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Two-photon spectroscopy of trapped HD+ ions in the Lamb-Dicke regime
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We study the feasibility of nearly degenerate two-photon rovibrational spectroscopy in ensembles of trapped,
sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD)
scheme. Taking advantage of quasicoincidences in the rovibrational spectrum, the excitation lasers are tuned close
to an intermediate level to resonantly enhance two-photon absorption. Realistic simulations of the REMPD signal
are obtained using a four-level model that takes into account saturation effects, ion trajectories, laser frequency
noise, and redistribution of population by blackbody radiation. We show that the use of counterpropagating laser
beams enables optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the
100-Hz range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our results
indicate the feasibility of molecular spectroscopy at the 10−14 accuracy level for improved tests of molecular
QED, a new determination of the proton-to-electron mass ratio, and studies of the time (in)dependence of the
latter.
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I. INTRODUCTION

Most high-precision measurements in atomic or molecular
physics rely on laser spectroscopy in dilute gases. Several
methods have been developed to suppress Doppler line
broadening and reach natural linewidth or laser-width limited
resolutions, such as saturated absorption [1–3] or Doppler-free
two-photon spectroscopy [4–7]. Resonantly enhanced two-
photon absorption using two lasers of unequal frequencies
tuned close to an intermediate level was also studied both the-
oretically and experimentally [8–10]; sequential two-photon
absorption at exact resonance was shown to provide both
maximum transition rates and Doppler-free spectra. Indeed,
the photon absorbed in the first transition selects a velocity
class from which the second absorption occurs without
Doppler broadening.

One of the most successful methods to suppress the Doppler
effect is single-photon absorption on trapped species in the
Lamb-Dicke regime where the confinement length is smaller
than the wavelength. This condition is easily satisfied in ion
traps in the microwave domain, which has allowed high-
precision hyperfine structure measurements in many ionic
species [11–13] and the development of microwave frequency
standards [14–16]. The Lamb-Dicke regime is much more
challenging to achieve in the optical domain [17,18]. It requires
tight confinement of laser-cooled ions and has been obtained
only with small ion numbers, i.e., single ions or ion strings
located on the axis of a linear trap.

We address here the specific case of molecular ions,
where high-resolution infrared spectroscopy opens the way
to many interesting applications such as tests of QED [19,20]
or parity violation [21], measurement of nucleus-to-electron
mass ratios [22,23], and studies of their variation in time
[24–26]. Studies on small ion numbers in the Lamb-Dicke
regime raise additional problems due to the difficulty of
preparing and controlling the internal state of molecules. So
far, the best resolutions have been obtained with ensembles of
sympathetically cooled molecular ions [27,28]. Temperatures

of a few tens of mK are typically achieved, which corresponds
to a Doppler broadening of several MHz, well above the natural
linewidths of excited rovibrational states.

To circumvent this limitation, degenerate Doppler-free
two-photon spectroscopy is a natural solution [29,30]. How-
ever, relatively high field intensities are generally required
to achieve a substantial transition rate, and this approach
often implies installing a high-finesse enhancement cavity
in the vacuum chamber [31]. For the sake of experimental
convenience and universality, a sub-Doppler spectroscopic
scheme that would be free of this requirement is highly
desirable.

In this paper, we analyze theoretically the resonantly
enhanced two-photon excitation of trapped molecular ions
with nearly degenerate counterpropagating laser fields, which
is made possible by quasicoincidences in the rovibrational
spectrum. Near-resonant excitation of an intermediate level
warrants sufficient transition rates with moderate laser power;
in addition, two-photon absorption takes place in the Lamb-
Dicke regime, due to the effective wavelength associated with
simultaneous absorption of one photon from each field. The
proposed scheme thus combines advantages of the resonant
enhancement already evidenced in neutral gases, and of the
Lamb-Dicke effect that has been exploited in microwave
spectroscopy of trapped ions.

As a first application, we focus on hydrogen molecular
ions. These simple systems enable highly precise comparisons
between measured transition frequencies and theoretical pre-
dictions. Current efforts to evaluate hyperfine structure [19]
and QED corrections [20] in H2

+ or HD+ are expected to
improve the theoretical accuracy beyond 0.1 ppb, allowing
for stringent tests of QED and for an improved determination
of the proton-to-electron mass ratio (presently known to 0.41
ppb accuracy [32]). The high Q factor of rovibrational lines
also opens the way to searches for possible time variations
of fundamental constants [24,25] and “fifth forces” [33] with
improved sensitivity. Experimental studies on sympathetically
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cooled HD+ ions [28,34], using single-photon rovibrational
transitions detected by (1 + 1′) resonance-enhanced multi-
photon dissociation (REMPD), are so far limited to the ppb
level, mainly by the Doppler broadening. As we show, this
limitation can be overcome by several orders of magnitude in
the proposed experiment.

The paper is organized as follows. In Sec. II, we describe
the proposed (1 + 1′ + 1′′) REMPD experimental scheme and
discuss all the frequency scales in the problem. The theoretical
model of REMPD is introduced in Sec. III. We model the
molecule-light interaction as a three-level system which inter-
acts coherently with the two laser fields and take dissociation
into account by introducing a noncoherent coupling to a fourth
level. Our treatment furthermore includes the motional degrees
of freedom of the molecules. The dynamics of the entire
system are captured within a set of optical Bloch equations
(OBEs), which are solved to predict the dissociated ion fraction
monitored in the experiment. In Sec. IV, we first numerically
solve the model in the ideal case of a single ion undergoing a
pure harmonic motion in order to highlight the main features
of the signal and evidence the Lamb-Dicke effect. Realistic ion
motion obtained from molecular ion dynamics simulations is
then incorporated in the model, and optimal conditions for
the experiment in terms of laser detunings, which are found
markedly different from the gas case [9], are determined. We
show that under these conditions, an approximate model of
the two-photon transition rate can be used, and its validity
range is assessed by comparing to the exact OBE model.
The power shift and broadening is analyzed, as well as the
effect of laser frequency noise. Finally, in Sec. V, in order
to obtain realistic estimates of the expected REMPD signal
strength, we simulate the dynamics of the total number of
HD+ ions taking into account the REMPD rates as well as the
redistribution of rotational population induced by blackbody
radiation (BBR).

II. TWO-PHOTON TRANSITIONS IN HD+ AND
FREQUENCY SCALES OF THE PROBLEM

The permanent electric dipole moment of HD+ allows
rovibrational transitions within the electronic ground state.
Weak vibrational overtone transitions exist only by virtue of
the anharmonicity of the HD+ bond. Two-photon vibrational
transitions are possible, but require a quasiresonance with
an intermediate level to achieve sufficiently high transition
rates. Using the extensive set of accurate rovibrational level
energies obtained by Moss [35], an analysis of intermediate
level energy mismatch reveals two interesting transitions: (v =
0, L = 1) → (v = 1, L = 0) → (v = 2, L = 1) at 5.37 μm
[30] (energy mismatch, �E = 6.18 cm−1) and (v = 0, L =
3) → (v = 4, L = 2) → (v = 9, L = 3) at 1.44 μm (�E =
6.84 cm−1). In the following, we consider the latter, whose
wavelength is more convenient for laser stabilization and
absolute frequency measurements.

Throughout the paper, the values of various parameters are
taken from the HD+ spectroscopy experiment developed by
the Amsterdam team and described in [34]. A set of about
100 HD+ ions is sympathetically cooled by 1–2 × 103 laser-
cooled Be+ ions to about 10 mK. The (1 + 1′ + 1′′) REMPD
experiment proposed here consists in driving a quasidegener-

FIG. 1. Sketch of the HD+ energy levels involved in the proposed
REMPD experiment. (Left) Vibrational structure. Couplings by
laser fields and spontaneous relaxation are respectively indicated
by straight and zigzag arrows. (Center) Rotational structure. (Right)
Hyperfine structures (not to scale).

ate two-photon overtone transition using counterpropagating
beams. The v = 9 level is efficiently photodissociated using a
532-nm laser beam. Two-photon excitation and subsequent
dissociation lead to loss of HD+ ions from the trapped
ensemble. This loss is observed by comparing the number
of HD+ ions before and after REMPD, which is deduced from
the fluorescence photons emitted by the laser-cooled Be+ ions
while heating the ion ensemble through resonant excitation of
the HD+ motion [36]. The detection noise typically observed
in the experiment limits the minimum detectable dissociated
HD+ fraction to a few percent.

