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Cooling of atomic ensembles in optical cavities: Semiclassical limit
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The semiclassical dynamics of atoms, when the atoms are confined inside a standing-wave high-finesse
resonator, is theoretically studied. The atoms are cooled by scattering processes in which the photons of a
transverse laser are coherently scattered into the cavity mode. We derive a Fokker-Planck equation for the atomic
center-of-mass variables which allows us to determine the equations of motion in the semiclassical limit for any
value of the intensity of the laser field. We extract its prediction for the dynamics when the resonator is essentially
in the vacuum state and the atoms are cooled by scattering photons into the cavity mode, which then decays. Its
predictions for the stationary atomic distribution are compared with the ones of the Fokker-Planck equation by
Domokos et al. [J. Phys. B 34, 187 (2001)], which has been derived under different assumptions. We find full
agreement in the considered parameter regime.
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I. INTRODUCTION

The possibility of cooling and trapping the atomic motion
by means of electromagnetic radiation has been remarkably
advanced in atomic physics and quantum optics, which was
officially recognized with the Nobel Prize in physics in 1997
[1]. In a nutshell, radiative scattering can cool the motion
of atoms by means of the mechanical effects of atom-photon
interactions. This is achieved by scattering processes, in which
the transition rate to states with lower mechanical energy is
enhanced by suitably driving an atomic transition, so that the
frequency of the absorbed photon is, on average, smaller than
that of the emitted one [2,3]. In the presence of high-finesse
optical resonators, these processes can be tailored using the
strong coupling with the cavity field [4–9].

A remarkable property of the mechanical effects of light
inside a high-finesse resonator is the collective phenomena
due to multiple scattering of photons, which mediate an
effective interaction between the atoms. They give rise
to nonlinear dynamics, such as bistability induced by the
nonlinear coupling with the motional degrees of freedom
[10], synchronization [11], and collective-atomic recoil lasing
[12]. In single-mode standing-wave cavities, they can lead
to the formation of spatially ordered structures [13–17]. This
phenomenon is found in a setup, such as the one sketched in
Fig. 1, where the atoms are confined inside a resonator and are
driven by a transverse laser. It exhibits a threshold, which
is mainly determined by the intensity of the laser. Above
threshold, ordered atomic structures (Bragg gratings) form,
which coherently scatter photons into the cavity resonator
and, vice versa, the cavity field stably traps the atoms in the
grating [14,15,17].

The theory of self-organization in laser-cooled atomic
ensembles coupled to cavities has been pioneered by Ritsch
and coworkers [18], who derived a Fokker-Planck equation
describing the coupled dynamics of cavity field and atoms

*stefan.schuetz@physik.uni-saarland.de

in the limit in which the atomic and field variables can
be treated semiclassically [19]. On this basis, the self-
organization threshold has been determined [17] and numerical
simulations of the system dynamics were performed [18]. This
theoretical model does not describe, however, the properties
of the cavity field, which is treated in the semiclassical
limit. The semiclassical approximation, in fact, breaks down
when the intracavity field is small, namely, below and close to
the self-organization threshold. Close to threshold, when the
patterns are formed, in particular, fluctuations are expected to
become larger and larger [13,17]. This calls for developing a
unifying theoretical formalism which allows one to describe
the coupled atom-field dynamics below, at, and above the
self-organization threshold.

In this work, we derive the Fokker-Planck equation gov-
erning the atomic dynamics, which is valid for any value of
the intracavity field amplitude. This is obtained by following
the procedure developed in Refs. [20–22], which allows us
to derive an effective Fokker-Planck equation for the atomic
motion, in which the cavity field is treated quantum mechan-
ically. This treatment leads to equations of motion which can
be simulated by means of stochastic differential equations
[19,23,24]. The numerical simulations allow for a reliable
description of the dynamics without further assumptions on
the state of the intracavity field. As an example, we determine
the momentum distribution when the loss rates are much larger
than the pump rate, so that the intracavity field is essentially
in the vacuum. We then compare the predictions of our
model on the atomic distribution with the predictions extracted
with the model in Refs. [19,25]. This article is organized as
follows. In Sec. II, the theoretical model is introduced and the
effective master equation, describing the coupled dynamics
of cavity and atoms, is obtained after eliminating the excited
state of the atoms in second-order perturbation theory. The
Fokker-Planck equation for the atomic dynamics is derived in
Sec. III, and the numerical simulations of the center-of-mass
motion dynamics are reported and discussed in Sec. IV. The
conclusions are drawn in Sec. V. The appendices report details
of the calculations in Secs. III and IV.
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FIG. 1. (Color online) A gas of atoms is confined within a
standing-wave resonator and is illuminated by a transverse laser. A
dipolar transition of the atoms couples quasiresonantly with the fields
and scatters photons from the laser into the cavity. We analyze the
dynamics of the atomic center-of-mass motion and steady state in the
semiclassical regime.

II. THEORETICAL MODEL

In this section, we derive the master equation which is
at the basis of the semiclassical treatment in Sec. III. This
effective master equation is obtained for a system of atoms
inside the cavity and illuminated by a transverse pump, in the
limit in which the atomic transition is driven below saturation.
It thus describes the coupled dynamics of atomic center-of-
mass motion and cavity field.

A. The system

The physical system is illustrated in Fig. 1: N atoms
are confined inside a resonator and their dipolar transitions
scatter photons of a transverse laser and of the mode of a
standing-wave cavity. The atoms are sufficiently hot to be
considered distinguishable. For the sake of generality, we also
assume that they can be of different species. We denote by
mj the mass of atom j = 1, . . . ,N , and by |g〉j and |e〉j we
denote the ground and excited state of the corresponding
dipolar transition, whose frequency ωj is quasiresonantly
coupled with the laser and with the cavity field (the position
dependence of the transition frequency also takes into account
possible spatial inhomogeneities). The laser is here assumed to
be a classical standing-wave field with frequency ωL and wave
vector perpendicular to the cavity axis, while the cavity mode
is a quantum field of frequency ωc and wave vector k. The
cavity and laser field have the same linear polarization, so that
they both drive the atomic dipolar transitions. We denote by â

and â† the annihilation and creation operators, respectively, of
a cavity photon, with [â,â†] = 1.

The center-of-mass motion of the atoms is restricted to
the cavity axis, which here corresponds to the x axis. The
position and canonically conjugated momentum of atom j are
given by the operators x̂j and p̂j , such that [x̂j ,p̂k] = ih̄δjk ,
with δjk as the Kronecker delta. Internal and external degrees
of freedom of the atoms couple via the mechanical effects
of atom-photon interactions. Our purpose is to provide a

theoretical description of the scattering dynamics leading to
cooling of the atomic motion.

