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Preparation and control of aligned cyclic rotational states
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Molecules in selected rotational states can remain well aligned for extended periods of time in the presence of an
appropriate periodic train of nonresonant laser pulses. Here, we show that these states can be prepared by slowly
switching the electromagnetic field amplitude during a sequence of laser pulses. For low-temperature ensembles,
a high degree of alignment can be achieved by designing pulse trains that take into account the distribution of
avoided crossings between quasienergy curves. Additionally, we present calculations that illustrate several effects
causing misalignment. A discussion of subtleties concerning systems with unbounded rotational spectra is also
included.
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I. INTRODUCTION

The design of schemes to align molecular ensembles has
become an active subfield of quantum control [1]. Appropriate
external fields can excite molecules to rotational states that
execute small-amplitude librations about the field direction.
Friedrich and Herschbach [2] showed that these directional
states correspond to instantaneous eigenstates of a molecule
interacting with the envelope of a strong nonresonant laser
pulse via its anisotropic polarizability. Within this model, the
interaction between electrons and the laser field is represented
by the molecular polarizability.

If the time evolution during the laser pulse is adiabatic,
a molecule, initially in a field-free rotational eigenstate, is
described at each time instant, during the pulse, by the
corresponding instantaneous eigenstate. Thus, at the end of the
pulse the molecule returns to the initial field-free eigenstate [3].
Depending on the duration of the laser pulse the dynamics can
be nonadiabatic, and molecules end up in field-free aligned
states. The components of these states subsequently dephase,
and the alignment is quickly lost [3]. Alignment recurrences
can take place under the further field-free evolution.

An alternative strategy allows us to maintain strong align-
ment over a substantial time [4]. These methods require us to
use, instead of a single laser pulse, a periodic train of pulses.
In this case, aligned states correspond to eigenstates of the
Floquet operator, which is the time evolution operator during
one period of the external field. It is particularly relevant
that Floquet eigenstates are cyclic states. This means that
a molecule which initially is in one Floquet eigenstate will
return at the end of each pulse to the same state apart from an
irrelevant phase factor. Thus, if a given Floquet eigenstate is
well aligned during a single pulse, it remains aligned during a
sequence of identical pulses.

The pertinent problem that we investigate here is how to
create the initial Floquet eigenstates to be submitted to the
periodic pulse train. No optimal strategy for this purpose has
been demonstrated yet, although some methods have been
suggested. Tailored microwave pulses could create cyclic
states as shown before for other types of rotational wave
packets [5]. However, a different microwave field for each
initial energy eigenstate is needed. Another alternative is
given by the switched-wave-packet method [6]. By suddenly
switching off a long adiabatic pulse at a particular time,

pendular wave packets can be obtained [7]. However, these
states resemble cyclic states only for very short pulses.

Conceptual problems arise due to the fact that Floquet
spectra are dense, and it is not clear beforehand if individual
Floquet eigenstates can be prepared. We show that an efficient
strategy for creating cyclic rotational states from field-free
rotational states requires the design of an external field formed
by laser pulses whose amplitude increases slowly from zero
to a target amplitude. The variation of the laser intensity from
pulse to pulse can be tailored in such a way that molecules are
described during the whole sequence of pulses by a succession
of single Floquet eigenstates. For appropriate laser parameters,
a low-temperature field-free ensemble can be converted into
an aligned ensemble.

Pulse trains that change slowly with time have been used
before to execute population transfer in atoms [8]. Also,
protocols for steering atomic Rydberg states by half-cycle
pulses [9] have been designed. These methods employ a
chirping frequency or a varying time delay between pulses
of the train. Chirping schemes can be applied to our problem,
but here, we only consider trains for which the field amplitude
changes.

Slow switching of Floquet Hamiltonians is discussed in
Sec. II. Results describing the preparation of cyclic aligned
states and the high degree of control that can be achieved with
our method are presented in Sec. III. Several effects that cause
misalignment are discussed in Sec. IV. General conclusions
are given in Sec. V. In Appendix A, basic notions concerning
cyclic states are given. Appendix B presents a discussion
of several issues that arise when the energy spectrum is
unbounded.

II. SLOW SWITCHING OF AN EXTERNAL
PERTURBATION: ADIABATIC VERSUS DIABATIC

SWITCHING

The time evolution of a system S perturbed by an external
field E that changes slowly with time can be fully adiabatic,
fully diabatic, or intermediate, depending on the way that
avoided crossings between the instantaneous energy levels
of S + E are traversed. In the first two cases, the system is
described at all times by a single eigenstate of the Hamiltonian.
In practice, near the center of the crossing, the system is
described by a linear combination of the two states, but
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after the crossing, the system returns to one of the states.
On the other hand, in the intermediate case, the system ends
up being described by a linear combination of eigenstates.
Similarly, when the external field is periodic, the time evolution
depends on the way that avoided crossings between Floquet
eigenstates (see Appendix A) are traversed. In Secs. II B and
II C, we explain the differences between adiabatic and diabatic
following for slow switching of Floquet Hamiltonians, after
recalling in Sec. II A the main characteristics of adiabatic
switching methods for generic Hamiltonians.