Figure 1 shows the structure of HD+ energy levels involved
in the REMPD scheme. The kets |1〉, |2〉, and |3〉 denote
the levels (v = 0, L = 3,F,S,J1), (v = 4, L = 2,F,S,J2),
and (v = 9, L = 3,F,S,J3), where (F,S,J ) are hyperfine
quantum numbers according to the coupling scheme detailed
below. The vibrational structure (with intervals of about
60 THz) sets the larger frequency scale in the experiment,
followed by the rotational constant (B ≈ 700 GHz). The
resonant angular frequencies are ω12/2π = 207.838 THz
and ω23/2π = 207.427 THz, leading to a small two-photon
transition mismatch ω12 − ω23 = 410 GHz (13.7 cm−1), i.e.,
0.2% in relative value. The rovibrational states have small
natural widths �1/2π = 0.037 Hz, �2/2π = 9.2 Hz, and
�3/2π = 13.1 Hz [37].

We use the standard spin-coupling scheme F = Ip + Se,
S = F + Id, J = S + L [38]. For a given rovibrational level,
the hyperfine structure spreads over �hyp ≈ 1 GHz, the
smallest interval between two hyperfine sublevels being
δhyp ≈ 8 MHz for the v = 0, L = 3 level [38]. The Zeeman
structure is discussed in Appendix A. In the Amsterdam
experimental setup, the magnetic field can be reduced to values
as low as 20 mG, resulting in a Zeeman splitting δZ smaller
than 10 Hz for the best suited lines, due to an almost perfect
compensation of Zeeman shifts. Assuming the laser linewidth
is larger than the Zeeman splitting, all the Zeeman components
can be addressed simultaneously. That is why the Zeeman
structure is not considered in our model.
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The two-photon transition is driven by two lasers of angular
frequencies ω and ω′ close to the single-photon transition
frequencies ω12 and ω23, respectively. The transitions lie in
the 1.4-μm range and can be driven by frequency-stabilized
diode lasers. Using transition moments calculated with the
approach of [39], the achievable laser intensities, i.e., about
20 mW/(0.1 mm)2, can be translated into maximum values for
the Rabi frequencies �12/2π or �23/2π that exceed 100 kHz.

In the linear rf Paul trap, the HD+ molecular ions are
embedded in a Be+ Coulomb crystal [40,41]. As part of a
complex mechanical system, each HD+ ion oscillates around
its equilibrium position with oscillation frequencies in the kHz
to MHz ranges and amplitudes in the μm range. Velocities
can typically reach 5 m/s (see Appendix B), resulting in
a single-photon Doppler effect �D in the 5 MHz range
that clearly dominates the single-photon transition width.
The values of the laser detunings δ12 = ω − ω12 and δ23 =
ω′ − ω23 with respect to �D determine the dynamics of the
system: instantaneous two-photon transitions will dominate if
δ12 > �D , while in the opposite case sequential transitions will
also take place.

With a counterpropagating two-photon excitation scheme,
the effective wavelength λeff = 2πc/(|ω12 − ω23|) is about
500 times larger than the single-photon wavelength, i.e.,
0.7 mm. Since the ion motional amplitude a is about 1 μm, the
Lamb-Dicke parameter η = a/λeff ≈ 0.014 is much smaller
than unity, leading to a Doppler-free signal, as evidenced in
Sec. IV.

The REMPD process involves a photodissociation step
from level |3〉 using a 532-nm cw laser with a maximum
intensity of 140 W/cm2, corresponding to a photodissociation
rate �diss = 5000 s−1. In the following, we use �diss = 200 s−1,
which is still much larger than the natural decay rate and
sufficient to detect the REMPD signal [34].

The laser linewidths �L may range from hundreds of kHz
down to the Hz level depending on the laser frequency
stabilization scheme. In case of imperfect stabilization, �L

may be comparable to the Rabi frequencies and strongly affect
the two-photon transition rate and linewidth, which requires
taking laser frequency noise into account.

At thermal equilibrium at room temperature, most of the
HD+ population is concentrated in the v = 0, 0 � L � 5 levels
[42]. Blackbody radiation permanently redistributes the pop-
ulations among those levels with transition rates �BBR in the
0.1 s−1 range [39], the smallest frequency scale of the problem.

To summarize, the different rates follow the hierarchy

�BBR � δZ, �1,2,3 � �diss,�L � �12 ≈ �23

� �D ∼ δ12 ∼ δ23 � δhyp (1)

� �hyp � |ω12 − ω23| < B � ω12,ω23.

This analysis shows that the different hyperfine components
of the two-photon transition can be considered to be well
isolated and that it is appropriate to study the two-photon
transition rate using a three-level ladder system. It also
shows that one can distinguish two different time scales for
the population evolution: a fast one due to laser couplings
and spontaneous relaxation and a much slower one due to
BBR population redistribution. As a consequence, in a very
good approximation, the REMPD process can be studied

in two steps. The first step evaluates the short-term (≈1 s)
time evolution of a three-level system under laser excitation
and spontaneous decay to obtain the effective two-photon
excitation and REMPD rates (Secs. III and IV). In the second
step, the long-term evolution of the total number of HD+ ions
is studied, taking into account the REMPD rate obtained in the
first step, and the redistribution of rotational-state population
by BBR (Sec. V).

III. REMPD MODEL

We consider the three-level ladder structure shown in Fig. 1.
For states |2〉 and |3〉, the relaxation by spontaneous emission
mainly populates rovibrational levels with v′ = v − 1. The
spontaneous emission cascade, coupled to BBR redistribution,
can, of course, ultimately populate the v = 0, L = 3 state,
but this happens on much longer time scales with respect
to laser excitation, dissociation, and spontaneous decay. We
thus treat the three-level system as an open system, and
postpone the analysis of BBR redistribution to Sec. V. While
levels |1〉 and |2〉 have natural widths �1 and �2, level |3〉
relaxes through spontaneous emission with a natural width
�3 and through dissociation with a rate �diss, resulting in
an effective width �eff

3 = �3 + �diss. We introduce a fourth
virtual level |4〉 whose population represents the photodisso-
ciated fraction. The coupling to level |4〉 is an irreversible
process.

The ions are excited by two counterpropagating beams of
angular frequencies ω and ω′ close to the resonant frequencies
ω12 and ω23. The corresponding electric field is given by

E(r,t) = Eεe−i[ωt−k·r+ϕ(t)] + Eε′e−i[ω′t−k′ ·r+ϕ′(t)] + c.c., (2)

where ϕ(t) and ϕ′(t) describe laser phase noise, and E,E′
and ε,ε′ stand for the field amplitudes and polarization states,
respectively.

Following the lines of [43], the density matrix �(r,t) obeys
the OBEs d

dt
�(r,t) = 1

ih̄
[H,�(r,t)] + �̇relax, where the total

time derivative is written as d
dt

= ∂
∂t

+ v · ∇. Applying the
rotating wave approximation, we set

�ii = ρii, i = 1, . . . ,4, �12 = ρ12(t)e−i[ωt−k·r(t)],

�23 = ρ23(t)e−i[ω′t−k′ ·r(t)], �13 = ρ13(t)e−i[(ω+ω′)t−(k+k′)·r(t)],

(3)

and we obtain

˙ρ11 = −�1ρ11 + i(�12ρ21 − �∗
12ρ12),

˙ρ22 = −�2ρ22 + i(�∗
12ρ12 − �12ρ21 + �23ρ32 − �∗

23ρ23),

˙ρ33 = −(�3 + �diss)ρ33 + i(�∗
23ρ23 − �23ρ32),

˙ρ44 = �dissρ33,

˙ρ12 = {i[δ12 − k · ṙ(t)] − γ12}ρ12

+ i[�12(ρ22 − ρ11) − �∗
23ρ13],

˙ρ13 = {i[δ12 + δ23 − (k + k′) · ṙ(t)] − γ13}ρ13

+ i(�12ρ23 − �23ρ12),

˙ρ23 = {i[δ23 − k′ · ṙ(t)] − γ23}ρ23

+ i[�23(ρ33 − ρ22) + �∗
12ρ13], (4)
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where the Rabi frequencies are �12 = d12 · εEeiϕ(t)/h̄ and
�23 = d23 · ε′E′eiϕ′(t)/h̄ with the dipole moment matrix el-
ements dij = 〈i|d|j 〉. The coherences relaxation rates are
γ12 = (�1 + �2)/2 and γi3 = (�i + �3 + �diss)/2. The pho-
todissociated fraction ρ44 is proportional to the time integral
of the upper level population ρ33(t).