We start with the master equation for the density matrix ρ̂

for the cavity and for the atoms’ internal and external degrees
of freedom, which reads

∂

∂t
ρ̂ = − i

h̄
[Ĥ,ρ̂] + Lκ ρ̂ + Lγ ρ̂ (1)

≡ Lρ, (2)

whereL is the corresponding Lindbladian. Master equation (1)
is reported in the reference frame rotating at the laser
frequency ωL. Here, the coherent dynamics are governed by
the Hamiltonian

Ĥ =
N∑

j=1

p̂2
j

2mj

− h̄�câ
†â −

N∑
j=1

h̄�j σ̂
†
j σ̂j

+
N∑

j=1

h̄gj (x̂j )(â†σ̂j + σ̂
†
j â) +

N∑
j=1

h̄
j (σ̂ †
j + σ̂j ), (3)

where σ̂j = |g〉j 〈e| and σ̂
†
j is its adjoint, �c = ωL − ωc

and �j = ωL − ωj are the detunings of the laser frequency
from the cavity frequency ωc and from the atomic transition
frequency ωj , respectively; 
j is the real-valued coupling
strength of atom j with the laser, and gj (x̂j ) = gj cos(kx̂j ) is
the real-valued coupling of the atomic transition, with gj the
vacuum Rabi frequency for the atom j and cos(kx) the spatial
mode function.

The incoherent dynamics is assumed to be due to cavity
losses, at rate κ , and to radiative decay of the atoms excited
states, at rate γj . They are described by the superoperators

Lκ ρ̂ = −κ(â†âρ̂ + ρ̂â†â − 2âρ̂â†), (4)

Lγ ρ̂ = −
N∑

j=1

γj

2
(σ̂ †

j σ̂j ρ̂ + ρ̂σ̂
†
j σ̂j ) + J ρ̂ , (5)

where

J ρ̂ =
N∑

j=1

γj

∫ 1

−1
duNj (u)|g〉〈e|j e−ikj ux̂j ρ̂eikj ux̂j |e〉〈g|j .

(6)

This term describes the jump from |e〉j to |g〉j due to
spontaneous decay and takes into account the momentum
transfer along the cavity axis to the atom due to spontaneous
emission [26]. Here, the dipole radiation pattern Nj (u) is
normalized and symmetric about u = 0. For later convenience,
we define its second moment by (u2)j , such that∫ 1

−1
duNj (u)u2 = (u2)j . (7)

B. Adiabatic elimination of the excited state

We now proceed in deriving the master equation for
the cavity field and atoms’ center-of-mass motion when the
occupation of the atomic excited states can be neglected. Let
us first assume that the particles do not move. In this case,
their coupling gj with the cavity field is fixed, and the excited
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state can be eliminated in second order in an expansion in
the parameter 1/|�j |, assuming that |�j | � γj/2,
j and
|�j | � |�c|,κ,gj

√
n̄, with n̄ is the mean photon number in the

cavity. For N atoms, the condition on the coupling strengths
becomes |�j | � √

N
j,
√

N (gj

√
n̄); see [27]. When the

center-of-mass motion is considered, on the other hand, the
coupling strength gj varies as a function of time. Moreover,
atoms with different velocities experience different Doppler
shifts, which modify the resonance condition. These effects
can be neglected when the corresponding time scales are
longer than the typical time scale in which the excited state
is occupied, i.e., when kp̄j /mj � |�j | (with p̄j =

√
〈p2

j 〉),
which is satisfied when the atomic gas has previously been
Doppler cooled [3,28].

Formally, the effective master equation describing the
dynamics of cavity field and atoms’ center-of-mass motion
is obtained by deriving a closed equation of motion for
the reduced density operator v̂ when the atoms are all in
the internal ground state |g〉 = |g1,g2, . . . ,gN 〉. The reduced
density operator v̂ is defined as v̂ = P ρ̂, where

v̂ = P ρ̂ = |g〉〈g|〈g|ρ̂|g〉, (8)

such that ρ̂ = v̂ + ŵ with

ŵ = Qρ̂, (9)

where P and Q = 1 − P are projectors (P 2 = P , Q2 = Q,
P † = P , Q† = Q) and (P + Q)ρ̂ = ρ̂. In order to adiabati-
cally eliminate the excited state, we rewrite the Lindbladian as
L = (P + Q)L(P + Q) and introduce the decomposition

L = LA + LF + J + Lint, (10)

where

LF ρ̂ = − i

h̄

[
N∑

j=1

p̂2
j

2mj

− h̄�câ
†â,ρ̂

]
+ Lκ ρ̂, (11)

with LF P = PLF . Term

LAρ̂ =
N∑

j=1

[
i�j [|e〉j 〈e|,ρ̂] − γj

2
(|e〉〈e|j ρ̂ + ρ̂|e〉j 〈e|)

]

(12)

is such that QLAQ = LA andLAP = PLA = 0, whileJP =
0 and PJ = PJQ. Finally, PLintP = 0, with

Lintρ̂ = −i

N∑
j=1

[{|e〉〈g|j [
j + gj (x̂j )â] + H.c.},ρ̂]. (13)

The master equation (1) is thus rewritten in terms of coupled
differential equations for the time evolution of v̂ and ŵ defined
in Eqs. (8) and (9). The formal solution for ŵ reads

ŵ(τ ) =
∫ τ

0
dτ ′eQ(LA+LF )(τ−τ ′)QLintŵ(τ ′)

+
∫ τ

0
dτ ′eQ(LA+LF )(τ−τ ′)QLintv̂(τ ′), (14)

where we have assumed ŵ(0) = 0, namely, all atoms are in the
internal ground state at t = 0. Using Eq. (14) in the differential
equation for v̂ leads to an integrodifferential equation of

motion,

∂

∂t
v̂ = PLF v̂ + P (J + Lint)

×
∫ t

0
dτeQ(LA+LF )(t−τ )QLint[v̂(τ ) + V̂ (τ )] , (15)

with

V̂ (τ ) =
∫ τ

0
dτ ′eQ(LA+LF )(τ−τ ′)QLint[v̂(τ ′) + ŵ(τ ′)].

Equation (15) can be brought to the form of an effective
Born-Markov master equation by performing a perturbative
expansion to the second order in the small parameters

εint ∝ √
N

g
√

n̄

|�a | ,
√

N 

|�a | and εF ∝ |�c|

|�a | ,
κ

|�a | , which consists in

neglecting terms such as (Lint)3, (Lint)2LF , Lint(LF )2, (LF )3,
and higher. In this approximation, the master equation for the
reduced density matrix v̂, given by Eq. (15), is reduced to the
form
∂

∂t
v̂ = − i

h̄
[Ĥeff,v̂] − κ(â†âv̂ + v̂â†â − 2âv̂â†)

−
N∑

j=1

γ ′
j

2

{
B̂

†
j B̂j v̂ + v̂B̂

†
j B̂j − 2

∫ 1

−1
duNj (u)B̂j v̂B̂

†
j

}
,

(16)

where γ ′
j = γjg

2
j /(�2

j + γ 2
j /4) is the rate of incoherent photon

scattering via spontaneous decay, while operator

B̂j = e−ikj ux̂j

[
cos(kx̂j )â + 
j

gj

]
(17)

describes the mechanical effect associated with absorption of
a laser or a cavity photon and followed by a spontaneous
emission. The effective Hamiltonian Ĥeff reads

Ĥeff =
N∑

j=1

p̂2
j

2mj

− h̄

[
�c −

N∑
j=1

Uj cos2(kx̂j )

]
â†â

+ h̄

N∑
j=1

Sj cos(kx̂j )(â + â†). (18)

