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Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses
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The recent adiabatic saddle-point approach of Shearer et al. [Phys. Rev. A 84, 033409 (2011)] is extended
to multiphoton detachment of negative ions with outer p-state electrons. This theory is applied to investigate
the strong-field photodetachment dynamics of F− ions exposed to few-cycle femtosecond laser pulses, without
taking into account the rescattering mechanism. Numerical calculations are considered for mid-infrared laser
wavelengths of 1300 and 1800 nm at laser intensities of 7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2.
Two-dimensional momenta saddle-point spectra exhibit a distinct distribution in the shape of a “smile” in the
complex-time plane. Electron momentum distribution maps of direct electrons are investigated. These produce a
distinct pattern of above-threshold detachment (ATD) concentric rings due to constructive and destructive quantum
interference of electrons detached from their parent ions. Probability detachment distributions presented, capturing
the influence of saturation effects that are found to become more significant with increasing laser intensity at a fixed
wavelength. ATD photoangular distributions as functions of laser intensity and wavelength near channel closings
are also investigated and found to be sensitive to initial-state symmetry. Nonmonotonic structures observed in the
ejected photoelectron energy spectra are attributed to interference effects from coherent electronic wave packets.
Additionally the profiles of all the photoelectron emission spectra show strong dependence on the carrier-envelope
phase, indicating that it is a reliable parameter for characterizing the wave form of the pulse.
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I. INTRODUCTION

Optical control of laser-induced photodetachment of halide
negative ions by few-cycle pulses has become a subject of
significant interest in the domain of strong-field atomic physics
in the last few years. Historically experimental [1–5] and
theoretical studies [6–13] on multiphoton detachment of halide
negative ions have focused on periodic multicycle laser pulses
defined in terms of frequency, amplitude, and polarization.
Lately advancements in laser technology have prompted
theoreticians to probe the process of multiphoton detachment
of halide negative ions by intense phase-controlled few-cycle
infrared laser pulses [14–18]. The additional parameters
required to characterize a few-cycle pulse are the carrier-
envelope phase (CEP) and the cycle number. Variation of
these control parameters determines the behavior of the electric
field wave form of the pulse and thus offers the potential to
significantly enhance the possibilities for achieving coherent
control over the subsequent photodetachment dynamics.

At present one of the most successful analytical approaches
developed for the description of strong-field photodetachment
of negative ions is the adiabatic saddle-point method of
Gribakin and Kuchiev [6] (GK). The original GK model was
developed for linearly periodic laser pulses and consists of
neglecting the action of the ionic Coulombic field on the photo-
electron. The final electron state may then be represented by the
Volkov wave function [19]. This approximation is well justified
because it accurately includes the short-range polarization
interaction between the outer bound electron and the core of
the parent ion. The GK theory provides an intuitive description
of photodetachment, relating it to a coherent superposition of
electron trajectories in the continuum. This leads to a quantum
interference signature. Analytically the signature arises from
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the superposition of two complex saddle-point contributions
per oscillation period that is intrinsically included in the final
expression describing the photodetachment rate.

Such quantum interference effects have been observed and
analyzed in experimental studies on strong-field photodetach-
ment of halogen negative ions, including F−, exposed to
monochromatic linearly polarized femtosecond infrared laser
fields in the multiphoton regime [1,4]. This work demonstrated
that the GK method was qualitatively able to reproduce the
photoelectron spectra accurately without taking into account
the rescattering mechanism in the low photon energy range
investigated.

Recently, increasing interest in coherent control of direct
photodetachment of negative ions in intense ultrashort laser
fields prompted us to extend the GK approximation, to
consider wave-form-controlled few-cycle linearly polarized
pulses [20,21] of H− ions. In that work we considered direct
electrons in a monochromatic laser field driven by a few-cycle
laser pulse with a sine-squared pulse consisting of N optical
cycles and showed that there are exactly 2(N + 1) ionization
times over the duration of the laser pulse and hence 2(N + 1)
quantum orbits in the final continuum state [20,21]. The
2(N + 1) quantum orbits are distinct and thus each needs
to be calculated separately. However, the orbits that make
the most dominant contributions arise from the saddle-point
contributions that are closest to the center of the pulse
where the electric field is strongest. The contributions of all
the orbits add coherently to the photodetachment amplitude
leading to interference of the corresponding wave packets.
The resulting photoelectron emission spectra are dominated
by these quantum interference packets [20,21] which may
enhance or suppress a particular transition depending on the
relative phase difference of the alternative photodetachment
transition amplitudes.