The Doppler effect appears in the terms k · ṙ(t) and k′ · ṙ(t)
in the evolution equations of ρ12 and ρ23. Suppression of the
Doppler effect occurs in the ρ13 evolution equation in the
case of counterpropagating beams of nearly equal frequencies
for which k + k′ ≈ 0. In the following, the laser direction
is assumed parallel to the linear trap axis z, so that the
Doppler effect in Eq. (4) reduces to k · ṙ(t) = k ż(t) and
k′ · ṙ(t) = −k′ ż(t). This assumption furthermore justifies
ignoring effects of ion micromotion at the rf trap frequency.
A detailed discussion of micromotion effects is postponed to
Sec. IV D4.

At first glance, the largest REMPD signal could be expected
for the doubly resonant configuration, δ12 = −δ23 = 0, as
in a thermal gas [9]. However, if the detunings are smaller
than (or comparable to) the single-photon Doppler width,
sequential absorption of photons ω and ω′ through level |2〉
can compete with the Doppler-free signal. The main objective
of this paper is to determine the experimental conditions
under which one can obtain sub-Doppler REMPD signals with
the largest signal-to-noise ratio; in particular, to determine
the optimal single-photon detunings δ12 and δ23, taking into
account realistic ion trajectories and laser phase noise.

Since under those conditions the OBE cannot be solved in
a closed form, we integrate them numerically between t = 0
and t = tmax. We use a fourth-order Runge-Kutta method with
a short enough time step (10−9 to 5 × 10−8 s) to well represent
the relevant characteristic frequencies of the problem. The
initial conditions are ρ11 = 1, and zero for all the other density
matrix elements. Since we consider an open three-level system,
the stationary solution is not relevant. The populations and
coherences only have a transient behavior and vanish for long
times. The signal, i.e., the dissociated fraction, is given by
ρ∞

44 = ρ44(t → ∞); the integration time tmax has to be chosen
long enough to get a precise estimate of ρ∞

44 .

IV. RESULTS

The REMPD signal given by the dissociated fraction ρ44

is first studied in Sec. IV A in the simple case of noiseless
lasers and of a single molecular ion with a harmonic motion
to characterize sideband effects and identify the Lamb-Dicke
regime. In Sec. IV B, we come to a more realistic model by
including actual ion trajectories to simulate the experimental
signal and determine optimal conditions for REMPD signal
observation. The OBE results are compared to a simple rate
equation model introduced in Sec. IV C. Finally, we evaluate
light shifts and power broadening and analyze the effects of
laser phase noise in Sec. IV D.

A. Single-frequency oscillating ion

Here, we consider a single ion oscillating with an angular
frequency �vibr and velocity amplitude ṽ. Figure 2 (Fig. 3)
shows the typical time evolution of the populations ρ11,

FIG. 2. (Color online) Time evolution of the populations in the
case of a single ion undergoing pure harmonic motion along the z axis.
�vibr = 2π × 600 kHz; velocity amplitude, ṽ = 1 m/s, �12 = �23 =
2π × 5 kHz; small detuning, δ12 = −δ23 = 2π × 10 kHz; integration
time step, 10−9 s.

ρ22, and ρ33, as well as the dissociated fraction ρ44 in the
case of an ion with a pure oscillatory motion for opposite
small (large) detunings of 10 kHz (5 MHz) as compared to
the single-photon Doppler width ṽ/λ = 714 kHz. The other
parameters of the calculation (see figure captions) correspond
to the typical values used throughout the paper. Although the
final dissociated fractions ρ44 are comparable, the two figures
corresponds to completely different conditions.

For small detunings, two-photon excitation is a sequential
process involving a large intermediate state population ρ22.
ρ11 and ρ33 (ρ22) exhibit strong oscillations at 2 kHz (12 and
14 kHz), see Fig. 2. We have checked that those evolution fre-
quencies are consistent with the generalized Rabi frequencies
that can be determined by solving the OBE analytically for an
ion at rest [ṙ(t) = 0].

In the large detuning regime (Fig. 3), ρ22 always remains
negligible, and level |3〉 is directly excited from level |1〉 by
a two-photon process. Comparing the time scales in Figs. 2
and 3, one can see that the two-photon process is much
slower than the low-detuning sequential process; nonetheless,
it also leads to a large dissociated fraction after a long-enough

FIG. 3. (Color online) Same as Fig. 2 but with a large detuning
δ12 = −δ23 = 2π × 5 MHz. Dotted lines are obtained from Eq. (6)
without adjustable parameter.
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FIG. 4. (Color online) Photodissociated fraction as a function of
δ23. Red dashed line, ion at rest. Black solid line, oscillating ion with
�vibr/2π = 600 kHz, ṽ = 1 m/s. Parameters: �12 = �23 = 2π ×
5 kHz, δ12/2π = 5 MHz. Time step: 5 ×10−8 s, tmax = 0.5 s.

time. The behavior of ρ11 and ρ44 in Fig. 3 is very close to
exponential decay, which will make it possible to describe the
evolution by an effective REMPD rate. The apparent thickness
of the ρ22 curve is due to fast modulation at the ion oscillation
frequency.

We now analyze the REMPD signal ρ∞
44 as a function of δ23

for a (fixed) large detuning δ12. Figure 4 shows the spectrum
for an oscillating ion with �vibr = 2π × 600 kHz and ṽ =
1 m/s (the red dashed line is obtained for an ion at rest for
comparison). It exhibits two groups of peaks having a sideband
structure, in which the sidebands are generated by the Doppler
effect due to the ion oscillation, leading to a comb of lines
separated by �vibr. They correspond to two different processes.

The right part of Fig. 4, centered at δ23 = 0, corresponds
to sequential excitation. Since the detuning δ12 is large as
compared to the single-photon Doppler width, sequential
excitation is inefficient, leading to very small dissociated
fractions of the order of 10−6. In its rest frame, the oscillating
ion sees phase-modulated laser spectra with a modulation
index of 2πṽ/(λ�vibr) = 1.16, leading to three significant
sidebands on each side of the carrier, explaining the broad
signal sideband structure.

The left part of Fig. 4, centered at the two-photon resonance
δ23 = −δ12, is the signal due to instantaneous two-photon exci-
tation. It exhibits an intense narrow peak as well as sidebands.
However, the sidebands are much smaller than the carrier
and drop off very rapidly with sideband order, evidencing
the Lamb-Dicke regime. In order to get a more quantitative
understanding, we varied the ion oscillation frequency �vibr

for a given velocity amplitude (ṽ = 1 m/s) and determined the
two-photon transition rate �2ph by fitting the decay of ρ11(t)
with Eq. (6) (see Sec. IV C) for the carrier and first sidebands
of the two-photon signal (peaks A, B, and C in Fig. 4).
Figure 5 shows �2ph versus �vibr. Red solid lines are obtained
from the model given in Appendix D [Eqs. (C2) and (C3)].
In Eq. (C3), the effective quantum number n depends on
�vibr through the relationship (n + 1/2)h̄�vibr ≈ mṽ2/2, and
we used s = 0,±1 for the carrier A and sidebands B and
C, respectively. Both approaches are in good agreement and
demonstrate that the system is deep in the Lamb-Dicke regime.
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FIG. 5. (Color online) Black dotted curves, two-photon transition
rates on the carrier (A) and first sidebands (B), (C) of the two-photon
resonance versus the oscillation frequency, obtained by solving the
OBE for a harmonic oscillation. Red solid curves, same, but obtained
using Eqs. (C2) and (C3) of Appendix C. Parameters: δ12/2π =
5 MHz, �12 = �23 = 2π × 5 kHz, ṽ = 1 m/s. Time step: 10−9s,
tmax = 1 s.

To conclude on the spectrum of Fig. 4, let us stress again
the important differences with respect to the gas case. In a
dilute gas, the velocity can be considered as constant during
the interaction with light; as a result, sequential transitions
are Doppler-free because the first transition selects a velocity
class [9]. This effect does not take place in ion traps, where the
ion velocities oscillate with time, and sequential transitions are
Doppler-broadened. On the contrary, instantaneous transitions
which are Doppler-free in ion traps due to the Lamb-Dicke
effect, exhibit residual Doppler broadening in a gas.

