations may significantly contribute and that would be the
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FIG. 9. (Color online) Plot of the loss rate � (in atoms/s) due to
two- and three-body collisions for various N for attractive BEC.

issue of future research. This is quite obvious from our present
study that the effect of three-body recombination is more
insignificant for repulsive BEC in the dilute condition. In the
repulsive condensate, as the atoms repel each other, the central
density is lower and it is less correlated than the attractive
condensate. The rate coefficient K3 is significantly smaller
for repulsive condensate. While for the 85Rb condensate
(attractive) K3 is of the order of 10−24 cm6/s, it is of the order of
10−30 cm6/s for the 87Rb condensate (repulsive). This clearly
shows the unimportance of the three-body recombination in
the context of repulsive BEC.

IV. CONCLUSION

We have reported the results of our numerical calculation on
the Shannon information entropy of trapped interacting bosons
and study their several characteristic features. We employ
two-body correlated basis function and realistic van der Waals
interaction. This is the first such rigorous calculation where
we observe the interplay between the position and momentum
space information entropies. Due to the presence of an external
trap, the system is inhomogeneous and gives some additional
features. We also numerically establish the lower bound of
BBM inequality which is believed to be a stronger version
of the Heisenberg uncertainty principle. The observation of
curvature in the total entropy S also differs from the earlier
mean-field results. Our many-body results show that the finite-
size effect is prominent for small and finite numbers of atoms.
We also calculate the point of critical instability of attractive
BEC. When the number of atoms in the trap is very close to
the critical number, the condensate becomes highly correlated
and the mean-field GP equation is not enough to describe such
a correlated system. Our calculated stability factor is in very
close agreement with the experimental results. We observe the
point of instability as the point where the information entropies
in the conjugate spaces diverge simultaneously. Thus, in our
present calculation we not only calculate the instability accu-
rately but at the same time we establish the point in a stronger
way providing more information of the BEC as a single
quantum entity. We also calculate the two-body Shannon infor-
mation entropies corresponding to the two-body densities in
position and momentum spaces and discuss their similarity and
differences with the one-body quantities. Next, we especially
discuss the correlation in dilute BEC by introducing several
correlation measures such as healing length ξ and correlation
length L. We also calculate the two- and three-body loss rate
for the attractive condensate. A very sharp increase in the decay
rates signifies that near the point of criticality the condensate
becomes strongly correlated and there will be a possibility
of formation of atomic cluster. All these observations signify
quantitatively the presence of interatomic correlations, even
away from the critical point in an attractive BEC, which is
beyond the scope of studies of mean-field theory.
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