A. Generic adiabatic switching

The quantum adiabatic theorem [10,11] states that, in the
limit of infinitely slow passage of a Hamiltonian H (t) from t0
to tf , the system will go from an initial state corresponding
to an eigenstate of H (t0) to the instantaneous eigenstate of
H (tf ) continuously connected to it. The proof of the theorem
requires the existence of a gap between the eigenvalue of
interest and the rest of the instantaneous energy spectrum at
all times. Physically, the slowness of the time variation of the
perturbation is defined by a clock internal to the system, which
is usually determined by the energy-level spacing and Planck’s
constant [12].

The adiabatic theorem is the basis of a strategy [13] for
the calculation of excited eigenstates of time-independent
Hamiltonians. Let us suppose that one is interested in the
calculation of a given eigenstate of a Hamiltonian H and that
the eigenstates of another Hamiltonian H0 are known. A virtual
time-dependent Hamiltonian can be written down as

H (t) = H0 + S(t)�H, (1)

where

�H = H − H0, (2)

with S(t) being a switching function that varies between 0 and
1, for 0 � t � τ . In the limit τ → ∞ and for smooth enough
switching functions, the adiabatic theorem guarantees that an
eigenfunction of H0 will evolve, at time τ , to an eigenstate of
H . This is illustrated in Fig. 1(b). The two curves represent two
instantaneous eigenvalues that undergo an avoided crossing
as a function of S, whose time dependence is represented
in Fig. 1(a). If the variation of S is slow enough, the
evolving wave function is given at all times by the eigenstate
whose associated eigenvalue is continuously connected to the
initial state. Therefore, highly excited eigenfunctions of H

can be numerically obtained by solving the time-dependent
Schrödinger equation for H (t), without doing variational
calculations [13]. Also, the method can be used in experiments
to create excited states of H starting from eigenstates of H0,
provided an appropriate Hamiltonian H (t) can be realized in
the laboratory.

B. Adiabatic switching for Floquet Hamiltonians

Adiabatic behavior of Floquet eigenstates is commonly
invoked to describe time-dependent processes that involve a
single laser pulse whose envelope varies slowly in time [14].
In this case, the period of the field is given by the inverse of the
optical frequency of the laser. In particular, Floquet adiabatic
switching has been applied to the calculation of properties
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FIG. 1. (Color online) Illustration of switching strategies.
(a) corresponds to Eq. (1) and shows the time variation of the
switching function. The strict adiabatic limit corresponds to τ → ∞.
However, approximate adiabaticity can be obtained for finite τ .
(b) shows the time dependence of two eigenvalues that undergo an
avoided crossing. The orange (light gray) curve indicates the eigen-
value whose associated eigenstate contributes to the instantaneous
time-evolved state when the evolution is adiabatic. The speed change
of S(t) needed to achieve adiabatic evolution is related to the size of
the avoided crossing. When the evolution is not adiabatic, the wave
function, if the crossing is traversed fully diabatically, is described by
the red (dark gray) curve. (c) shows a stepwise variation of �ω (see
Appendix A) and the electric field for a pulse train. The adiabatic limit
for Floquet eigenstates corresponds to n → ∞, [�ωn − �ωn−1] →
0, ∀ n. (d) gives a pictorial representation of the two kinds of avoided
crossings that can arise for quasienergy curves (see text).

for ionizing or dissociative Hamiltonians such as harmonic
generation under intense laser radiation [15]. This approach
is based on the use of Floquet theory combined with complex
scaling, which is needed to isolate a resonance state from the
other states within the continuum.

Here, we analyze if quantum adiabatic switching can
be used to prepare selected Floquet eigenstates for a rigid
rotor, which by definition is not dissociative. A fundamental
difference with previous studies is that we consider a sequence
of pulses instead of a single laser pulse, as shown in Fig. 1(c).
In this case, the relevant frequency is the inverse of the
repetition period between pulses, ω0 = 2π/T , instead of the
optical frequency because rapid laser oscillations at the optical
frequency ω can be averaged out, as indicated in Appendix A.

Let us suppose that we would like to create a particu-
lar eigenstate for a given virtual Floquet Hamiltonian Ff

[Eq. (A1)]. Specifically, we are interested in creating an aligned
eigenstate for a Hamiltonian like that in Eq. (A3) for laser
parameters �ωf , σ , and T . If an adiabatic theorem holds and
an eigenstate for an initial Floquet HamiltonianF0 is available,
an infinitely slow deformation of F0 up to Fn will take the
initial Floquet eigenstate to the correlated Floquet eigenstate
corresponding to Ff .

Note that the global system is described by a time-
dependent Hamiltonian, Eq. (A3), where �ωn = S(t)�ωf ,
with S(t) being a function that varies at times t = t0 + nT ,
n = 1,2, . . . . This global Hamiltonian is not periodic due to
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the variation of �ω. However, for each pulse we can define a
virtual periodic system to which Floquet theory can be applied.