Figure 6 shows the signal at two-photon resonance as a
function of the Rabi frequencies �12 and �23, assuming that

0 5 10 15 20
Ω12 /2π (kHz)

0

0.2

0.4

0.6

0.8

ρ44
∞

FIG. 6. (Color online) Photodissociated fraction versus Rabi
frequencies for a detuning δ12 = −δ23 = 2π × 5 MHz. �vibr = 2π ×
600 kHz, ṽ = 1 m/s. �12 and �23 are taken as equal. The red solid
line corresponds to the prediction of Eq. (8), and the dotted curve
is obtained by solving the OBE with a time step of 10−8 s, and
tmax = 10 s.
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FIG. 7. (Color online) (a)–(d) Dissociated fraction as a function
of δ23 for four values of δ12/2π : 0, 1, 2, and 5 MHz. (e) Magnification
of the Doppler-free peak for δ12/2π = 5 MHz; the solid line is
obtained from Eq. (8). The simulations are performed for 20 HD+

ions in a 400-Be+ ion cloud. Parameters: �12 = �23 = 2π × 5 kHz;
time step, 10−8 s, tmax = 0.5 s for (a)–(d) and 10 s for (e).

they are equal. The saturation intensity (for which the signal
is equal to half its maximum value) is found to correspond to
Rabi frequencies of about 2 kHz, in excellent agreement with
the rate equation model of Sec. IV C [Eq. (9)]. For most of the
calculations hereafter, the Rabi frequencies are set to 5 kHz to
achieve large signals.

B. Real ion motion

In this section, we come to a more realistic description of the
REMPD dynamics by inserting into the OBE ion trajectories
obtained by numerically simulating the motion of 20 HD+ ions
sympathetically cooled by 400 Be+ ions (Appendix B). The
dissociated fraction is computed for each trajectory and the
results are averaged. Figure 7 shows the dissociated fraction
ρ44 as a function of detuning δ23 for δ12 = 0, 1, 2, and
5 MHz. For small detunings, ρ44 is dominated by the sequential
contribution, leading to a wide Doppler-broadened spectrum
which obscures the Doppler-free instantaneous two-photon
signal. For detunings larger than the single-photon Doppler
width, the sequential contribution strongly decreases and the
narrow Doppler-free peak dominates.

The sequential contribution thus appears as a noise floor
that limits the visibility of the Doppler-free signal. In order
to determine how close to the resonance the detuning can
be set, we compare the Doppler-free signal to the sequential
contribution by plotting in Fig. 8 the top of the Doppler-free
peak and the estimated “noise floor” due to the sequential
signal. The results show that an optimal visibility of the
Doppler-free signal is achieved for detunings around 5 MHz,
which corresponds to the maximum single-photon Doppler
shift experienced by the ions.

-20 -10 0 10 20
δ12 /2π (MHz)

0

0.2

0.4

0.6

0.8
ρ44

∞

FIG. 8. (Color online) (Red dotted) Photodissociated fraction
ρ44 as a function of the detuning δ12 at two-photon resonance (δ23 =
−δ12) obtained by solving the OBE. (Black dashed) Photodissociated
fraction due to sequential two-photon excitation (“noise floor”),
which we evaluate at the pedestal of the Doppler-free peak. The
green solid curve is obtained from Eq. (8). Parameters: �12 = �23 =
2π × 5 kHz; time step 10−8 s, tmax = 2 s.

C. Rate equation model

The analysis of the signal predicted by solving numerically
the OBE showed that the optimum value of the detuning
is slightly larger than the Doppler width. In that case, the
population of level |2〉 always remains negligible, and the OBE
describing the evolution of the three-level system in interaction
with the laser fields can be simplified by introducing the
two-photon transition probability �2ph between levels |1〉 and
|3〉 (see Appendix C). The time evolution of the populations
ρ11, ρ33, and ρ44 can then be described by a simple rate equation
model. Introducing �eff

3 = �3 + �diss, the rate equations are
written

dρ11

dt
= −(�2ph + �1)ρ11,

dρ33

dt
= �2phρ11 − �eff

3 ρ33,

(5)
dρ44

dt
= �dissρ33,

where, in order to simplify the expressions, we have replaced
ρ11 − ρ33 by ρ11 in the first two equations. This approximation
is justified for large detunings, since ρ33 then remains much
smaller than ρ11. The solution corresponding to ρ11(0) = 1
and ρ33(0) = ρ44(0) = 0 reads

ρ11(t) = e−(�1+�2ph)t ,

ρ33(t) = �2ph

�eff
3 − �1 − �2ph

(
e−(�1+�2ph)t − e−�eff

3 t
)
,

ρ44(t) = �diss�2ph

�eff
3 (�1 + �2ph)

− �diss�2ph

�eff
3 − �1 − �2ph

×
(

e−(�1+�2ph)t

�1 + �2ph
− e−�eff

3 t

�eff
3

)
. (6)

Dotted lines in Fig. 3 are plotted from Eq. (6). They compare
very well with the numerical result obtained with an oscillating
ion in the large detuning limit, indicating that the instantaneous
two-photon contribution is insensitive to the ion motion as

033421-6



TWO-PHOTON SPECTROSCOPY OF TRAPPED HD+ . . . PHYSICAL REVIEW A 88, 033421 (2013)

expected in the Lamb-Dicke regime. The long-term behavior
of ρ44 is given by

ρ∞
44 = �diss�2ph

(�3 + �diss)(�1 + �2ph)
. (7)

If �2ph � �1 we have simply ρ∞
44 ≈ �diss/(�3 + �diss). Indeed,

in that case, direct losses from level |1〉 are negligible as
compared to excitation to level |3〉, and ρ∞

44 is given by the
branching ratio between dissociation and natural relaxation.

In the general case, replacing �2ph with the expression given
by Eq. (C5), we obtain an expression for the photodissociated
fraction that is valid in the Lamb-Dicke regime:

ρ∞
44 = �diss

�1

�2
12�

2
23

δ2
12

1

δ2
13 +

(
�eff

3

)2

4 + �eff
3

�1

�2
12�

2
23

δ2
12

. (8)

Figure 6, showing ρ∞
44 versus the Rabi frequencies, is obtained

for an oscillating ion in the large detuning limit. Again, the
results of Eq. (8) closely match the OBE numerical model.

The saturation Rabi frequency, defined as the Rabi fre-
quency product �12�23 for which ρ∞

44 = �diss/2�eff
3 , is given

by

�12�23 = δ12

√
�1

�eff
3

[
δ2

13 + (
�eff

3

)2/
4
]
, (9)

which reduces to �12�23 = δ12

√
�1�

eff
3 /2 on two-photon

resonance.
Comparing the green solid line in Fig. 8 with the red

line representing the solution of the OBE shows that the
rate equation model accurately predicts ρ∞

44 for detunings
larger than the Doppler width, but as expected, fails for small
detunings. Finally, the Doppler-free line obtained by solving
the OBE and shown in Fig. 7(e) has a Lorentzian shape of
amplitude 0.7 and FWHM 352 Hz, in excellent agreement
with the predictions of Eq. (8), giving 0.71 for the amplitude
and 354 Hz for the width.

D. Systematic shifts and line broadening

In this section, we study the main effects that may perturb
the Doppler-free REMPD signal, i.e., light shifts, power
broadening, and laser frequency noise. Only the large-detuning
limit will be studied, and numerical results obtained from
the OBE will be compared with predictions of the simple
analytical model developed in Sec. IV C.

1. Light shifts

The light shift experienced by the lower and upper levels
|1〉 and |3〉 are given by +�2

12/δ12 and −�2
23/δ23, respectively

[44,45]. Close to the two-photon resonance defined by δ12 =
−δ23, both shifts have the same sign, leading to a compensated
light shift for the transition frequency:

�LS = (
�2

23 − �2
12

)/
δ12. (10)

As was shown in Sec. IV B, the optimal value of the detuning
δ12 is of the order of the Doppler width (a few MHz), whereas
the Rabi frequencies are of a few kHz. Therefore, the light shift
typically amounts to a few Hz, i.e., a relative shift of about
10−14 on the transition frequency. Moreover, laser intensities

FIG. 9. Crosses, light shift of the two-photon resonance versus
Rabi frequencies. The two-photon resonance is located by finding the
maximum of the Doppler-free peak [see Fig. 7 (e)]. Solid line, linear fit
giving a slope of 1.011(2) 10−7 Hz/(Hz)2. Parameters: δ12 = 10 MHz;
time step, 10−8 s, tmax = 0.5 s.

can be chosen in order to get equal Rabi frequencies, thus
canceling the light shifts.