It contains the shift of the cavity frequency due to the
interaction with the atoms, which scales with the frequency

Uj = �jg
2
j

�2
j + γ 2

j /4
, (19)

and the pump on the cavity field due to coherent scattering into
the cavity mode, which scales with the amplitude

Sj = �j

gj
j

�2
j + γ 2

j /4
. (20)

The corresponding terms in Eq. (18) depend on the atomic
positions and give rise to mechanical forces on the atoms. We
remark that the master equation in Eq. (16) has been reported,
for instance, in Refs. [17,19], where the internal dynamics is
eliminated by setting σ̂z ≈ −1 and ultimately expressing σ̂j

and σ̂
†
j in terms of cavity field operators. Here, we have given

its detailed derivation using second-order perturbation theory
by means of projectors acting on density operators [29].
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III. SEMICLASSICAL MODEL

In this section, we analyze the predictions of Eq. (16) under
the assumption that the atoms’ center-of-mass motion can be
treated semiclassically. For this purpose, we first consider
the dynamics of the atoms in Wigner representation and
denote by Ŵt (x, p) the operator for the cavity field degrees
of freedom, where the subscript t indicates the time. Operator
Ŵt (x, p) is related to the reduced density operator v̂ by the
equation

Ŵt (x, p) = 1

(2πh̄)N

∫ ∞

−∞
dξe− i

h̄
p·ξ

〈
x + 1

2
ξ |v̂|x − 1

2
ξ

〉
,

(21)

with y = (y1, . . . ,yN ), where y = x, p,ξ . It is a scalar func-
tion of the atoms’ positions xj and canonically conjugated
momenta pj of the atoms. Note that p · ξ = ∑N

j=1 pjξj and∫∞
−∞ dξ = ∏N

j=1

∫∞
−∞ dξj . The Wigner function for the atoms

is denoted by f (x, p,t) and is defined as

f (x, p,t) = Tr{Ŵt (x, p)}. (22)

From the density operator in Eq. (21), one can find the
combined atom-field Wigner function W (x, p,α,α∗) used in
Ref. [19] by means of the relation

Wt (x, p,α,α∗) =
∫

d2η

π2
eη∗α−ηα∗

Tr{Ŵt (x, p)D̂(η)}, (23)

where α and α∗ are the variables for the cavity field amplitude
and D̂(η) = exp(ηâ† − η∗â) is the displacement operator for
the cavity field, with η complex variables.

Let us now discuss the conditions under which the motion
can be treated as a semiclassical variable. This is possible
when the typical width of the momentum distribution, which
we denote by �pj for the atom j , is much larger than the

photon momentum h̄k,

h̄k � �pj . (24)

In this limit, the momentum changes due to emission and
the absorption of a photon are very small. In addition, the
uncertainty in the atomic position, �xj , is larger than the value
set by the Heisenberg uncertainty relation, �xj > h̄/�pj .
These conditions are met when the atoms are at the stationary
state of Doppler cooling, such that �p2

j /(2mj ) ∼ h̄γj /4 when

γj � ωr , with ωr = h̄k2

2m
the recoil frequency [3,28]. In this

work, we derive a Fokker-Planck equation starting from this
assumption, and then check that the corresponding stationary
state fulfills the conditions under which the Fokker-Planck
equation is valid.

A. Semiclassical model below the self-organization threshold

We now derive equations of motion for the atomic degrees
of freedom by eliminating the cavity degrees of freedom. This
is possible provided the cavity degrees of freedom evolve on
a faster time scale than the atomic motion, namely, when

k�pj/mj � |κ + i�c|. (25)

As one can easily check, this condition is consistent with
Eq. (24), provided that ωr � κ . The following treatment
extends the method applied in Ref. [20] to the dynamics of
atoms coupled to a resonator. We start with the master equation
in Eq. (16) in Wigner representation for the atomic degrees of
freedom and consider the reference frame moving with the
atoms and defined by the relation

ˆ̃Wt (x, p) = Ŵt (x + v(t − t0), p), (26)

where v = (p1/m1, . . . ,pN/mN ), Ŵt (x, p) is defined in
Eq. (21), and ˆ̃Wt (x, p) is given in the reference frame moving
with the atoms, with t0 an initial time. Its time evolution reads

∂

∂t
ˆ̃Wt

(
x

p

)
= L′

0
ˆ̃Wt

(
x

p

)
+ Lγ ˆ̃Wt

(
x

p

)
− i

2

∑
j

Sj

{
(â + â†)

[
e
ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τh̄k j/(2mj )

p − h̄k j/2

)

+ e
−ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τh̄k j/(2mj )

p + h̄k j/2

)]
−
[
e
ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τh̄k j/(2mj )

p + h̄k j/2

)

+ e
−ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τh̄k j/(2mj )

p − h̄k j/2

)]
(â + â†)

}

− i

4

∑
j

Uj

{
â†â

[
e

2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τh̄k j/mj

p − h̄k j

)
+ e

−2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τh̄k j/mj

p + h̄k j

)
+ 2 ˆ̃Wt

(
x

p

)]

−
[
e

2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τh̄k j/mj

p + h̄k j

)
+ e

−2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τh̄k j/mj

p − h̄k j

)
+ 2 ˆ̃Wt

(
x

p

)]
â†â

}
, (27)

where ˆ̃Wt (x, p) ≡ ˆ̃Wt (
x
p ), τ = t − t0, and (k j )� = kδ�,j , while

L′
0

ˆ̃Wt

(
x

p

)
= i�c

[
â†â, ˆ̃Wt

(
x

p

)]
+ κ

[
2â ˆ̃Wt

(
x

p

)
â† − â†â ˆ̃Wt

(
x

p

)
− ˆ̃Wt

(
x

p

)
â†â

]
. (28)
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The effects of spontaneous emission are included inLγ ˆ̃Wt (
x
p ),

whose detailed form is reported in Appendix A. After
performing a Taylor expansion up to second order in the
parameters ε1 = h̄k/�p and ε2 = k�p

mκ
, Eq. (27) can be cast

in the form

∂

∂t
ˆ̃Wt (x, p) = [L0 + L1(t) + L2(t)] ˆ̃Wt (x, p), (29)

whereLj is of the j th order in ε1,ε2 and we have assumed ε1 ∼
ε2 ∼ ε, which is correct provided that ωr � κ . Now, operators
ˆ̃Wt (x, p) appear all at the same positions and momenta x, p, so

that we omit writing the argument explicitly. Superoperators
Lj are defined as

L0
ˆ̃Wt = L′

0
ˆ̃Wt − i

∑
j

Uj [â†â, cos2(kxj ) ˆ̃Wt ]

− i
∑

j

Sj [(â + â†), cos(kxj ) ˆ̃Wt ] + Lγ ′
0

ˆ̃Wt, (30)

L1
ˆ̃Wt = + i

h̄
τ
∑

j

[
pj

mj

F̂j ,
ˆ̃Wt

]

− 1

2

∑
j

[(
∂

∂pj

− τ

mj

∂

∂xj

)
ˆ̃Wt,F̂j

]
+

+ Lγ ′
1

ˆ̃Wt,

(31)

L2
ˆ̃W = ih̄

8

∑
j

[
∂2

∂p2
j

ˆ̃Wt,
∂

∂xj

F̂j

]
+ Lγ ′

2
ˆ̃Wt, (32)

with F̂j the force operator on the j th atom [29], which is
defined as

F̂j = h̄kSj sin(kxj )(â + â†) + h̄kUj sin(2kxj )â†â

− i(â† − â)h̄k
γ ′

j

2
sj sin(kxj ),

with sj = 
j/gj . The terms Lγ ′
0

ˆ̃W, Lγ ′
1

ˆ̃W , and Lγ ′
2

ˆ̃W are due
to spontaneous emission and their explicit form is given in
Appendix A. Note that L2 is evaluated at τ = 0 since this term
is already of the second order in ε.