This strategy relies on the existence of an adiabatic
theorem for Floquet Hamiltonians. The theorem has been
proved only for Hilbert spaces of finite dimension [16]: For
a system initially described by F0, if the time variation of
�ωn is infinitely slow, the time-evolved state, when n → ∞,
converges to the Floquet state of the virtual periodic system
corresponding to Ff , found by continuously following the
quasienergy of the initial state as a function of �ω. In practice,
�ω varies by discrete steps, but for small enough steps
the evolution will be approximately adiabatic. The simplest
choice for F0 corresponds to �ω0 = 0. The eigenstates of the
corresponding Floquet operator are field-free eigenstates.

Adiabatic switching of Floquet Hamiltonians, in a finite
basis, is an unambiguous procedure in the sense that the
correlation between initial and final states is established by
quasienergy ordering of all levels pertaining to each symmetry
species. Thus, at any given time, under adiabatic evolution,
the progenitor state of a given state is clearly defined. If
weak avoided crossings exist, the method can be difficult to
implement since they must be traversed very slowly in order
to follow quasienergy curves adiabatically.

C. Diabatic switching for Floquet Hamiltonians

Adiabatic following is not the only way to prepare Floquet
eigenstates. In fact, as we will show for molecular alignment,
it may not be the best option. If a large change in �ω from
one pulse to the next is chosen, diabatic crossings provide
better continuation of eigenstates than adiabatic crossings [17].
We will show in Sec. III that such large increments in laser
intensity may lead in some cases to fully diabatic crossings,
resulting in the preparation of a single cyclic state. Before and
after the crossing, the system is described by a single Floquet
eigenstate. Thus, target cyclic states can be created using fewer
pulses than with adiabatic following.

Relative populations of cyclic states in the final ensemble
are different for diabatic and adiabatic following of avoided
crossings since the progenitor state for each cyclic state
is different in both cases. Under diabatic following, the
correlation between states at two different field values is
not determined by quasienergy ordering. In terms of ease of
preparation, Hamiltonian parameters should be changed at the
fastest possible rate so that molecules end up in a single Floquet
eigenstate. Such a fast rate corresponds to diabatic traversing
of avoided crossings.

The calculations shown in Sec. III indicate that a mixture of
adiabatic and diabatic following, depending on the nature of
the crossing, is the most convenient choice for the particular
problem of molecular alignment. The relevance of different
kinds of avoided crossings can be understood by examining
Fig. 1. As shown in Fig. 1(d), a given quasienergy curve
can present weak avoided crossings with curves coming
from highly excited field-free states and strong avoided
crossings with curves belonging to quasienergy states with
similar rotational compositions. These crossings can take
place in succession or simultaneously, such that many avoided
crossings of both types can occur during the time evolution
of a particular initial state. State |b〉, in Fig. 1(d), starts as a

low-J eigenstate that gets progressively aligned when the field
increases. State |a〉 is correlated to an initial state with higher J

that is not aligned. Since the two states interchange character
at the crossing, the state |a′〉 adiabatically correlated to |b〉
is not aligned. Adiabatic traversing of the crossing implies
that molecules in state |b〉 get misaligned after the crossing.
Also, sporadic and numerous crossings with highly excited
rotational states can take place. In the theoretical limit J → ∞
(see Appendix B) these crossings occur infinitely often. In
Fig. 1, for simplicity, we have plotted only one of these
states, |e〉. Frequent avoided crossings between states with
low and very high J are due to high-order resonances and are
ineffective and will be traversed diabatically. For all practical
purposes, these avoided crossings behave like true crossings
since they do not alter the time evolution calculated within a
small basis set.

Properties of avoided crossings for Floquet eigenstates were
studied in Refs. [18,19]. For the driven square, two kinds of
crossings, sharp and broad, were identified by Timberlake
and Reichl [18]. These authors studied the influence of the
type of crossing on the structure of the resulting Floquet
states. While sharp crossings lead to temporary changes as
a function of field strength, broad crossings can give rise
to delocalized states. These changes affect the strength of
high-harmonic radiation [18]. Qualitatively similar changes
arise in the context of molecular alignment.

III. PREPARATION OF CYCLIC ROTATIONAL STATES

Here, we discuss optimal strategies for preparing cyclic
rotational states. Reduced units for time and energy are used
in the calculations as explained in Appendix A. These units
depend on the rotational constant B, and therefore, our results
can be extrapolated to any linear molecule.

For an external field with linear polarization, the Floquet
matrix contains nonzero elements between states with the same
magnetic quantum number M due to the selection rule �M =
0. Thus, the matrix is divided into independent blocks, one
for each M value. Matrices for positive and negative M are
identical, so only one needs to be calculated. Another selection
rule is �J = 0,±2. Thus, the different M matrices are, in
turn, divided into two independent blocks, one for even J and
another one for odd J .

In the following we will frequently refer to rotational states
as low-J or high-J states. In general, it will be implied
that low-J states are those for which J < 10. This follows
from the observation that optimum alignment in the pendular
limit is already obtained for wave packets formed by a
linear combination, with the appropriate phases, of rotational
eigenstates with J < 10.