In Fig. 9, the position δ23 of the two-photon peak is plotted
versus �2

23 − �2
12 for a fixed detuning δ12 = 10 MHz. It has a

linear dependence with a slope of 1.011(2) 10−7 Hz/(Hz)2, in
good agreement with Eq. (10), which predicts 10−7 Hz/(Hz)2.

2. Power broadening

A simple expression of the power broadening is easily
deduced from Eq. (8). Figure 10 compares the broadening
predicted by Eq. (8) to a more precise calculation from the
numerical solution of the OBE. The inset shows that there
is excellent agreement at low intensity. For very large Rabi
frequencies, the numerically obtained power broadening is
smaller than expected from Eq. (8). This discrepancy stems
from the fact that Eq. (8) is obtained using Eq. (C5) for �2ph,
which is valid if �2ph � �eff

3 but not for large laser fields.
As already mentioned in Sec. IV B, the FWHM of the

two-photon peak for the laser intensities used throughout
the paper (�12 = �23 = 2π × 5 kHz, signalled by a vertical

FIG. 10. (Color online) Squared width (FWHM) of the Doppler-
free peak versus Rabi frequencies. The solid line is obtained from
Eq. (8). The vertical dashed line in the inset corresponds to the typical
Rabi frequencies used throughout the paper, i.e., �12 = �23 = 2π ×
5 kHz. Parameters: δ12 = 5 MHz; time step, 10−8 s, tmax = 20 s.
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dashed line in the inset of Fig. 10), is 354 Hz [see Fig. 7(e)],
while the prediction of Eq. (8) is 351 Hz. Thus, power
broadening significantly degrades the resolution with respect
to the effective linewidth �eff

3 = 45 Hz. Lower intensities can
be used to improve the resolution, at the cost of a slightly
reduced signal-to-noise ratio.

3. Laser frequency noise

The analysis of light shifts and power broadening shows
that REMPD spectroscopy at the sub-kHz level is feasible.
In this section, we discuss the effect of the laser width on
the signal, using both numerical solutions of OBE and an
analytical model.

So far, we have assumed noiseless laser fields by set-
ting ϕ(t) = ϕ′(t) = 0 in Eq. (2). This means that the two
laser fields are supposed to be perfectly phase locked. The
discussion in Sec. II shows that laser linewidths cannot
always be neglected as compared to Rabi frequencies and
level widths. The REMPD experiment involves frequency
controlled diode laser sources, which have a Lorentzian line
shape. In order to include the laser frequency noise into
the model, two independent noisy phases ϕ(t) and ϕ′(t) are
numerically generated as centered Gaussian stationary pro-
cesses with the desired shape and width [46,47] as explained
in Appendix D, and used as inputs in the OBE (4). For
both lasers the phase noise bandwidth B is chosen to be
100 kHz and the width �FWHM is varied from a few Hz to
30 kHz.

The effect of laser phase noise on two-photon transition
rates is theoretically addressed in [48]. For two uncorrelated
phases ϕ(t) and ϕ′(t), formula (C4) is modified into

�2ph = �2
12�

2
23

δ2
12

�eff
3 + 2�FWHM

δ2
13 + (

�eff
3 + 2�FWHM

)2/
4
. (11)

Just like Eq. (C4), the above expression is valid in the
large-detuning limit δ12 > �D . In Fig. 11, we plot �2ph versus
�FWHM assuming both lasers have the same width. Numerical
results from the OBE are in very good agreement with Eq. (11),

FIG. 11. (Color online) Two-photon transition rate versus the
laser width (assuming a Lorentzian spectrum). The black dotted
curve is obtained by integrating the OBE with a time step of 10−8

and tmax = 0.5 s. The red solid line is obtained from Eq. (11). The
dashed vertical line corresponds to �FWHM = �eff

3 /2. Parameters:
�12 = �23 = 2π × 5 kHz, δ12 = −δ23 = 2π × 5 MHz.

and show that it is desirable to have laser widths smaller than
the effective width �3 + �diss of the upper level in order not to
limit the two-photon transition rate, as well as the resolution.

4. Effects of micromotion

In a Paul trap, the ions undergo micromotion driven by the
rf field at the ion location (x,y,z). In this section, we evaluate
the magnitude of the micromotion in the linear trap described
in [34] to show that it has a negligible impact on the two-photon
line shape and that the associated second-order Doppler effect
does not limit the expected resolution.

The linear trap geometry is defined by an effective inner
radius r0 = 3.5 mm and is operated using a rf voltage
V0 = 270 V at �rf = 2π × 13.3 MHz, resulting in a ωr =
2π × 0.9 MHz HD+ radial trap frequency. The micromo-
tion amplitude δr is linked to the rf field Erf by δr =
−qErf/(m�2

rf). The leading components of the rf field are
Erf = (−V0 x/r2

0 ,V0 y/r2
0 ,Erf,z) cos(�rf t). The radial compo-

nents correspond to the trap’s quadrupolar field. The axial
component is a worst case value, obtained using a finite
difference analysis (SIMION software) to model the actual trap
potential taking into account the maximum possible deviation
of end cap electrodes from the ideal geometry; Erf,z is less
than 100 V/m over the ion cloud extension. However, trap
imperfections, rf phase differences on the trap electrodes, and
stray electric fields may lead to excess micromotion, which
in turn can give rise to second-order Doppler shifts of the
observed transition frequency, as well as additional sideband
features in the spectrum [49,50]. Stray electric fields may
be compensated by applying voltages on the trap electrodes
to position the Be+ and HD+ ion clouds symmetrically
with respect to the trap axis. From the applied voltages
and the trap geometry, the residual stray field amplitude
is estimated to be smaller then 7.3 V/m. The maximum
radial displacement r rad

max is obtained by balancing the stray
electric force qEstray with the ponderomotive force mω2

r r
rad
max,

leading to r rad
max = qEstray/(mω2

r ) = 7.3 μm and maximum
radial rf field components of 114 V/m. The maximum axial
and radial micromotion amplitudes δx, δy, and δz are all
less than 0.5 μm, much smaller than the effective transition
wavelength. Furthermore, the ion trap was designed such that
rf phase differences do not exceed 3 mrad. For the above trap
parameters, this implies a maximum micromotion amplitude
due to rf phase differences of 0.4 μm [49].

Micromotion might lead to sidebands in the two-photon
excitation spectrum, located ±13.3 MHz from the main
spectral feature. Nevertheless, under the present conditions,
the modulation index |(k − k′) · δr| < 0.007 is very small,
leading to strongly suppressed sidebands, justifying ignoring
micromotion in the interaction model.

Although the micromotion amplitude is small, the associ-
ated velocity amplitude is large and second-order Doppler
shift and broadening have to be evaluated. It is given
by δf/f = −〈v(t)2〉/(2c2). For micromotion with amplitude
δr = 0.9 μm, it is given by −(δr)2�2

rf/(4c2) = −1.5 × 10−14.
Including rf phase differences, the shift may reach −1.8 ×
10−14 corresponding to less than 4 Hz on individual laser
frequencies. This is much smaller than the expected two-
photon linewidth and cannot hinder the two-photon line

033421-8



TWO-PHOTON SPECTROSCOPY OF TRAPPED HD+ . . . PHYSICAL REVIEW A 88, 033421 (2013)

observation. Nevertheless, careful micromotion compensation
is necessary to reach the 10−14 accuracy level.