In this paper we adapt our approach in [20,21] to study
direct photodetachment of F− negative ions in mid-infrared
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short-cycle (femtosecond) laser fields (i.e., pulse duration
between 17 and 24 fs) in the multiphoton regime. A detailed
analysis of the influence of laser intensities (7.7 × 1012,
1.1 × 1013, and 1.3 × 1013 W/cm2), wavelengths (1300 and
1800 nm), and various values of CEP (measured in radians)
with a four-cycle pulse on the (i) momentum saddle-point
distributions, (ii) photoelectron momentum distribution maps,
(iii) three-dimensional (3D) differential detachment probabil-
ities, (iv) photoangular distributions (PADs), and (v) electron
energy spectra is carried out.

The behavior of the momentum saddle-point density dis-
tributions is found to be highly correlated with laser intensity
and wavelength and the CEP. Investigation confirms that the
distribution profiles of all photoemission spectra considered
may be controlled by the CEP. Conversely the spectra reveal
phenomena of the photodetachment dynamics on the short
femtosecond time scale considered here. Above-threshold
detachment (ATD) rings at fixed energy are a distinguishing
feature of the momentum distribution maps which result
from quantum interference effects. Analysis of the calculated
detachment probability distributions indicates that saturation
effects start to play a role in the photodetachment structure
and dynamics as the laser intensity is increased. Calculations
show that the ATD photoangular distributions are dependent
on the initial-state symmetry of the active electron and that
the topological structures of the distributions are determined
by whether an odd or even number of photons is absorbed.
The PADs also exhibit a strong sensitivity to laser wavelength
and intensity. A signature of quantum interference phenomena
in the time domain is observed in the electron energy spectra
as nonmonotonic structures. The calculations are compared
with existing available theoretical and experimental data
[1,4,11,20–24].

This paper is organized as follows. In Sec. II we extend the
approach in [20,21] from the case of initial s-state symmetry
to initial p-state symmetry, to study photodetachment of F−
ions by few-cycle laser pulses. We neglect the rescattering
mechanism of the detached electron from the parent ion
since our theory is restricted to the low-energy part of the
spectrum, where its structure is strongly correlated with
the orbital quantum number l of the initial ground state.
The influence of depletion in the ground state is also ignored.
In our calculations we use detachment probabilities to account
for the finite duration of the few-cycle laser pulse, instead
of detachment rates based on a quasienergy approach which
assumes the presence of a monochromatic laser field. In
Sec. III we discuss the results of our numerical calculations
and analyze the threshold behavior of multiphoton detachment
near channel closings. Finally in Sec. IV we present our
conclusions. Note that throughout this paper atomic units are
used unless otherwise stated.

II. THEORY

We consider detachment for F− having a p outer electron
by an ir laser field

F(t) = −dA
dt

, (1)

where we assume the laser is polarized along the ẑ axis whose
time-dependent vector potential is given by

A(t) = A(t)ẑ = A0

[
sin2

(
ωt

2N

)
sin(ωt + α)

]
ẑ. (2)

Here ω is the frequency of the pulse, N is the number of optical
cycles in the pulse, and α is the CEP. The peak value A0 of the
vector potential A(t) is related to the peak laser intensity I0 by

A0 =
√

I0/Ia.u./ω = F0/ω, (3)

where Ia.u. = 3.515 × 1016 W/cm2 and F0 is the peak value
of the electric field strength. It is useful to note that the
component of the vector potential A(t) of the sine-squared
N -cycle laser pulse in the ẑ direction is composed of three
quantized frequency components and thus may be written in
the form

A(t) = A0

4
[2 sin(ω1t + α) − sin(ω2t + α) − sin(ω3t + α)],

(4)

where ω1 = ω, ω2 = ω(1 + 1
N

) and ω3 = ω(1 − 1
N

). The
photoelectron spectrum for the N -cycle laser pulse in the
laser field F(t) is determined by the differential detachment
probability

dw = 2|Ap|2 d3p

(2π )3
, (5)

where the factor of 2 is included to take account of the electron
spin projections. Inspection of Eq. (5) for the differential
detachment probability reveals that the conservation of energy
is not incorporated via a δ function, as is the case in the
differential detachment rate for periodic multicycle pulses.
From [20] the photodetachment amplitude Ap of electron
ejection with momentum p and pulse duration τ = 2πN/ω

may be written in the form

Ap =
∫ τ

0

[
E0 − 1

2
(p + kt )

2

]
�̃(p + kt )