As described in Appendix B, Floquet spectra for rotational
Hamiltonians are dense in the theoretical limit J → ∞. This
limit cannot be reached in real systems, but even so, a large
number of rotational basis functions must be included in the
Floquet matrix to obtain converged quasienergies. In general,
the size of the matrix increases with the field strength. On the
other hand, the size of the time Fourier basis set needed for
achieving convergence increases with the period of the pulse
train.
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FIG. 2. (Color online) The top row shows quasienergies ε, in units of B/h̄, within the first Brillouin zone (see Appendix A) for quasienergy
states with initial quantum number M � 3 and even J as a function of �ω (dimensionless) for a train with pulse parameters σ = 0.003h̄/B

and T = 0.02h̄/B. The middle row shows the same for odd J . The bottom row shows the evolution of the average instantaneous alignment
〈cos2 θ〉 as a function of time t , in units of (h̄/B), for ten initial states, as indicated in the plots. The color scale (gray scale) in the curves for
the quasienergy plots indicates the quasienergy state associated with each alignment curve. A fixed field step such that the increment in �ω is
1 has been chosen for all the calculations.

First, we study a case corresponding to a train composed
of Gaussian pulses with a repetition period between con-
secutive pulses much shorter than a rotational period, i.e.,
T < π/100. Figure 2 shows quasienergies, within the first
Brillouin zone, as a function of the field amplitude. For
the range of �ω values used in our calculations, a basis
set containing rotational states up to J = 25 is enough to
obtain convergence for the time evolution of initial low-J
field-free rotational eigenstates. For zero field, the quasienergy
spectrum is given by the field-free energy spectrum modulo
ω0. When the field increases, a growing interaction between
quasienergy states takes place in an ordered way. Due to the
quadratic dependence on J of rotational energies, interactions
between low-J states are strong, while high-J states are less
affected. Note that unlike the normal situation for spatial
Hamiltonians, quasidegenerate Floquet eigenstates can have
a very different rotational composition, resulting in weak
interactions.

The main characteristics of quasienergy curves do not
change much with the magnetic quantum number M . There
are a few sharp avoided crossings that, at the scale shown in
Fig. 2, appear like true crossings. This implies that the
interaction between the two states involved in each of these
crossings is very small. Some states are quasidegenerate for a
large range of field strengths, although for the strongest field
shown in Fig. 2 the degeneracies disappear. For low fields, a
few strong avoided crossings take place.

Due to the small dimension of the effective rotational
Hilbert space in the short-pulse regime, it is appropriate to
change the field strength from one pulse to the next by a
fixed amount. The bottom row in Fig. 2 shows instantaneous
alignment for all initial states with J � 3. Excellent alignment
is obtained in all cases with realistic fields, i.e., fields that
are weak enough to avoid photodissociation of the molecules.
Except in two cases, our calculations show that, under the
chosen conditions, we obtain a single cyclic state for the
last pulse. This implies that all the crossings have been
traversed either fully diabatically or fully adiabatically. The
two exceptions correspond to initial states |J = 0,M = 0〉 and
|J = 2,M = 0〉. In these two cases, the initial state gets mixed
with another state due to the existence of a repulsive avoided
crossing for �ω ≈ 25. In spite of the mixture with a second
Floquet eigenstate, excellent alignment is achieved in these
cases too, although rapid alignment oscillations take place.
These oscillations are due to the difference in quasienergies
between the two Floquet eigenstates that form the wave
packet.

On the other hand, the use of a smaller field step leads to a
single cyclic state for the two exceptional states, as shown in
Fig. 3. This figure shows the instantaneous average alignment
during a sequence of 55 identical pulses with �ω = 135.25,
σ = 0.003h̄/B, and T = 0.02h̄/B for two different initial
states. These two states result from submitting the state
|J = 0,M = 0〉 to a pulse train with the same σ , T and
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FIG. 3. (Color online) Instantaneous average alignment during
a sequence of laser pulses with σ = 0.003h̄/B, T = 0.02h̄/B, and
�ω = 135.25. Time t is in units of h̄/B. The initial state is a single
Floquet eigenstate (solid line) or a linear combination of two Floquet
states (dashed line). These two initial rotational wave packets were
obtained by increasing the field strength during a pulse sequence.
The single Floquet state was obtained using �ω steps of size 0.25.
The mixed state was obtained when �ω changed by steps of 2.5.
For the mixed state, alignment oscillates during the subsequent pulse
train. However, for the single Floquet eigenstate the alignment is
quasiconserved.

increasing intensity. One state is obtained by using �ω steps
of 0.25, and the other one is obtained by using steps of 2.5.

The time evolution for initial low-J states does not change
when the basis set increases. Note that this would not be
so under the strict adiabatic limit, (�ωn − �ωn−1) → 0, ∀ n.
Assuming that this limit could be implemented in practice,
the evolved states would depend on the highest excited |J,M〉
state included in the basis set because in the adiabatic limit
all avoided crossings, even those considered to be ineffective,
would be adiabatically traversed. Thus, strict adiabatic time
evolution would take molecules from field-free low-J states
to high-J cyclic states, which will hardly show any alignment.
In conclusion, the appropriate strategy for aligning a molecular
ensemble requires diabatic following at every weak crossing.