V. INFLUENCE OF BBR ON REMPD
AND SIGNAL STRENGTH

In the preceding sections, the photodissociated fraction was
interpreted as the spectroscopic signal of interest. However, in
previous experiments spectroscopic signals were obtained by
comparing the initial number of trapped HD+ ions, Ni , to
the remaining number of HD+ ions after REMPD, Nf , by
constructing a signal s = (Ni − Nf )/Ni [27,34]. Obviously,
the finite size of the trapped HD+ samples may lead to
additional saturation effects. It should also be noted that
before REMPD, most of the HD+ ions are in states other than
v = 0, L = 3 as the ambient BBR (temperature T = 300 K)
distributes population over rotational states with L = 0 to L =
6 [42]. Each rotational level is furthermore split into 4 (L = 0),
10 (L = 1), or 12 (L � 2) hyperfine states. As a consequence,
only a few percent of the HD+ ions may be found to be in a
particular hyperfine state. For example, 2.6% of the HD+ ions
are in the favored initial hyperfine state with (v,L) = (0,3)
and (F,S,J ) = (1,2,5) (see Appendix B). At first glance, one
would therefore not expect to achieve a signal s larger than
0.026, which is barely above the noise background observed
by Koelemeij et al. [27]. However, for REMPD durations on
the order of 1 s or longer, redistribution of population by
BBR becomes an important factor, as this takes place on a
similar time scale. In fact, BBR will continue to refill the
initial state population while it is being depleted via REMPD,
thereby enhancing the signal s. To estimate the expected signal
strength, we treat the interaction of the ensemble of HD+ ions
with BBR and the REMPD lasers in the form of Einstein rate
equations, which we integrate over the REMPD duration, t , to
obtain s(t). Here we introduce two simplifying assumptions.
First, the REMPD process is considered sufficiently efficient
so that no spontaneous emission from high vibrational states
occurs. Second, all HD+ ions are considered to be in states with
v = 0 and L = 0, . . . ,5 (we ignore the population in L = 6,
which is less than 2%. Taking hyperfine structure into account,
the rate equations read

d

dt
ραL =

∑
α′

[
Aα′L+1

αL + Bα′L+1
αL W

(
ωα′L+1

αL ,T
)]

ρα′L+1

+
∑
α′

Bα′L−1
αL W

(
ωαL

α′L−1,T
)
ρα′L−1

−
∑
α′

[
AαL

α′L−1 + BαL
α′L−1W

(
ωαL

α′L−1,T
)]

ραL

−
∑
α′

BαL
α′L+1W

(
ωα′L+1

αL ,T
)
ραL − δαα0δLL0�2phραL.

(12)

Here, the hyperfine populations ρ are labeled with the hyper-
fine index α ≡ (F,S,J ). Transition frequencies are written as
ωα′L′

αL , where the upper and lower indices refer to the upper and
lower levels, respectively. The BBR spectral energy density
at temperature T is denoted as W (ω,T ). The hyperfine state
subject to REMPD at rate �2ph is labeled by α0 and L0.
Introducing the equivalent notation Aij = Ai

j = AαL
α′L′ (and

likewise for Bij and ωij ), the rate coefficients for spontaneous
emission from an upper state i to a lower state j are written as

Aij = ω3
ij

3πε0h̄c3

Sij

2Ji + 1
μ2

ij . (13)

The radial dipole matrix elements μij are those presented
previously in Ref. [39], and the hyperfine line strengths Sij are
derived in a similar fashion as in Refs. [51,52]. The calculation
of Sij involves hyperfine eigenvectors, which are obtained by
diagonalization of an effective spin Hamiltonian [38]. Spin
coefficients for v = 0, L = 0, . . . ,4 are taken from [38], and
extrapolation of these coefficients results in a set of spin
coefficients for v = 0, L = 5. Likewise, the rate coefficients
for stimulated emission and stimulated absorption are

Bij = π2c3

h̄ω3
ij

Aij (14)

and

Bji = 2Ji + 1

2Jj + 1
Bij , (15)

respectively. After integrating Eq. (12) to obtain ραL(t) as a
function of the REMPD duration t , the signal s(t) becomes

s(t) =
∑

α,L ραL(0) − ραL(t)∑
α,L ραL(0)

. (16)

Here, the initial distribution of populations ραL(0) is assumed
to be a thermal distribution corresponding to the temperature
of the BBR (which is assumed to be 300 K here).

We compute signal strengths for the conditions of Fig. 11,
and for a laser linewidth of 10 Hz, for which the REMPD
rate is about 10 s−1. The result for the transition starting
from the hyperfine level with (F,S,J ) = (1,2,5) is shown
in Fig. 12. Different time scales can be identified in the
growth of s(t). After 0.2 s, nearly all the population in the
initial state (F,S,J ) = (1,2,5) is dissociated, and the signal

FIG. 12. Log-linear plot of the signal strength s(t) as a function
of REMPD duration t , for two-photon transitions starting from the
hyperfine state with (L,F,S,J ) = (3,1,2,5) (solid curve) in v = 0.
Shown as well are populations of certain “spin classes” (rightmost ver-
tical axis). Long-dashed curve, population in (L,F,S,J ) = (3,1,2,5);
dash-dotted curve, sum over L,J of all population in states with
F = 1,S = 2; short-dashed curve, sum over L,S,J of all population
in states with F = 1,S �= 2; dotted curve, sum over L,S,J of all
population in states with F = 0.
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corresponds to the initial hyperfine state population of 0.026.
After t = 0.2 s, BBR continues to replenish population from
states with L �= 3 [and with primarily (F,S) = (1,2)] through
allowed electric-dipole transitions. Transitions between states
with equal F but different S are only allowed by virtue
of hyperfine mixing and therefore are considerably weaker;
transitions between states with different F are even less
allowed. The former become important after t = 100 s, when
most HD+ ions with (F,S) = (1,2) have been dissociated,
whereas the latter start to dominate the dissociation dynamics
only after t = 700 s when most HD+ ions with F = 1 have
been depleted. The population dynamics are illustrated by the
curves in Fig. 12.

For efficient data acquisition, it is important to find the
optimum REMPD duration. Figure 12 shows that longer
durations lead to larger signals. On the other hand, shorter
durations allow more data points to be acquired within a given
amount of time, Texp, which can be averaged to improve the
signal-to-noise ratio. The optimum duration depends also on
the overhead per data point (e.g., time needed to expunge
the remaining HD+ ions from the trap, and reload a fresh
sample of HD+ ions for the next REMPD cycle). We define
a figure of merit for the signal quality, L, obtainable given
a total time Texp, REMPD duration t and the overhead, toh,
as follows. The number of experiments that can be done is
Nexp = �Texp/(t + toh)�, where � � denotes the floor. Assuming
the signal-to-noise ratio improves as

√
Nexp, our figure of merit

becomes

L(t) = s(t)
√

Nexp = s(t)
√�Texp/(t + toh)�. (17)

L(t) is plotted for Texp = 3600 s and for various values of toh in
Fig. 13. Typically, toh is 30–60 s, for which we find an optimum
REMPD duration of ∼100 s. In this case, we find from Fig. 12
that about 35% of the HD+ ions are dissociated. We point
out that this is much larger than the 1%–2% measurement
noise observed by Koelemeij et al. [27]. A spectral line shape
consisting of at least 20 data points may therefore be obtained
with a good signal-to-noise ratio within the course of 1 h.

FIG. 13. (Color online) Figure-of-merit function L as a function
of REMPD duration t , and for various values of the overhead toh.
Texp = 3600 s. Uppermost black curve, toh = 10 s; middle red curve,
toh = 30 s; lowermost blue curve, toh = 60 s. In all cases, the optimum
REMPD duration is near 100 s.

VI. CONCLUSION

We have shown that Doppler-free signals can be observed
on trapped HD+ ions by nearly degenerate two-photon
spectroscopy, taking advantage of a quasiharmonic three-level
ladder in the rovibrational spectrum. The suppression of the
Doppler effect, due to an effective Lamb-Dicke regime with
respect to the simultaneous absorption of counterpropagating
photons, opens the way to high-resolution spectroscopy at the
natural width limit. Numerical simulations of the REMPD
signal, taking into account saturation effects, realistic ion
trajectories and laser phase noise, allowed us to determine
the optimal laser detunings, which are slightly larger than the
single-photon Doppler width. In this large-detuning limit,
the population of the intermediate state may be neglected,
and a simplified model of the two-photon transition rate was
shown to be in excellent agreement with our numerical results.
Finally, BBR redistribution among rovibrational and hyperfine
levels was taken into account to get realistic estimates of
experimental signal strengths.

With the parameters used in the paper, the predicted
linewidth of 350 Hz is dominated by power broadening. It
may be reduced to about 100 Hz by using lower intensities,
at the cost of a slight diminution of the signal-to-noise ratio.
The line center may eventually be determined with about 5 Hz
accuracy, corresponding to a relative accuracy of 1 × 10−14.
Other systematic effects such as quadrupolar shifts, light shifts
by cooling and dissociation lasers, BBR shifts, Stark shifts due
to stray electric fields and ac Zeeman shifts are estimated to
be below 10−15, as discussed in a recent study [53].