We rewrite the operator ˜̂Wt as

W̃t (x, p) = f̃ (x, p,t)σs(x) + χ̃ (x, p,t), (33)

where σs(x) is the density matrix for the field, which
solves equation L0σs(x) = 0 for N atoms fixed at positions
xj , while f̃ (x, p,t) is the Wigner function of Eq. (22)
in the reference frame moving with the atom. Therefore,
f̃ (x, p,t)σs(x) corresponds to the solution in which the cavity
field adiabatically follows the external atomic motion, while
the nonadiabatic terms are contained in the (traceless) operator
χ̃ = W̃ − Tr{W̃ }σs . When condition (25) is fulfilled, this
contribution is expected to be a small correction and reads

χ̃ (t) =
∫ t

t0

dt ′eL0(t−t ′)[L1(t ′)f (x, p,t ′)σs

− Tr{L1(t ′)f (x, p,t ′)σs}σs], (34)

where the value at t = t0 is taken to be zero, as is consistent
with the assumption that when the transverse laser is switched
on, there are no correlations between field and atoms. Under

this assumption, we use Eq. (33) in Eq. (29) and consider a
coarse-grained dynamics. Applying the Markov approxima-
tion after tracing over the cavity degrees of freedom, we obtain
the equation governing the time evolution of the Wigner
function f̃ (x, p,t), which is valid up to second order in ε:

∂

∂t
f̃ (x, p,t)

∣∣∣∣
t=t0

= Tr{[L1(x, p,t0) + L2(x, p,t0)] · f̃ (x, p,t0)σs(x)}
+ Tr

{
L1(x, p,t0)

∫ t0

−∞
dt ′eL0(t0−t ′)[L1(x, p,t ′)

· f̃ (x, p,t0)σs(x)

− Tr[L1(x, p,t ′) · f̃ (x, p,t0)σs(x)]σs(x)]

}
. (35)

The equation in the original reference frame is found by using
the relation f̃ (x, p,t0) = f (x, p,t0) together with equation

∂

∂t
f̃ |t=t0 = ∂

∂t
f |t=t0 + v · ∂

∂x
f |t=t0 .

After observing that the trace over the term containing operator
L2 (neglecting Lγ ′

2 ) vanishes, we cast Eq. (35) in the form

∂

∂t
f (x, p,t)|t = −

N∑
j=1

∂

∂xj

pj

mj

f (x, p,t)

−
N∑

j=1

∂

∂pj

(
�j −

N∑
�=1

γj� p�

)
f (x, p,t)

+
N∑

j,�=1

∂2

∂pj∂p�

Dj�f (x, p,t)

+
N∑

j,�=1

∂

∂pj

ηj�

∂

∂x�

f (x, p,t), (36)

where the derivatives are now explicitly reported. This
equation has the form of a Fokker-Planck equation for the
atomic center-of-mass variables, while the field enters in the
coefficients through the expectation values of field variables
taken over the density matrix σs(x). In particular, �j =
Tr{σs(x)F̂j } is the mean dipole force over the j atom due to
the cavity field, and γj� are the friction coefficients which read

γj� = γ ′
j� + Tr

{
F̂j

∫ ∞

0
dτ exp (L0τ )

iτ

h̄m�

[F̂�,σs(x)]

}
,

where γ ′
j� is the contribution due to spontaneous emission,

while the second term arises from the coupling with the
cavity. Coefficients Dj� are the diffusion matrix coefficients;
they include the contribution due to spontaneous decay (D′

j�)
and the contribution to diffusion due to the cavity field,

Dj� = D′
j� + Tr

(
F̂j

∫ ∞

0
dτ exp(L0τ )

{
1

2
[σs(x),F̂�]+

− Tr[σs(x)F̂�]σs(x)

})
.

Finally, the Fokker-Planck equation exhibits cross derivatives
between position and momentum of the particles with
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coefficients

ηj� = η′
j� + Tr

(
F̂j

∫ ∞

0
dτ exp (L0τ )

τ

m�

{
1

2
[σs(x),F̂�]+

− Tr[σs(x)F̂�]σs(x)

})
,

where the first term η′
j� is due to spontaneous emission. This

term can be rewritten as
N∑

j,�=1

∂

∂pj

ηj�

∂

∂x�

f =
N∑

j,�=1

∂

∂pj

[
∂

∂x�

(ηj�f ) −
(

∂ηj�

∂x�

)
f

]
,

where the second term in the brackets gives a contribution to
the force of higher order in ε and can thus be discarded [21,22].
The other term can also be neglected well below the
self-organization threshold, when the spatial distribution has
a width which largely exceeds the cavity wavelength λ [20].
It must be taken into account, nevertheless, at and above
the self-organization threshold, when spatial structures with
periodicity λ form.

We note that the explicit form of the coefficients due to
spontaneous emission, γ ′

j�,D
′
j�,η

′
j�, is reported in Appendix A.

These coefficients characterize the dynamics also in the
absence of the resonator. In the limit which we will consider
here, where the laser and cavity fields are far detuned from
the atomic resonance, they are of higher order and their
contribution to the dynamics can often be discarded.

We finally give the form of the field density matrix σs(x).
By solving L0σs(x) = 0, we find σs(x) = |α(x)〉〈α(x)|, with
|α(x)〉 the coherent state of amplitude

α(x) =
∑

j Sj [1 − i(γj/2�j )] cos(kxj )

[�c − ∑
j Uj cos2(kxj )] + iκ ′ , (37)

with

κ ′ = κ +
∑

j

g2
j

(γj/2)

(
γj

2�j

)2 �2
j

�2
j + γ 2

j /4
cos2(kxj ).

Operators of the form F(a,a†), which are a function of the
field variables, have expectation value

〈F〉 =
∫

dxd pTr{Wt (x, p)F}, (38)

where Wt is found from Eq. (33) using the nonadiabatic term
in Eq. (34) after applying the Markov approximation.

B. Comparison with the semiclassical model in Ref. [19]

We now consider the Fokker-Planck equation derived in
Ref. [19]. This is based on the assumption that both the atomic
motion and cavity field can be treated semiclassically. With
respect to the previous treatment, hence, here one also assumes
that the mean-field amplitude is large, 〈â〉 = |α0| � 1, so that
one can perform an expansion in the quantum fluctuations
about the mean value α0. This allows one to discard higher
derivatives in the field and atomic variables, thereby obtaining
a Fokker-Planck equation.