Larger rotational basis sets are needed to converge high-J
levels. This leads to a complex network of avoided crossings.
However, crossings between states converged within the
smaller basis and high-J states, converged with the larger
basis, are inefficient. Therefore, they are traversed diabatically
even for exceedingly small field steps.

IV. MISALIGNMENT EFFECTS

A. Effects due to strong avoided crossings

We have shown that aligned cyclic states can be created
from a field-free ensemble of rotational eigenstates by slowly
switching the field strength during a train composed of pulses
much shorter than the rotational period.

When a single nonresonant laser pulse is used, the value of
〈cos2 θ〉, for a given |M|, moves from its high-field limit to its
free-rotor limit as J increases [20]. The reason for this behavior
is that molecules become aligned when they are bound within
an effective potential that determines the range in which the
molecular axis can librate. In the oblate spheroidal case, to
which all linear molecules belong, this effective potential [20]

can be written as

Veff =
(

M2 − 1/4

sin2 θ
− 1

4

)
− �ω cos2 θ . (3)

Veff has two minima, whose locations depend on |M| and
�ω. States with smaller J − |M| get bound first, while states
with higher J for a given |M| require stronger fields to reach
the pendular limit, 〈cos2 θ〉 → 1. A similar trend, except for
initial transients, occurs for trains composed of short pulses,
as shown in Fig. 2. The initial transients are due to the field-
free value of 〈cos2 θ〉, which can be greater for states with
higher J .

For trains with longer pulses or longer pulse delay, the
situation is more complex. In these cases and for strong fields,
avoided crossings take place between pairs of states adiabat-
ically correlated to initial low-J states. The effect of these
crossings can be understood by examining Fig. 4. The time
dependence of alignment for the initial state |J = 1,M = 0〉
is shown for two similar pulses with slightly different σ and T

values. For the longer pulse, the alignment is eventually lost
due to the presence of an avoided crossing, near �ω ≈ 135,
with a state whose progenitor state is |J = 5,M = 0〉. For
the chosen field step, the evolution is adiabatic, and the
molecule is described after the crossing by a single cyclic
state. However, this cyclic state is less aligned than the cyclic
state before the crossing due to the well-known fact that states
interchange character at avoided crossings [21]. For pulses
with σ = 0.16h̄/B the cyclic state correlated to the initial
state |J = 1,M = 0〉 does not show any crossing, and the
alignment steadily increases with the field intensity. On the
other hand, the initial state |J = 0,M = 0〉 features up to
four weak avoided crossings with excited states, but no strong
avoided crossings take place. The weak avoided crossings are
diabatically traversed, giving rise to increasing alignment.

In general, low-J levels need weaker fields than high-J
levels to become well aligned. However, the phenomenon
analyzed in Fig. 4 indicates that alignment of an ensemble
that contains molecules with different J quantum numbers
is not a matter of just increasing the field. In effect, if we
increase the field strength to align excited rotational states,
avoided crossings involving these states with low-J states,
which became aligned with weaker fields, take place. These
crossings cannot be traversed diabatically. Thus, in order to
stay in a single cyclic state, they must be crossed adiabatically.
As a result, the state with the lower J value gets misaligned
after the crossing. In other words, although excited states may
be aligned with stronger fields, low-J states undergo high-
field avoided crossings, becoming simultaneously misaligned.
Thus, molecular ensemble alignment requires a trade-off in
the field strength to align excited states without misaligning
states with lower J .

This phenomenon is fairly robust with respect to the laser
duration, but it is more fragile with respect to the time
delay between pulses. This is due to the fact that the exact
location of strong avoided crossings is more sensitive to the
temporal spacing between the laser pulses than to the time
width of each pulse. Thus, small changes in the parameter T

alters the time evolution. This phenomenon can be exploited
to design appropriate fields. Optimal ensemble alignment
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FIG. 4. (Color online) Sensitivity of avoided crossings to the
period of the laser pulses. Top and middle rows show quasienergies
ε, in units of B/h̄, as a function of �ω (dimensionless) within the
first Brillouin zone and average alignment 〈〈cos2 θ〉〉T during each
pulse for two pulse sequences, with σ = T/10. Plots in the left
column are for T = 0.16h̄/B, and plots in the right column are for
T = 0.18h̄/B. Plots in the top row show quasienergy curves for even
J . Plots in the middle row correspond to odd J . Alignment as a
function of pulse number n is shown in the bottom row. Alignment
of the initial state |J = 0,M = 0〉 is similar for both cases. However,
the state |J = 1,M = 0〉 loses the alignment for the longer pulse due
to the existence of a strong avoided crossing near �ω = 135 with a
state whose progenitor state is |J = 5,M = 0〉 (dashed curve in the
corresponding quasienergy plot). For a step of 0.5 in �ω, the crossing
is adiabatically traversed. Diabatic traversing of the crossing would
avoid the misalignment. However, due to the accidental degeneracy
between the two states, larger field steps do not lead to pure diabatic
crossing but to a mixture of the two states involved in the crossings,
with the subsequent loss of alignment. For the shorter pulse, the
initial state |J = 1,M = 0〉 does not show any crossings, although
it is approaching one with the highly excited state |J = 17,M = 0〉
(dashed curve in the corresponding quasienergy plot).

requires designing pulse trains especially tailored to navigate
through the net of avoided crossings.