Potential applications of the proposed spectroscopic
method include improved tests of QED [19,20], an improved
determination of the proton-to-electron mass ratio [22,23], as
well as studies of its time variation [24] and searches for
possible fifth forces [33].

For the rovibrational levels of HD+ selected in this
study, the mismatch of the intermediate state is only 0.2%
of the one-photon frequency, leading to a long effective
wavelength λeff = 0.7 mm. It is worth noting that the effective
Lamb-Dicke regime could still be reached with significantly
higher frequency mismatch, possibly up to 10% for excitation
wavelengths in the micron range (λeff ∼ 10 μm). This means
that the proposed method has potential for application to many
other molecular (or even atomic) ions, since the existence of
such quasicoincidences is quite probable in a rich rovibrational
spectrum characterized by a quasiharmonic vibrational ladder.
In the case of HD+, two other promising transitions are worth
pointing out: v = 0, L = 3 to v = 12, L = 3 via v = 5, L =
2, with wavelengths near 1.18 μm, and v = 0, L = 4 to
v = 16, L = 4 via v = 6, L = 3 near 1.01 μm [35]. Finally,
the proposed method could also be extended to multiphoton
transitions in a configuration where the laser wave vectors
nearly add up to zero [54].
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TABLE I. Zeeman shift of the magnetic sublevels MJ = −J (upper lines) and MJ = J (lower lines) in a 0.02-G field (in kHz), for
all hyperfine sublevels (F,S,J ) of the rovibrational states involved in the two-photon transition under study. The most Zeeman-insensitive
transitions are highlighted by bold characters.

(F,S) = (0,1) (1,0) (1,1) (1,2)

v L J = 4 J = 3 J = 2 J = 3 J = 4 J = 3 J = 2 J = 5 J = 4 J = 3 J = 2 J = 1

0 3 6.8549 3.8100 −0.1054 17.8049 −18.0662 −18.6888 16.9358 −27.9358 −22.2457 −16.7916 −7.4441 14.0003
−6.8564 −3.8111 0.1047 −17.8098 −18.0652 18.6893 −16.9470 27.9358 22.2423 16.7889 7.4388 −14.0137

9 3 6.1161 2.9767 −0.9929 14.5500 −18.0820 −16.3205 15.6554 −27.9391 −21.5026 −15.0863 −5.2879 13.9928
−6.1179 −2.9776 0.9928 −14.5592 −18.0807 16.3231 −15.6716 27.9391 21.4959 15.0801 5.2771 −14.0167
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APPENDIX A: HD+ ZEEMAN EFFECT

As discussed in Sec. II, it is preferable to address simulta-
neously all Zeeman components of the two-photon transition
in order to get sufficiently large signals. In the Amsterdam
experiment, a static B field is used to define a quantization
axis and cool Be+ ions with a single circularly polarized
laser beam [34]. Experimental investigation showed that the
minimal B field value that still enables efficient cooling
is about 0.02 G. The Zeeman splitting of the two-photon
transition in such a field thus sets a lower limit for the width of
the line shape, which may be broadened as required by control
of �diss and the linewidth of the excitation lasers. It is therefore
desirable to select a hyperfine component having a low Zeeman
effect in order to minimize line broadening and maximize the
two-photon transition rate for a given laser intensity. In view
of this, it is important to evaluate the Zeeman splitting of
the (v = 0, L = 3) → (v = 9, L = 3) two-photon transition,
accounting for the hyperfine structure, so as to (i) select the
most promising hyperfine component and (ii) determine the
optimal dissociation rate and laser linewidth accordingly.

Following the approach of Ref. [52], we write the effective
spin Hamiltonian for an HD+ ion in a rovibrational state (v,L),
with an external magnetic field B oriented along the z axis,

H tot
eff = H hfs

eff + E10(L · B) + E11(Sp · B)

+E12(Sd · B) + E13(Se · B), (A1)

where H hfs
eff is the effective spin Hamiltonian in the absence of

magnetic field derived in [38], and

E10 = −μB

∑
i

Zime

mi

〈vL||L||vL〉√
L(L + 1)(2L + 1)

, (A2a)

E11 = − eμp

mpc
= −4.2577 kHz G−1, (A2b)

E12 = − eμd

2mdc
= −0.6539 kHz G−1, (A2c)

E13 = eμe

mec
= 2.802 495 3 MHz G−1, (A2d)

where 2010 CODATA values of fundamental constants
were used. The value of E10 is calculated using
nonrelativistic variational wave functions [55]. We obtain
E10 = −0.557 92 kHz G−1 for the (v = 0, L = 3) level, in

agreement with Table 1 of [52], and E10 =
−0.502 81 kHz G−1 for the (v = 9, L = 3) level.

In the presence of a magnetic field, the hyperfine states
of HD+ labeled with F , S, and J (see Sec. II) are split
into sublevels distinguished by the quantum number MJ . We
diagonalize the Hamiltonian (A2) for MJ = ±J and B =
0.02 G, in order to obtain the Zeeman shifts �EvLFSJMJ =
EvLFSJMJ (B) − EvLFSJMJ (0). Results are given in Table I.

It appears that some of the hyperfine components connect-
ing homologous spin states [i.e., states with the same (F,S,J )]
benefit from a strong cancellation of Zeeman shifts. This
occurs for (F,S,J ) = (1,1,4), (1,2,5), and (1,2,1), where the
Zeeman splitting is, respectively, of 31.3, 6.6, and 4.5 Hz at
0.02 G. In the last two cases, the Zeeman structure is hidden
within the natural linewidth of the transition and does not limit
the resolution in any way. The most favorable component is
(F,S,J ) = (1,2,5) since this hyperfine level has the highest
population, making it possible to get a stronger REMPD
signal. There is only one dipole-allowed intermediate level
for the two-photon transition, namely the (v = 4, L = 2),
(F,S,J ) = (1,2,4) level, so that the three-level approximation
introduced in Sec. II is well justified in this case.

APPENDIX B: TRAPPED ION DYNAMICS

In order to get a realistic description of the sympathetically
cooled HD+ ion velocities, we use a homemade simulation
code taking into account the time-dependent trapping force, the
Coulomb interaction, and the laser cooling process (recoil due
to absorption and emission of individual photons) [56,57]. The
laser-cooled ions are described as two-level atomic systems
with a transition width �Be+ = 19.4 MHz.

We assume a perfect linear quadrupolar Paul trap geometry
with r0 = 3.5 mm. The rf frequency �rf is 2π × 13.3 MHz
and the rf voltage amplitude is V0 = 270 V. The stability
parameter for the radial confinement is q = 0.2 for HD+ and
0.067 for 9Be+. A harmonic axial static potential provides axial
confinement, with a trap frequency ωz/2π = 100 kHz for Be+
ions and 173 kHz for HD+ ions. The Coulomb interaction
between the ions, which is responsible for the sympathetic
cooling, is taken into account without any approximations.

The Newton equations of motion are numerically integrated
using a fixed-step leap-frog algorithm [58]. The time step δt =
2× 10−10 s is chosen short enough to well represent the rf field,
Coulomb collisions and laser absorption and emission cycles
so as to get converged results for simulation times up to 20 ms.
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FIG. 14. Typical axial trajectories around their equilibrium po-
sition for 20 sympathetically cooled HD+ ions in a 400-Be+-ion
Coulomb crystal. Laser cooling conditions: detuning, δL = −�Be+ ;
saturation parameter, I/Isat = 1.5.

The laser interaction is described in terms of absorption,
spontaneous, or stimulated emission processes, thus including
saturation effects. The laser beam has a wavelength λ =
313.13 nm and a TEM00 Gaussian profile with a waist
w0 = 1 mm much larger than the ion cloud size. It is
assumed to be perfectly aligned with the trap axis. The laser
intensity I and laser detuning δL are chosen close to optimal
cooling conditions (δL = −�Be+ , and I = Isat/2, where Isat

is the saturation intensity). At each time step, and for each
laser-cooled ion in the ground state, the absorption probability
is evaluated at the ion location and compared to a uniform
random number generator between 0 and 1. In case an
absorption occurs, the ion velocity is altered by a kick h̄k/m,
where k is the photon wave vector. For laser-cooled ions in the
excited state, the spontaneous (stimulated) emission is treated
in a similar way but with a h̄k/m velocity kick with a uniformly
randomized direction (a −h̄k/m velocity kick) [57,59].