In this regime, it is convenient to consider the Wigner
function for field and atomic motion in Eq. (23), whose
time evolution is given by master equation (16) in Wigner

representation. The corresponding Fokker-Planck equation in
the semiclassical limit is obtained by performing an expansion
up to second order in the small parameters ε1,j = h̄k

(�p)j
and

ε2 = 1
|α0| , where it is assumed that ε1,j and ε2 are approximately

of the same order. The resulting time evolution reads

∂

∂t
Wt = − ∂

∂αr

⎡
⎣−�′

cαi − κ ′αr −
N∑

j=1

sj�j cos(kxj )

⎤
⎦Wt

− ∂

∂αi

⎡
⎣�′

cαr − κ ′αi −
N∑

j=1

sjUj cos(kxj )

⎤
⎦Wt

−
N∑

j=1

h̄
∂

∂pj

∇j [−Uj |α|2 cos2(kxj )

− sjUj cos(kxj )(2αr ) + (2αi)sj�j cos(kxj )]Wt

−
N∑

j=1

∂

∂xj

[
pj

mj

]
Wt + 1

4

(
∂2

∂α2
r

+ ∂2

∂α2
i

)
κ ′Wt

+
N∑

j=1

h̄k

2
�j sin(2kxj )

∂

∂pj

(
αi

∂

∂αr

− αr

∂

∂αi

)
Wt

+
N∑

j=1

(h̄k)2�j

∂2

∂p2
j

{|α|2[sin2(kxj ) + (u2)j cos2(kxj )]

+ sj (u2)j [2αr cos(kxj ) + sj ]}Wt, (39)

where αr = Re{α}, αi = Im{α}, while sj = 
j/gj , �j =
γ ′

j /2, with

γ ′
j = γj

g2
j

�2
j + γ 2

j /4

as the effective rate of spontaneous emission. Moreover, κ ′ =
κ + ∑N

j=1 �j cos2(kxj ) is the rate at which cavity photons are
lost (via both cavity decay and spontaneous emission), and

�′
c = �c −

N∑
j=1

Uj cos2(kxj )

is the effective detuning between cavity and laser, which
includes the dynamical Stark shift due to the coupling with
the atoms.

Equation (39) is a Fokker-Planck equation for the variables
x, p, αr , and αi . We note that its derivation does not require
one to explicitly assume a time-scale separation between
the cavity field and atomic motion. On the other hand, its
derivation consists of neglecting derivatives corresponding to
orders ε1,j ε

2
2 , ε2

1,j ε2, which is motivated under the assumption
that the semiclassical limit for the field amplitude applies. Such
approximation becomes invalid for small photon numbers and
thus, for instance, below and close to the self-organization
threshold. Nevertheless, this equation is used in the literature
for studying the dynamics of the system below threshold
[17,25].
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IV. DYNAMICS FOR LOW PUMP INTENSITIES

We now analyze the predictions of Eq. (36) for low pump
intensities 
, such that the cavity field is essentially in the
vacuum state. We first solve Eq. (36) at the asymptotics of
the dynamics and find an explicit form for the stationary
distribution; we then extract numerical predictions based on
stochastic differential equations that we will define below. In
the following discussion, we will assume, for simplicity, that
all atoms are identical and set mj = m, Sj = S, Uj = U , and
γj = γ .

A. Fokker-Planck equation for small intracavity
photon numbers

We assume that the low effective pumping rate S is
small compared with the cavity decay rate κ (more precisely,√

NS � κ). Consequently, the mean number of intracavity
photons is close to zero, |α|2 � 1. In this limit, we can
analytically evaluate σs by reducing the Hilbert space of the
photon field to zero- and one-photon states. The coefficients
can be then analytically determined in lowest order in |α|, and
Eq. (36) can be cast in the form

∂

∂t
f (x, p,t)

= −
N∑

n=1

∂

∂xn

pn

m
f

− 2h̄kS2
N∑

�,n=1

∂

∂pn

�′
c

�′2
c + κ2

sin(kxn) cos(kx�)f

− 4h̄k2

m
S2

N∑
�,n=1

∂

∂pn

�′
cκ(

�′2
c + κ2

)2 sin(kxn) sin(kx�) p�f

+ h̄2k2S2
N∑

�,n=1

∂2

∂pn∂p�

κ

�′2
c + κ2

sin(kxn) sin(kx�)f,

(40)

where we have additionally assumed that s = 
/g =
S/U � 1.

In Eq. (40), we did not report the cross derivative between
position and momentum, since we assume that the atoms’
spatial density nat is uniform: In fact, the pump intensity is
taken to be well below the self-organization threshold, the
mean intracavity photon number is close to zero, and we expect
that the intracavity optical lattice does not confine the atoms.
We will check the consistency of this hypothesis later on.

We have also neglected spontaneous emission, since we
choose |�| � γ /2 and consider large cooperativity, C =
g2/(κγ /2) [30]. This can be checked when comparing the
contribution to the diffusion coefficient due to spontaneous
decay to the one due to the coupling with the cavity field.
Their ratio reads

u2

〈sin2(kxn)〉
(

κγ

2g2

)
�2

c + κ2

κ2

�2 + γ 2/4

�2
∼= 2u2

1

C

�2
c + κ2

κ2
,

where we have used that |�c| � N |U | and that 〈sin2(kxj )〉 =
1/2 when the atoms are not spatially localized inside the vol-
ume of the cavity mode. Therefore, the effect of spontaneous

decay can be neglected when C � 1 (and �c is of the order of
κ), which are the conditions we consider in the following. In the
other regime, when the atoms are localized at the points where
their coupling with the field is maximum (the self-organized
phase), then 〈sin2(kxj )〉 ≈ 0 and diffusion is mainly due to
spontaneous emission.

1. Stationary state

We first analyze the predictions of the Fokker-Planck
equations under plausible assumptions, which we then verify
numerically later on. We extract, in particular, the cooling rate
and steady-state momentum distribution. In the following, we
assume N |U | � |�c|, which is consistent with uniform spatial
distributions, as shown in the following.

Let us first define the momentum distribution at time t ,
which is the integral of the Wigner function over the positions:

F ( p,t) =
∫

dxf (x, p,t).

Under the assumption of uniform spatial distribution,
f (x, p,t) ≈ F ( p,t)nat, where we denote the spatial density by
nat. We then integrate Eq. (40) over x and obtain an equation
for the momentum distribution of the form

∂

∂t
F ( p,t) ≈ −4ωr

N∑
n=1

∂

∂pn

S2 �cκδ1(
�2

c + κ2
)2 pnF ( p,t)

+ h̄mωr

N∑
n=1

∂2

∂p2
n

S2 κδ2

�2
c + κ2

F ( p,t), (41)

which has been obtained assuming N |U | � |�c|, with

δ1 = 1 + 3�2
c − κ2

�2
c + κ2

NU/2

�c

2N − 1

2N
,

δ2 = 1 + 2�2
c

�2
c + κ2

NU/2

�c

2N − 1

2N
.