B. Effects due to accidental degeneracies

Accidental quasidegeneracies between quasienergy states
can arise even within a small rotational basis set. The
interaction between these quasidegenerate states depends
basically on the T value. Figure 5 shows quasienergy levels
for a pulse train with T = 0.3h̄/B. Quasienergy states coming
from initial states |J = 0,M = 0〉 and |J = 1,M = 0〉 exhibit
quasidegeneracies with other states near �ω = 0. The state
quasidegenerate with |J = 1,M = 0〉 is |J = 17,M = 0〉, and
the interaction between them is not efficient. Thus, this state

〉〉
Τ

〈〈

FIG. 5. (Color online) Quasienergies ε, in units of B/h̄, as a
function of dimensionless �ω (top and middle panels) and average
alignment 〈〈cos2 θ〉〉T (bottom panel) during a laser period as a
function of pulse number n for a pulse train with σ = 0.03h̄/B

and T = 0.3h̄/B. The rotational ground state |J = 0,M = 0〉 ends
up less aligned than the initial state |J = 1,M = 0〉. The ground
state is nearly degenerate with |J = 6,M = 0〉 (dashed curve in
the quasienergy plot shown in the top panel) for a large range
of �ω values. Thus, diabatic crossing is not possible. Adiabatic
following is theoretically possible but requires a very small field
step. A wave packet formed by a linear combination of both states
develops, which gives rise to oscillations in the alignment. The state
|J = 1,M = 0〉 is nearly degenerate, near �ω = 0, with the excited
state |J = 17,M = 0〉 (dashed curve in the quasienergy plot shown in
the middle panel). The interaction between both states is negligible,
and |J = 1,M = 0〉 gets aligned when the field increases. The time
evolution has been calculated using �ω steps of 0.1.

becomes better aligned than the rotational ground state, which
interacts more strongly with the state correlated to the field-free
state |J = 6,M = 0〉. Contrary to the avoided crossings that
arise for shorter pulses at intense fields, adiabatic following is
difficult in the presence of interacting quasidegenerate states
and requires very small field steps.

This example gives an indication of the rich dynamics
that takes place due to the complex structure of quasienergy
spectra. This structure can be exploited to create specific
aligned states that otherwise would be difficult to prepare.

In practice, a general strategy to avoid misalignment effects
is to use, for weak fields, an optimized pulse train that must
vary slowly enough to avoid mixing neighbor cyclic states.
Once pendular states are created, the field can be increased
faster to diabatically cross further weaker resonances. How-
ever, when the condition T � 0.1 does not hold, repulsive
crossings between low-J states arise before maximum align-
ment is reached for most states. The consequence is that the
maximum ensemble alignment is limited.
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V. CONCLUSIONS

We have presented a strategy to create aligned cyclic wave
packets for molecular ensembles. The method is based on
slowly switching the field amplitude during a sequence of
nonresonant laser pulses from zero to a selected target field.
The appropriate strategy depends on the duration of the pulse
repetition period compared to the molecule rotational period.
For a short delay between pulses no strong avoided crossings
take place before the states get aligned. Thus, large enough
field steps lead to diabatic following of Floquet eigenstates,
and single cyclic states are prepared in a straightforward way.
These states can be further submitted to a periodic sequence
of identical pulses to maintain long-lasting alignment.

High-J states are relatively unaffected by laser intensity.
Their corresponding quasienergy curves decrease slowly, and
basically, they remain parallel. Eventually, low-J quasienergy
states interact with higher-J states due to high-order reso-
nances. For short pulses these resonances are not efficient
except at very high fields because the rotational compositions
of the states involved are quite different. As a result, these
weakly repulsive avoided crossings can be crossed diabatically,
as required to keep the time-evolved state well aligned. On the
other hand, adiabatic following of such weak crossings would
destroy the alignment, transforming the evolving cyclic state
into a misaligned high-J cyclic wave packet.

When the dimension of the effective rotational Hilbert space
is small, it is appropriate to change the field strength from one
pulse to the next by a fixed amount. This technique is useful
when all crossings are equally efficient. However, when the
number of rotational states needed to achieve convergence
increases, the structure of the avoided crossing net is not
uniform anymore, and variable step sizes must be employed.
As a general rule, for the first pulses of the train, that is, at
low fields, the variation must be slow to avoid oscillations in
the alignment. When the intensity of the field increases, new
avoided crossings must be traversed diabatically to avoid mix-
ing with other states. This requires a faster variation of the field.

For fields that are strong enough, pure diabatic following
is impossible to achieve due to the presence of strong avoided
crossings. Therefore, there is a limit in the field strength that
can be used to implement the method. This limit restricts
the highest excited rotational state that can be converted
into a cyclic state without simultaneously misaligning low-J
states. For all practical purposes, a good alignment strategy
is achieved by choosing the repetition period of the pulse
train such that maximum alignment is obtained for several J

states before resonant avoided crossings become too strong.
This situation is reached for T � 0.1h̄/B and 0.02 � σ/T �
0.16, which implies a limit on the kinds of molecules to
which the method can be applied. For example, for N2 (B ≈
2 cm−1) excellent alignment can be achieved with T �
250 fs and σ between 5 and 40 fs. On the other hand, for
H2 (B ≈ 60.8 cm−1), implementation of the method would
require subfemtosecond pulses.