A simulation is run in the following way. Ion position and
velocities are randomized in a cylindrical volume around the
trap center with a temperature T ≈ 10 K. During the first
0.2 ms of the simulation, a huge drag force is applied to reach
the Coulomb crystal regime where each ion oscillates around
an equilibrium position. Then, the laser interaction is turned on
and the ion cloud relaxes to its equilibrium temperature which
is usually reached after 0.8 ms. Ion positions and velocities,
mean secular kinetic energies, potential, and Coulomb energies
are periodically stored with a period of 4 × 10−8 s. With a
pure sample of laser-cooled ions, we have checked that the
ion cloud equilibrium temperature corresponds to the Doppler
limit kBT = h̄�Be+/2 in the optimal cooling conditions.

Figure 14 shows typical axial (z axis) trajectories for 20
HD+ ions that are sympathetically cooled by 400 Be+ ions.
The ions are nearly equally spaced and shifted in the direction
of the incoming Be+ cooling laser. The axial motion amplitude
is in the μm range and the maximum axial velocities are of the
order of 5 m/s. This gives a maximum Doppler effect v/λ ≈
3.5 MHz at the wavelength of the two-photon excitation lasers
λ = 1.44 μm. The Doppler shift is larger than the oscillation
frequencies, indicating that in the ion rest frame, the ions see
motional sidebands with high modulation indexes. Figure 15

shows the axial velocity spectrum for each ion. Depending on
the ion position within the cloud, the ion motion can be close
to a pure harmonic motion or have a complex spectrum. This
explains why the REMPD signal has to be averaged over the
different ion trajectories.

APPENDIX C: TWO-PHOTON
TRANSITION PROBABILITY

We here consider a trapped particle with a three-level inter-
nal structure, undergoing one-dimensional harmonic motion at
frequency �vibr. The external degree of freedom is described
quantum-mechanically and labeled by the vibrational quantum
number n. Following time-dependent second-order perturba-
tion theory, the two-photon transition rate between states |1,n1〉
and |3,n3〉 is given by

�2ph =
∣∣∣∣∣

∞∑
n2=0

�12�23〈n3|e−ik′z|n2〉〈n2|eikz|n1〉[
δ12 − i �2

2 + (n1 − n2)�vibr
]

∣∣∣∣∣
2

× �eff
3

[δ13 + (n1 − n3)�vibr]2 + (�eff
3 )2

4

. (C1)

Assuming the detuning δ12 is much larger than both the
intermediate level width and the vibration frequency and
summing over n2, the first term in Eq. (C1) can be simplified,
leading to

�2ph = |�12�23〈n3|eiδk z|n1〉|2
δ2

12

× �eff
3

[δ13 + (n1 − n3)�vibr]2 + (�eff
3 )2

4

. (C2)

The denominator of the second factor shows that the two-
photon transition probability exhibits sidebands separated by
�vibr. The amplitudes of the sidebands are given by the matrix
element 〈n3|eiδk z|n1〉 [60–62] with

|〈n + s|eiη(a+a†)|n〉| = e−η2/2η|s|
√

n<!

n >!
L|s|

n<
(η2), (C3)

where n< and n> are the lesser and greater of n and
n + s, and η = δk

√
h̄/(2 m�vibr). Ls

n are the generalized
Laguerre polynomials, and a and a† are the annihilation and
creation operators, respectively, associated with the harmonic
confinement. In the Lamb-Dicke regime where the oscillation
amplitude is much smaller than the effective wavelength
2π/δk, this matrix element is ≈δn1,n3 and the two-photon rate
further simplifies to

�2ph = �2
12�

2
23

δ2
12

�eff
3

δ2
13 + (�eff

3 )2

4

. (C4)

On two-photon resonance where δ13 = 0, it is given by

�2ph = �2
12�

2
23

δ2
12

4

�eff
3

. (C5)

APPENDIX D: LASER PHASE NOISE SIMULATION

In this appendix, we describe the phase noise generator
we have implemented to simulate the laser Lorentzian line
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FIG. 15. Spectrum of the velocity amplitudes obtained by FFT from the trajectories shown in Fig. 14. Horizontal scale is in MHz, vertical
scale is in (m/s)/

√
Hz.

shape. Let f (t) denote the instantaneous laser frequency, and
δf the laser frequency noise. It is linked to the laser phase
noise by δf = 1

2π

dϕ(t)
dt

. Laser phase noise ϕ(t) is usually
depicted as a centered stationary Gaussian process with a
white frequency noise (single sided) spectral density Sδf (ω) in
a bandwith 2πB [46]. The variance of the laser frequency noise
is given by 〈(δf )2〉 = BSδf (ω). The laser linewidth �FWHM is
defined by the full width at half maximum of the hypothetical
beat-note spectrum of the laser with a perfect noiseless laser.
It can be expressed in an integral form as a function of
Sδf (ω) [46]. If 〈(δf )2〉 � B2, the line shape is Lorentzian
with �FWHM = πSδf (ω). If 〈(δf )2〉 � B2, the line shape is
Gaussian with �FWHM = 2

√
2 ln 2

√
Sδf B. For intermediate

cases, the linewidth was evaluated by numerical computa-
tion of an integral, leading to an empirical interpolating
formula [47],

�FWHM = Sδf

√
8 ln 2 B/Sδf(

1 + 8 ln 2
π2

B
Sδf

)1/4 . (D1)

The frequency noise and phase noise spectral densities are
linked by Sδf (ω) = ( ω

2π
)2Sϕ(ω) so a white frequency noise in

a bandwidth B corresponds to a 1/ω2 phase noise spectral
density with 0 < ω � 2πB. The Wiener-Khintchin theorem
states that Sϕ(ω) = |ϕ̃(ω)|2, where ϕ̃ is the Fourier transform
of ϕ(t). Therefore, the desired laser phase noise can be obtained

by randomly generating the Fourier components ϕ̃(ω) and
performing an inverse fast Fourier transform.

The discretization is done in the following way.
The simulation duration T and the integration time step δt sets
the number N = T/δt of ϕ values ϕj = ϕ(jδt). It also sets the
maximum Fourier frequency fmax = 1/2δt and the frequency
resolution 1/T . The corresponding Fourier frequencies and

FIG. 16. (Color online) (a) Histogram of the instantaneous
frequency f (t) at time t = 0 for 2000 realizations of the phase noise.
(b) a single realization of ϕ(t). (c) Black, averaged laser line shape
for the 2000 phase noise realizations. Red, Lorentzian fit.
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FIG. 17. Comparison of the laser FWHM (crosses) with the
empirical formula (dashed line) given in Eq. (D1).

discretized Fourier components are ωj = 2πj/T and ϕ̃j , with
−N/2 � j � N/2. The maximum Fourier frequency has to
be larger than the noise bandwidth, i.e., B < δt/2. The phase
noise discretized Fourier components are randomly generated
following ϕ̃(ωj ) = K

ωj
eiφj for 0 < j � BT and set to 0 for

j = 0 and BT < j � N/2. Since the phase noise is a real
process, the negative frequency Fourier components are equal

to the positive ones; hence, ϕ̃−j = ϕ̃∗
j . To generate a random

phase noise, the complex argument of the Fourier components
φj is uniformly randomized between 0 and 2π . The noise
level K is linked to the variance of the laser frequency
noise by K = √

Sδf fmax. Finally, the FFT of the phase noise
components is computed using the FFTW3 FORTRAN subroutine
library to obtain the time-dependent phase noise that is used
by the OBE numerical solver.

Figure 16(a) shows the histogram of the instantaneous
frequency f (t) obtained for 2000 realizations of the noise
process with T = 0.5 s, δt = 4 × 10−7 s, Sδf = 5000 Hz2/Hz,
and B = 100 kHz. A Gaussian fit gives a 22.8-kHz standard
deviation in agreement with

√
Sδf B = 22.4 kHz. Figure 16(b)

shows a realization of ϕ(t) and Fig. 16(c) shows the average
line shape of the beat note. The Lorentzian width is 15.7 kHz,
in perfect agreement with πSδf . We have varied the frequency
noise spectral density Sδf from 10 to 106 Hz2/Hz and
determined the FWHM of the line. Figure 17 shows that it
follows the empirical formula and thus the expected linewidth
behavior.

Finally, to generate laser phase noise with a Lorentzian
line shape, one has to fulfill the conditions B � 6Sδf and
choose Sδf = �FWHM/π , so the noise bandwidth must obey
B � 6/π�FWHM.
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