× exp

[
i

2

∫ t

(p + kt ′ )
2dt ′ − iE0t

]
dt, (6)

where kt is the classical electron momentum due to the field,
given by

kt = −
∫ t

F(t ′)dt ′, (7)

and

�̃(q) =
∫

e−iq·r�0(r)dr (8)

is the Fourier transform of �0(r). The general asymptotic form
of �0(r) is

�0(r) � A

r
exp(−κr)Ylm(r̂), (9)

where r̂ = r/r is the unit vector and A and κ are the asymptotic
parameters corresponding to the bound-state wave function.
Here l and m represent the angular momentum quantum
numbers of the electron in the initial state. �0(r) has a well-
defined asymptotic form since our calculation is within the
length-gauge formalism. Using [25] the following asymptotic
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form of �0(q) of the valence electron of the negative ion for
q → ±iκ is obtained:

�0(q) � 4πA(±)lYlm(p̂)

q2 + κ2
, (10)

where (±)l ≡ (±1)l corresponds to q → ±iκ . Thus

�0(p + kt ) � 4πA(±)lYlm(p̂)

(p + kt )2 + κ2
. (11)

The integrand in Eq. (6) contains a rapidly ocillating exponent
exp[if (t)], where

f (t) = 1

2

∫ t

(p + kt ′)
2dt ′ − E0t. (12)

The positions of the saddle points are given by a solution of

(p + kt )
2 + κ2 = 0, (13)

where κ parametrizes the binding energy |E0| ≡ κ2/2 of the
corresponding bound state. In accordance with the theory of
adiabatic transitions only the saddle points in the upper half
plane of complex t are taken into account in Eq. (13). The
saddle points correspond physically to the coherent emission
of the photoelectron at different complex moments of time
where the transition from the bound state into the Volkov state
takes place. For a short laser pulse with N optical cycles and
a sine-squared envelope as considered here, Eq. (13) takes the
form [

p + F
ω

sin2

(
ωt

2N

)
sin(ωt + α)

]2

+ κ2 = 0. (14)

Reducing the saddle-point equation (14) to scalar form and
setting φ = ωt yields

p2 + 2pF cos θ

ω
sin2

(
φ

2N

)
sin(φ + α)

+ F 2

ω2
sin4

(
φ

2N

)
sin2(φ + α) + κ2 = 0, (15)

where θ is the angle between the photoelectron momentum p
and the field F. As in [20,21], numerical solution of Eq. (15)
for F− yields 2(N + 1) complex roots, where 2N of the roots
arise from the the laser frequency ω1 and the additional two
roots arise from the frequencies ω2 and ω3, respectively. Using
the saddle-point method we can evaluate the direct transition
amplitude for the low-energy part of the spectrum to obtain

Ap = −(2π )3/2A

2(N+1)∑
μ=1

(±)lYlm(p̂μ)
exp[if (tμ)]√−if ′′(tμ)

, (16)

where the sum is over all the saddle points tμ and p̂μ is the
unit vector in the direction of the complex momentum p + kt

evaluated at the saddle points. Explicit expressions for f (tμ)
and f ′′(tμ) in Eq. (16) for the sine-squared N -cycle laser pulse
are given in [20]. As in [6] the spherical harmonics used in
Eq. (16) are defined as

Ylm(�,ϕ) = 1√
2π

eimϕ(−1)(m+|m|)/2

[
2l + 1

2

(l − |m|)!
(l + |m|)!

]1/2

×P
|m|
l (cos �). (17)

Equation (17) may be geneneralized to calculate Ylm(p̂μ) for
complex vectors where

cos� = (p + kt ) · F√
(p + kt )2F

=
(

1 + p2
⊥

κ2

)1/2

. (18)

The last equality in Eq. (18) is valid at the saddle points and
p⊥ = p sin θ is the component of p perpendicular to F. We
note here that the component of momentum of the detached
electron parallel to the field is denoted by p|| = p cos θ . The
real physical angle θ should not be confused with the complex
angle � from Eqs. (17) and (18). The azimuthal angle ϕ is the
same in both cases.