From the experimental viewpoint it is important to limit the
maximum laser power in order to avoid molecular ionization.
For a given �ω the laser power is inversely related to the
quotient between molecular polarizability and the rotational
constant. For example, �ω = 1000 is equivalent to a laser

power of approximately 0.9 × 1014 W/cm2 for N2 but of
only 3 × 1011 W/cm2 for I2. This shows that the method is
especially well suited for highly polarizable heavy molecules
for which trains with a delay between pulses of tens of
picoseconds can be used with peak powers well below the
limit for which molecules will photodissociate.

Regarding experimental implementations of our method, it
must be taken into account that pulse trains can be generated by
recently developed pulse-shaping techniques [22,23]. The key
idea is to synthesize the train by phase control and locking of
many sidebands with ω0 frequency spacing. These sidebands
are generated from an initial strong laser pulse whose optical
frequency can be chosen to avoid unwanted resonances for the
molecule of interest.

Parameters in the Floquet Hamiltonian other than the pulse
intensity can be slowly switched. In the present work we have
analyzed the method for pulses that have varying strength.
Alternatively, the intensity can be fixed, and the time width
of the laser can be varied, or intensity and width can be kept
constant for all pulses in the train, and the delay between
pulses can be varied. Finally, additional fields can introduce
new control parameters, which may be tuned for the design of
different circuits in the parameter space.
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APPENDIX A: ROTATIONAL CYCLIC STATES

A time-dependent periodic system can be transformed into
a time-independent one represented by an infinite matrix [24].
Sambe [25] showed that, by treating time as another spatial
coordinate, quasienergy states, conceptually equivalent to the
stationary states of conservative quantum systems, can be
defined. These steady states λ are the eigenstates of the Floquet
Hamiltonian,

F ≡ −ih̄
∂

∂t
+ H (t), (A1)

where H (t) is the usual spatial Hamiltonian plus an external
perturbation that depends explicitly on time. Eigenstates of F
belong to an extended Hilbert space formed by the composition
of the Hilbert space corresponding to the spatial part of the
Hamiltonian operator and the space formed by all possible
periodic Fourier basis functions of the time coordinate, with
finite norm [26]. Yajima [27] and Howland [28] showed that
for periodic systems, the so-called Floquet operator, that is, the
time-evolution operator during one period T of the external
perturbation U (T + t0,t0), and the Floquet Hamiltonian are
spectrally equivalent. Thus, the eigenstates of the Floquet
Hamiltonian are cyclic since the following equation holds for
the Floquet operator:

U (T + t0,t0)|λ(t0)〉 = e−(i/h̄)εT |λ(t0)〉 , (A2)

where ε is the eigenvalue associated with the eigenstate λ

of F .
The Hamiltonian, in dimensionless form (which suggests

using h̄/B as a reduced unit of time and B/h̄ as a reduced
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unit of frequency, with B being the rotational constant of the
molecule), for a rigid linear molecule in the presence of a pulse
train composed of linearly polarized nonresonant Gaussian
laser pulses is [3,4]

H (t) = J2 −
∑

n

�αE2
n

2B
exp

[−(t − nT/2)2

σ 2

]
cos2 θ cos2(ωt),

(A3)

where J is the angular momentum operator and σ gives the time
width of the laser. The angle θ is the polar angle between the
internuclear axis and the field direction. The constant �α is the
polarizability anisotropy, and En is the strength of the electric
field for pulse n. In the previous expression a term coming
from the perpendicular component of the polarizability α⊥ has
been neglected since it only adds a constant energy shift. The
interaction of a permanent dipole with a rapidly oscillating
field averages to zero. In the same way, the term cos2(ωt) in
Eq. (A3) can be averaged out, which gives an extra factor, 1/2,
which is usually included in the definition of the parameter
�ω = �αE2/(4B). Averaging out the optical frequency is
equivalent to considering an external field given by the squared
envelope of the laser field. The relevant frequency is then
given by the repetition frequency of the pulse train, i.e.,
ω0 = 2π/T . The dimensionless parameter �ω is related to
the polarizability, laser intensity, and rotational constant by

�ω = 10−11�α(Å
3
)I (W/cm2)/B(cm−1). (A4)

The time evolution for an initial ket |ψ(t0)〉 during a periodic
pulse train, that is, when �ω remains constant, can be
calculated within the Floquet approach, in reduced units, from
the expression [29]

|ψ(t)〉 =
∑

j

exp[−iεj (t − t0)]|λj (t)〉〈λj (t0)|ψ(t0)〉 , (A5)

where the index j runs over states whose quasienergies
belong to the first Brillouin zone, i.e., εj ∈ [−π/T ,π/T ].
Equation (A5) is restricted to a single Brillouin zone due to the
periodicity of the system. The number of Floquet eigenvalues
inside a Brillouin zone is equal to the number of spatial basis
functions used to build the Floquet matrix.