We note that the assumption N |U | � |�c| is consistent with
uniform spatial distributions. In Eq. (41), there are no terms
which mix variables from different atoms: In fact, for uniform
spatial distributions, they vanish after integrating over the
positions. In this limit, the equations for the momentum
of each atom can be decoupled using the ansatz F ( p,t) =∏N

j=1 Fj (pj ,t), which delivers the equation of motion for the
momentum distribution Fj (pj ,t) for atom j :

∂

∂t
Fj (pj ,t)|t = − ∂

∂pj

ApjFj (pj ,t) + ∂2

∂p2
j

BFj (pj ,t), (42)

with

A = 4ωrS
2 �cκδ1(

�2
c + κ2

)2 ,

B = 1

2
(h̄k)2S2 κδ2

�2
c + κ2

.

A stationary solution exists for A < 0, which is verified
when �c < 0. In this case, one can make the ansatz that the
momentum distribution of one atom is a Gaussian of width
�pj . From Eq. (42), we find that �pj = �p(t), which is given
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by the equation

�p(t) = {
�p(0)2e2At + (1 − e2At )�p2

∞
}1/2

, (43)

with �p(0) the width at t = 0 and �p∞ = √−B/A the
width of the stationary state. Since the momentum distribution
is a Maxwell-Boltzmann distribution, we can associate a
temperature T to the width, with kBT = �p2

∞/m, whereby

kBT = h̄
�2

c + κ2

−4�c

δ2

δ1
. (44)

The steady state is reached with rate �cool = −2A, which we
denote by the cooling rate and reads

�cool = 8ωrS
2 |�c|κδ1(

�2
c + κ2

)2 .

The cooling rate thus scales with the square of the scattering
amplitude S and with the recoil frequency ωr and is indepen-
dent of the number of atoms. In fact, when the atoms spatial
distribution is uniform, superradiant effects are negligible
and the atoms can be considered as independent scatterers.
Minimum temperature and faster rate are found for �c = −κ .
For this choice, kBT = h̄κ/2 and �cool = 2ωr (S/κ)2δ1. It is
interesting to observe that, also in the case when the cavity
is driven, the final temperature of the atomic ensemble is
determined by the cavity linewidth, and it is minimal for
�c ≈ −κ [31].

2. Limits of validity

On the basis of the results we just derived, we are now able
to identify the parameter regime for which the semiclassical
description of the atomic motion we applied is valid at the
final stages of the cooling dynamics. It is simple to check using
Eq. (44) that both conditions (24) and (25) are verified provided
that |�c| ∼ κ and ωr � κ . In particular, the requirement that
the motion evolves more slowly than the cavity field, given by
Eq. (25), leads to the restriction that the detuning between the
cavity field and pump cannot be either much larger or much
smaller than the cavity linewidth.

Let us now consider the assumption that the atoms’ spatial
distribution is uniform in space. This assumption shall be
checked, since the atoms are subject to the dispersive potential
due to the mechanical effects of the cavity field on their motion.
Using a uniform spatial distribution in Eq. (37), one finds
that the mean-field amplitude vanishes. The mean intracavity
photon number is found using Eq. (38) for F = a†a, and
reads

ncav ≈ NS2/2

�2
c + κ2

, (45)

which discards the higher-order contribution due to nona-
diabatic effects. This value is much smaller than unity
provided that

√
NS � |�c + iκ|. The corresponding potential

depth is U0 = Uncav, and it is much smaller than the mean
kinetic energy (thus, the atoms are not spatially confined
by the potential) when U0 � κ/2, which corresponds to the
condition

√
NS � κ

√
κ

U
. (46)

When S or N are such that this inequality is not fulfilled,
the assumption of spatial flat distribution becomes invalid.
Correspondingly, the cavity field starts to establish correlations
between the atoms which ultimately lead to the formation of
ordered structures.

B. Numerical results

In this section, we evaluate the dynamics predicted by the
Fokker-Planck equation obtained in the semiclassical limit by
adiabatically eliminating the cavity degrees of freedom. Our
aim is to get an insight in the dynamics of the system by
analyzing the trajectories of the atoms. For this purpose, we
use Ito-type stochastic differential equations (SDE) [19,23,24],
which we extract from Eq. (36). They read

dxj = pj

m
dt + dXj , (47)

dpj = 2h̄kS2
N∑

i=1

�′
c

�′2
c + κ2

cos(kxi) sin(kxj )dt,

+
N∑

i=1

8ωrS
2 �′

cκ(
�′2

c + κ2
)2 sin(kxi) sin(kxj )pidt + dPj ,

(48)

where j = 1, . . . ,N labels the atoms and dPj denotes the
noise term, which is simulated by means of a Wiener process.
In particular, 〈dPj 〉 = 0 and 〈dPidPj 〉 = 2Dijdt , with

Dij = (h̄k)2S2 κ

�′2
c + κ2

sin(kxi) sin(kxj ) (49)

as the element of the diffusion matrix, while 〈dPjdX�〉 =
ηj�dt , with

ηj� = 2h̄ωrS
2 sin(kxj ) sin(kx�)

κ2 − �′2
c(

�′2
c + κ2

)2 . (50)

When one includes spontaneous emission, the elements of
the diffusion matrix read

Dij = (h̄k)2

{
S2κ

�′2
c + κ2

sin(kxi) sin(kxj ) + δij

γ ′

2
s2u2

}
,

(51)

which reports the dominant contributions [the rescattering of
a cavity photon by the atom is neglected here; see Eq. (A6)].
The analytical estimate of the steady-state momentum width
for homogeneous spatial distribution increases accordingly,

�p∞ =
√

−B/A

{
1 + 2u2

�2 + γ 2/4

�2

�2
c + κ2

κ2Cδ2

}1/2

. (52)

The simulations are performed considering a gas of 85Rb
atoms, whose D2 line, namely, the hyperfine transition
52S1/2 ↔ 52P3/2 at wavelength λ = 780 nm and linewidth
γ /2 = 2π × 3 MHz, couples with the mode of the resonator
and with the transverse laser. The laser frequency is assumed to
be detuned from the atomic frequency by �a = −500γ /2 and
from the cavity frequency by �c, with N the number of atoms
and κ = 0.5γ /2. The dynamics and steady state of the atoms
are studied, assuming that initially the atoms are at a steady
state of Doppler cooling with kBT = h̄γ /2. The initial state is
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a Gaussian distribution (the initial momentum is generated by
means of Gaussian-distributed random numbers) with uniform
density (the initial positions of the atoms are given by means of
uniformly distributed random numbers in the interval [0,λ]).

In the calculations, we neglect spontaneous emission, which
is plausible under the assumption that the cavity is far-off
resonance from the atomic transition. We have checked for
a sample of values when this assumption is justified by
comparing the simulations including spontaneous emission
with the simulations in which spontaneous decay was not
included (see Fig. 4 and related discussion). We further
discard the cross correlations, setting 〈dPjdX�〉 = 0, after
verifying that this assumption is justified for the considered
parameter choice [32]. We first check that the parameters
are chosen so that the number of intracavity photons is
sufficiently close to zero. We choose �c = −κ , for which one
expects the minimum value from Eq. (44). Using Eq. (38) and
setting ncav = 0.1, we obtain

√
N
 ∼ 0.6|�a|κ/g. For the

parameters that we chose and NU/�c = 0.05, 
 ∼ 45γ /2.
We set 
 ∼ 21γ /2, which corresponds to ncav ∼ 0.02. In this
regime, we evaluate the density matrix of the field in the
reduced Hilbert space, where the photon states are truncated
up to n = 2; see Sec. IV A.