The differential detachment probability in Eq. (5) may be
rewritten in the form

dw

dEed

= 2p|Ap|2

(2π )3
. (19)

Integrating Eq. (19) over the electron energy dEe yields the
photoangular distribution

dw

d

=

∫ ∞

0

dw

dEed

dEe. (20)

Similarly integrating Eq. (19) over the differential solid
angle d
 = sin dθdϕ (where θ and ϕ are the scattering and
azithmual angles) of the final momentum of the photoelectron
yields the energy spectrum

dw

dEe

= 2π

∫ π

0

dw

dEed

sin θdθ, (21)

and the total detachment probability is obtained by integrating
Eq. (21) over the electron energy to obtain

w =
∫ ∞

0

dw

dEe

dEe. (22)

We now apply this theory to study the above-threshold
detachment spectra of the negative F− ion. Since the valence
electron in the F− ion in the p ground state has orbital mo-
mentum l = 1 the detachment probability should be summed
over contributions from the initial-state components with
m = 0,±1. The effect of fine structure splitting is taken into
account by a statistical averaging of channels with the two
different spin-orbit sublevels corresponding to j = l ± 1

2 of
the closed p shell of F− of the final doublet atomic states 2P 0

1/2

and 2P 0
3/2, respectively. These channels are characterized by

different binding energies |E0|j ≡ κ2
j /2 dependent on whether

j = 1/2 or 3/2, respectively. Using the fine structure splitting
energy of 0.0019 a.u. equivalent to 50.1 meV taken from [26]
we assign the binding energy of 0.1268 a.u. (3.451 289 eV)
to the upper 2P 0

1/2 spin-orbit sublevel and a binding energy of
0.1249 a.u. (3.401 189 eV) to the lower 2P 0

3/2 sublevel. Thus
the average photon detachment probability for the j sublevel
of the F− ion is given by

dwj

dEed

=

∑
j

+1∑
m=−1

2j + 1

2L + 1

dw
(j )
lm

dEed

, (23)

where j = 1/2,3/2 are the two possible values of the total an-
gular momentum of the residual atom, L = 1 is its total orbital
momentum, dw

(j )
lm /dEed
 is calculated from Eq. (19) for the
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j th sublevel, and the corresponding differential detachment
probability is denoted by

dwj =
∑

j

+1∑
m=−1

2j + 1

2L + 1
dw

(j )
lm , (24)

where the notation dw
(j )
lm has been introduced specifically to

identify that the j th sublevel is synonymous with the formula
defined earlier in Eq. (5). In this paper our calculations use
Eq. (23) to calculate the differential detachment probabilities
for j = 1/2 since we consider the detachment of p1/2 electrons
from F− ions, and the asymptotic parameter A of the p ground
state given in Eq. (9) for the F− ion is taken from [27].

III. NUMERICAL RESULTS AND DISCUSSION

In our calculations we consider a laser pulse with N = 4
optical cycles. We consider pulses with three peak intensities
7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2 for each of
two laser wavelengths λ = 1300 and 1800 nm (corresponding
to laser frequencies ω = 0.035 05 and 0.025 32 a.u. and
photon energies of 0.954 and 0.689 eV, respectively) with
CEP values of α = 0, π/2, and 3π/2, respectively. The
corresponding saddle points of Eq. (15) in each case for both
(i) 2D momentum distributions and (ii) differential detachment
probability, energy, and angular distributions are estimated
graphically from the 3D surface plots of |f ′(φ)|−1/2 and as
such are identified as infinities instead of zeros.

The momentum surface plots are calculated from
Eq. (15), where we take px (i.e., p⊥) = p sin θ and pz

(i.e., p||) = p cos θ . These yield ten approximate, momentum
complex saddle points which are the saddle-point solutions to
Eq. (15). These graphical solutions are refined by employing
the Newton-Raphson method to ensure that we employ a
higher degree of accuracy in our calculations. The numer-
ical calculation for 2D momentum (px,pz) distributions of
photoelectron spectra requires refining each of the ten roots
individually over a range of px and a range of pz. For our
calculations we consider low-energy photoelectron momenta
px and pz ranging from −1.0 to + 1.0 a.u., i.e., Ee � 0.5 a.u.
for λ = 1300 nm, where Ee= (p2

x + p2
z )/2. A step size of

0.01 a.u. for px and pz was taken in the calculation. Similarly
for λ = 1800 nm we take px and pz ranging from −1.2 to
+ 1.2 a.u., i.e., Ee � 0.72 a.u., taking a step size of 0.012 a.u.
for both the x and z components of the momentum p. The
refined roots are used to calculate the 2D photoelectron
momentum distributions in Figs. 2 and 3.