The time evolution during a sequence of pulses when the
laser intensity changes from pulse to pulse can be calculated
in an equivalent way. For that, it is assumed that each pulse
belongs to a virtual periodic pulse train. Thus, the wave
function during pulse n is given by Eq. (A5) if |ψ(t0)〉 is
taken as the evolved wave function at the end of pulse n − 1.
Thus, the wave function during the time interval nT − T/2 �
t � nT + T/2 is

|ψ(t)〉 =
∑

j

exp
[ − iεn

j (t − nT + T/2)
]∣∣λn

j (t)
〉

× 〈
λ

(n−1)
j (nT − T/2)

∣∣ψ(nT − T/2)〉 . (A6)

Under adiabatic conditions the time-evolved wave func-
tion when the initial state is a rotational eigenstate, i.e.,
|ψ(−T/2)〉 = |λ0

1(−T/2)〉 = |J,M〉, becomes for pulse n

|ψ(t)〉 ≈ exp(−iδ)
∣∣λn

1(t)
〉
, (A7)

where

δ =
n∑

j=1

ε
j

1 (t − jT + T/2) . (A8)

APPENDIX B: UNBOUNDED ROTATIONAL SPECTRA

Rotational Floquet Hamiltonians have dense spectra in
the theoretical limit J → ∞. Several conclusions can be
obtained from the analysis of this limit whenever a given model
requires us to include a large number of rotational states. As a
function of a parameter in the Hamiltonian, quasienergy curves
exhibit infinitely many avoided crossings in any quasienergy
interval [16,30]. It has been conjectured that, in such a limit,
an adiabatic theorem for Floquet Hamiltonians does not hold
[16], although special versions of the adiabatic theorem have
been demonstrated [12] for generic Hamiltonians (but not for
Floquet Hamiltonians) in the absence of spectral gaps.

Technically, two different cases may exist for Floquet
Hamiltonians [31]: (i) The spectrum of F , Eq. (A1), is
singular continuous at least for some �ω values. In this
case, quasienergies are discontinuous functions of �ω, and
the spectrum present holes [16]. When the variation of �ω is
infinitely slow, the system necessarily runs into these holes,
and an adiabatic theorem does not hold (Proposition II of
Ref. [16]). In this case, it is still possible that the system evolves
to a state λ which is an approximate solution to (F − ε)λ ≈ 0
[32]. (ii) The spectrum ofF , although dense, is pure point; that
is, eigenstates exist for all �ω values. In this case, a truncated
matrix representation of F gives quasienergies within an error
that can be made as small as desired by increasing the matrix
size (Proposition I of Ref. [16]).

Let us suppose that the variation of �ω depends on the pulse
number n and on a parameter s through a function S ∝ (1 −
e−sn) [16]. The adiabatic theorem for Floquet Hamiltonians
with a finite number of states Jmax indicates that for a particular
truncation there is an sa value such that for s � sa all the
avoided crossings are adiabatically traversed. For a truncated
matrix with J ′

max > Jmax, new avoided crossings take place.
For these new crossings, one of the states does not exist for
the truncation Jmax.

Assuming that new crossings, involving at least one low-J
state, are less effective than those already present for the Jmax

truncation, there may be an sM value, with sM � sa, such that
for s � sM all new crossings are diabatically traversed. Then,
there is a window of s values, [sM,sa], for which adiabatic
evolution of initial cyclic states, with J 
 Jmax, of a Floquet
matrix of size Jmax faithfully represents the time evolution
of cyclic states of a representation with J ′

max > Jmax. This
behavior can be extended to the J ′

max → ∞ limit, and it
is a pedestrian version of the ineffectiveness of high-order
resonances in which adiabatic theorems for systems with a
dense spectrum are founded [12]. If, for a particular size J ′

max,
sM > sa, adiabatic time evolution within the truncated Hilbert
space of size Jmax does not represent the actual evolution in
the Hilbert space of size J ′

max. For rotational Hamiltonians
interacting with linearly polarized lasers (selection rule �M =
0), due to the increasing spacing between energy levels with
J , this situation never occurs.
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For a finite Jmax, adiabatic following of Floquet eigen-
states is not the preferred method for ensemble alignment
when there are weak but effective avoided crossings. Fully
diabatic following is more economical in terms of the
number of pulses needed to prepare a particular cyclic state.
Therefore, if for a given Jmax truncation of the Floquet
Hamiltonian, there is an sd value such that all avoided
crossings are diabatically traversed, new crossings arising for
a larger truncation, J ′

max, will be diabatically traversed too
for s = sd. Then, diabatic following for all avoided crossings

between cyclic states corresponding to a Floquet matrix
of size Jmax faithfully represents the actual time evolution
for J ′

max.
Finally, it should be stressed that since the spectrum is

dense, diabatic following takes low-J field-free eigenstates
to aligned cyclic eigenstates. However, adiabatic following of
all avoided crossings would take molecules from field-free
eigenstates to states whose quasienergy is arbitrarily close
to the initial field-free energy [16] and that therefore are
misaligned.
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