On the basis of this result, we evaluate the time evolution
of the width �p of the momentum distribution for each atom
taking N = 5 atoms. If we take identical particles with the
same initial temperature, the momentum distribution of each
atom will be the same at all times. We then focus on the
momentum distribution averaged over all the atoms,

F0(p) = 1

N

N∑
j=1

∫ ∞

−∞
dpjδ(p − pj )Fj (pj ).

Figure 2 displays the width of the momentum distribution as
a function of time: The points are obtained from 5000 trajec-
tories for an initial momentum distribution corresponding to
a Maxwell-Boltzmann distribution with kBT = h̄γ /2 for each
atom. The dashed line is the function given in Eq. (43), which
has been obtained by assuming that all atoms are independently
cooled and show excellent agreement with the numerics. The
lower panels show the momentum distribution at given instants
of times, t = (0.1,1,9) ms. The dashed line corresponds to the
prediction extracted from Eq. (42), which gives a Gaussian at
all times.

We now analyze the dependence of the final temperature on
the detuning �c. In order to perform a systematic comparison
with the predictions of the Fokker-Planck equation in Ref. [25],
we express the pumping strength 
 of the laser in units of the
self-organization threshold defined as [25]

|
c| = κ2 + δ2

2|δ|√N

|�a|
g

,

with δ = �c − NU/2. This value scales with the number of
atoms and the detuning �c. We fix 
 = 0.3 
c, for which the
mean photon number, given by Eq. (38), takes the form

ncav ≈
(





c

)2
�2

c + κ2

8�2
c

.

This equation shows that when |�c| becomes too small, the
number of intracavity photons increases like ncav ∝ 1

�2
c
.

Figure 3 displays the momentum distribution at the asymp-
totics of the dynamics, which is found by integrating the SDE
after several ms, for three values of �c. The curves are fitted by
Gaussian of width given in Eq. (43): The stationary momentum
distribution is thus a Gaussian with width �p∞ = √

mkBT ,
with T given in Eq. (44).

Figure 4 shows the stationary momentum width as a
function of �c, which has been extracted by numerically
integrating the SDE (see blue circles). The curve exhibits a
minimum at �c = −κ and is in excellent agreement with
Eq. (43), evaluated at t → ∞ at the corresponding value of �c

(see blue dashed line). We have compared the predictions of the
Fokker-Planck equation, given by Eq. (36), with the ones of the
Fokker-Planck equation in Eq. (39), based on the assumption
that the cavity field can be treated semiclassically. The
simulations are performed by integrating the SDE reported in
Ref. [19], which for completeness are reported in Appendix B
(see red stars). Agreement between the predictions of the two
Fokker-Planck equations is found: This is remarkable since the
cavity field in this regime is in the vacuum, and thus outside
the formal limits of validity of Eq. (39). In order to check the
effect of spontaneous emission, we have integrated Eqs. (47)
and (48) using Eq. (51). The result is shown by the black
circles. The black dashed line corresponds to �p∞ in Eq. (52)
and fits the numerical data. We observe an increase of �p∞
by about 15% with respect to the case in which spontaneous
emission is not included.

We finally comment on the type of momentum distribution
we find. In [25], by studying the equation of motion of
atoms inside a resonator and driven well below threshold,
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FIG. 2. (Color online) Time evolution of the momentum distribu-
tion F0(p,t) evaluated from 5000 trajectories simulated by integrating
Eqs. (47) and (48) for N = 5 atoms. The top panel gives �p(t)
in units of the momentum recoil h̄k (circles). The dashed line
corresponds to Eq. (43). Lower panels: Momentum distribution at
t = (0.1,1,9) ms (circles) compared to a Gaussian of width �p(t)
given by Eq. (43) (dashed line). The parameters are κ = 0.5γ /2,
NU/�c = 0.05, 
 ∼ 21γ /2, and �c = −κ . The initial momentum
distribution is a Gaussian with kBTin = h̄γ /2 for each atom.
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it was argued that the steady-state momentum distribution
for the atoms far below threshold can obey a q-Gaussian
distribution with q = 1 + ωr/|δ|, where δ = �c − NU/2 and
N |U | � |�c|. This calculation was performed by neglecting
spontaneous decay. In our model, we do find Gaussian
distributions (q ≈ 1), whose steady-state temperature, given
by Eq. (44), is comparable with the result in [25]. Indeed,
our model can only allow for regular Gaussian distribution. In
fact, this is consistent with the limits of validity of the Fokker-
Planck equation we derive, which requires the separation of the
time scales between cavity field and atoms dynamics, namely,
|�c| ≈ κ � ωr .

V. DISCUSSION AND CONCLUSIONS

In this article, we have derived a Fokker-Planck equation
which describes the dynamics of atoms which are cooled by
radiative processes, where laser photons are scattered into the
mode of a high-finesse resonator. The derivation is based on
the assumption that the time scale of the atomic center-of-mass
motion dynamics is much larger than the cavity field typical
time scales, and thus holds for resonators whose linewidth
κ is much larger than the atomic recoil frequency ωr . It
cannot be applied, thus, to the setup in Ref. [33]. In this limit,
κ � ωr , we eliminate the cavity field from the atomic motion
dynamics using a perturbative expansion up to second order
in the retardation effects and derive a Fokker-Planck equation
for the atomic variables. The equation we derive constitutes
an alternative theoretical description for the cavity cooling
dynamics of atomic ensembles in high-finesse resonators.
In particular, our model provides a description which is not
restricted by the value of the laser intensity.

We have analyzed the predictions when the laser intensity
is well below the self-organization threshold. In this limit,
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0

0.05

−40 −30 −20 −10 0 10 20 30 40
0

0.05

−40 −30 −20 −10 0 10 20 30 40
0

0.05

FIG. 3. (Color online) Steady-state momentum distribution (cir-
cles) for �c = −0.3κ (top), �c = −κ (middle), and �c = −1.5κ

(bottom). The points are extracted from 5000 trajectories evaluated
for each value �c by integrating the SDE in Eqs. (47) and (48).
The dashed line is a Gaussian whose width is given by Eq. (43).
The parameters are κ = 0.5γ /2, NU/�c = 0.05, 
/
c = 0.3, and
N = 5. The initial momentum distribution is a Maxwell Boltzmann
with mean kinetic energy kBTin = h̄γ /2 for each atom.

0 0.5 1 1.5 2

10

12

14

16

18

20

22

24

FIG. 4. (Color online) Width of the steady-state momentum
distribution as a function of �c. The blue circles correspond to the
result of numerically integrating 5000 trajectories using Eqs. (47) and
(48) for each value of �c, together with Eq. (49). The blue dashed line
plots Eq. (43). The red stars correspond to the result of numerically
integrating 5000 trajectories corresponding to the Fokker-Planck
equation (39), where the cavity field is treated in the semiclassical
limit (details are reported in Appendix B). The results are obtained by
neglecting spontaneous emission. Spontaneous emission is included
in the results reported by the black circles, which have been obtained
by integrating Eqs. (47) and (48) with Eq. (51) for 200 trajectories.
The black dashed line gives the corresponding analytical estimate
according to Eq. (52). The deviations of the simulation data from the
fit originate from statistical noise. The parameters are κ = 0.5γ /2,
NU/�c = 0.05, 
/
c = 0.3, and N = 5.

collective effects can be discarded and there is no spatial
localization of the atoms by the light forces: at the steady state
of the dynamics, the atoms are uniformly distributed inside
the cavity and their momenta obey a Maxwell-Boltzmann
distribution, whose width is determined by the cavity linewidth
[34]. This result is in agreement with previous studies based on
other approaches [17,25]. In future studies, we will apply this
formalism to the dynamics of atoms and field when the laser
intensity is close to threshold. This will allow us to investigate
the onset of self-organization and to predict, among others, the
coherence properties of the light emitted by the resonator.
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APPENDIX A: SPONTANEOUS EMISSION

In this appendix, we report the Lindbladian in Eq. (27)
and the coefficients of Fokker-Planck (36) which are due
to spontaneous decay. For simplicity, we assume kj = k.
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The Lindbladian in Eq. (27) reads

Lγ ˆ̃Wt

(
x
p

)
= −

∑
j

γ ′
j

2
s2
j

[
2 ˆ̃Wt

(
x
p

)
− 2

∫ 1

−1
duNj (u) ˆ̃Wt

(
x − τ

mj
h̄k ju

p + h̄k ju

)]

−
∑

j

γ ′
j

8

{
â†â

[
e

2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τ

mj
h̄kj

p − h̄k j

)
+ e

−2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τ
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p + h̄k j
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+
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e
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τ ) ˆ̃Wt

(
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h̄kj

p + h̄k j

)
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−2ik(xj + pj
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τ ) ˆ̃Wt

(
x + τ

mj
h̄kj
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â†â

+ 2

[
â†â, ˆ̃Wt

(
x
p
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+

− 2
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Nj (u)â
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e
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(
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mj
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(
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mj
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)
+ e

−2ik(xj + pj
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(
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â†du

}

−
∑

j
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j

2
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{
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(
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)
)
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â†
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. (A1)

This superoperator is expanded in power of ε, such that the zeroth-order term in Eq. (30) reads

Lγ ′
0

ˆ̃W =
∑

j

γ ′
j

2
sj [(â − â†), cos(kxj ) ˆ̃W ] −

∑
j

γ ′
j

2
cos2(kxj )(â†â ˆ̃W + ˆ̃Wâ†â − 2â ˆ̃Wâ†), (A2)

while the first- and second-order terms, given in Eqs. (31) and (32), respectively, take the form

Lγ ′
1

ˆ̃W = −
∑

j

γ ′
j

2
(h̄k)

∂

∂pj

−i

2
sin(2kxj )[â†â, ˆ̃W ] −

∑
j

γ ′
j

2
(h̄k)

1

2

τ i

mj

sin(2kxj )

[
â†â,

∂

∂xj
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]

+
∑

j

γ ′
j

2

kpj

mj

τ sin(2kxj )(â†â ˆ̃W + ˆ̃Wâ†â − 2â ˆ̃Wâ†), (A3)

Lγ ′
2

ˆ̃W =
∑

j

γ ′
j

2
s2
j (h̄k)2(u2)j

∂2

∂p2
j
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∑

j

γ ′
j

2

1

8
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[
2 cos(2kxj )

(
â†â

∂2

∂p2
j

ˆ̃W + ∂2

∂p2
j

ˆ̃Wâ†â

)

− 4â
∂2

∂p2
j

ˆ̃Wâ† − 2(u2)j [2 cos(2kxj ) + 2]â
∂2

∂p2
j

ˆ̃Wâ†

]
+
∑

j

γ ′
j

2
sj (h̄k)2(u2)j cos(kxj )

(
â

∂2

∂p2
j

ˆ̃W + ∂2

∂p2
j

ˆ̃Wâ†

)
. (A4)

Finally, the coefficients appearing in Eq. (36) and due to spontaneous emission are given by the expressions

γ ′
j� = γ ′

�

2

k

m�

sin(2kx�)Tr

{
F̂j

∫ ∞

0
dτ exp (L0τ ) τ [â†âσs(x) + σs(x)â†â − 2âσs(x)â†]

}
, (A5)

D′
j� = −γ ′

�

2
(h̄k)

i

2
sin(2kx�)Tr

{
F̂j

∫ ∞

0
dτ exp(L0τ )[â†â,σs(x)]

}

+ δj�(h̄k)2
γ ′

j

2

{
〈â†â〉σs (x)[sin2(kxj ) + (u2)j cos2(kxj )] + sj (u2)j [〈â + â†〉σs (x) cos(kxj ) + sj ]

}
, (A6)

η′
j� = γ ′

�

2

−ih̄k

2m�

sin(2kx�)Tr

{
F̂j

∫ ∞

0
dτ exp (L0τ ) τ [â†â,σs(x)]

}
. (A7)
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SCHÜTZ, HABIBIAN, AND MORIGI PHYSICAL REVIEW A 88, 033427 (2013)

APPENDIX B: FOKKER-PLANCK EQUATION FOR LARGE PHOTON NUMBERS

For the Fokker-Planck equation (39), the SDE take the form [19]

dxj = pj

mj

dt, (B1)

dpj = −h̄∇j [Uj |α|2 cos2(kxj ) + sjUj cos(kxj )(2αr ) − (2αi)�jsj cos(kxj )]dt + dPj , (B2)

dαr =
⎡
⎣−�′

cαi − κ ′αr −
∑

j

�j sj cos(kxj )

⎤
⎦ dt + dAr, (B3)

dαi =
⎡
⎣�′

cαr − κ ′αi −
∑

j

sjUj cos(kxj )

⎤
⎦ dt + dAi, (B4)

where the noise terms dPj , dAr , and dAi are simulated by means of Wiener processes,⎛
⎜⎜⎜⎜⎜⎝

dAr

dAi

dP1

· · ·
dPN

⎞
⎟⎟⎟⎟⎟⎠ = B

⎛
⎜⎜⎜⎜⎜⎝

dW1

dW2

dW3

· · ·
dWN+2

⎞
⎟⎟⎟⎟⎟⎠ , (B5)

where BBT = D′. The diffusion matrix now reads (39)

D′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 −b1αi −b2αi · · · −bNαi

0 a b1αr b2αr · · · bNαr

−b1αi b1αr c1 0 · · · 0

−b2αi b2αr 0 c2
. . .

...
...

...
...

. . .
. . . 0

−bNαi bNαr 0 · · · 0 cN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with a = κ ′/2, bj = −(h̄k/2)�j sin(2kxj ), and

cj = 2(h̄k)2�j {|α|2[sin2(kx) + (u2)j cos2(kxj )] + sj (u2)j [2αr cos(kxj ) + sj ]}.
When we integrate these stochastic differential equations, we assume that the initial state of the cavity field is a coherent state
with 〈αr〉 = 5 and 〈αi〉 = 0. This ensures the validity of the semiclassical description for the cavity field at t = 0, which has to
be verified for all later times.
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