Similarly, energy and angular surface plots are required
to guesstimate initial values of the energy and angular saddle
points. As in the case of the momentum surface plots the energy
and angular surface plots yield ten approximate complex
roots. These are the corresponding saddle-point solutions of
Eq. (15). Application of the Newton-Raphson method then
involves refining each of the ten graphically estimated roots
individually for a range of angles θ between the direction of
the field and the momentum p of the detached electron. In
our calculations we consider θ in the range 0 � θ � 180◦
taking a step size of 1◦ and the photoelectron energies
Ee in the range 0.05ω � Ee � 10ω. The momentum values
p for each frequency (ω = 0.035 05 a.u., 0.025 32 a.u.)

ranging from the corresponding threshold values (0.0592 and
0.0503 a.u.) to maximum values (0.8373 and 0.7116 a.u.),
respectively, are obtained by taking p = √

2Ee for equally
spaced energies Eej = (ω/20)j with j = 1,2, . . . ,200. The
refined Newton-Raphson roots are then used in Eq. (16) for
the transition amplitude to calculate the emission spectra
for the 3D photodetachment probabilities, PADs, and photo-
electron energy spectra, respectively, in Figs. 4–7, respectively.

A. Momentum saddle-point distributions

In Fig. 1 we show ten momentum saddle points that are
solutions of Eq. (15) with px = psinθ and pz = pcosθ for a
four-cycle pulse at a fixed laser intensity of 1.3 × 1013 W/cm2

with fixed wavelengths of λ = 1300 and 1800 nm and CEP
values of α = 0, π/2, and 3π/2, respectively. Figures 1(a)–
1(c) depict the saddle points for five values of px in the range
−1 � px � 1 and five values of pz in the range −1 � pz � 1
for λ = 1300 nm corresponding to Ee � 0.5 a.u. Similarly,
Figs. 1(d)–1(f) depict saddle points for five values of px

in the range −1.2 � px � 1.2 and five values of pz in the
range −1.2 � pz � 1.2 for λ = 1800 nm corresponding to
Ee � 0.72 a.u. That is, to ease visual analysis of the computed
data, the momentum saddle points shown in Fig. 1 are
a subset (10 saddle points) × (5 photoelectron momenta
px) × (5 photoelectron momenta pz) of the number of
saddle points used in our calculations in Figs. 2 and 3. The
actual number of saddle points used in Figs. 2 and 3 are
calculated from an array of size (10 saddle points) × (200 px

momentum components) × (200 pz momentum components).
As in [20,21] for H− ions the saddle points are distributed in
the shape of a “smile.” Each group of red circles or blue crosses
represents the position of a saddle point for the given range
of photoelectron momenta described above. Alternating color
has been used to make each saddle point distinguishable from
the others as consecutive saddle points for the given range
of photoelectron momenta (px,pz) considered lie so closely
together.

The data in Fig. 1 show that the positions of the saddle
points in the complex plane are critically dependent on the
wavelength and CEP at a fixed intensity. In particular it is
noted from Figs. 1(a)–1(c) that as the wavelength increases for
both a fixed intensity and fixed CEP the saddle points move
closer to the real axis as shown in Figs. 1(d)–1(f). Further
calculations not shown here also show that as the intensity is
decreased, from 1.3 × 1013 to 1.1 × 1013 to 7.7 × 1012 W/cm2

for fixed wavelengths 1300 and 1800 nm, with fixed CEP
values considered as above, the saddle points move further
away from the real axis. It is observed that for a fixed intensity
and fixed wavelength an increase in CEP moves the roots along
the smile. It is noted that for θ = 0 the electron is likely to be
detached parallel to the field (i.e., when θ = 0 or π ) rather
than perpendicular to it (i.e., when θ = π/2).

We now enquire into the relative importance that contribu-
tions from different saddle points will have for the transition
amplitude. For this purpose we explore the behavior and
location of various individual saddle points in Fig. 1. For both
wavelengths and intensities considered here, our calculations
show that for a CEP of α = 0, root 5 is closest to the real axis,
for α = π/2, roots 5 and 6 are equally close to the real axis,

033415-4



DIRECT PHOTODETACHMENT OF F− BY MID- . . . PHYSICAL REVIEW A 88, 033415 (2013)

0 5 10 15 20 25 30
0

0.5
1

1.5
2

2.5
3

3.5
4

(a) λ=1300nm, I
0
=1.3×1013W/cm2, α=0

Re(Φ)

Im
(Φ

)

0 5 10 15 20 25 30
0

0.5
1

1.5
2

2.5
3

3.5
4

(b) λ=1300nm, I
0
=1.3×1013W/cm2, α=π/2

Re(Φ)

Im
(Φ

)

0 5 10 15 20 25 30
0

0.5
1

1.5
2

2.5
3

3.5
4

(c) λ=1300nm, I
0
=1.3×1013W/cm2, α=3π/2

Re(Φ)

Im
(Φ

)

0 5 10 15 20 25 30
0

0.5
1

1.5
2

2.5
3

3.5
4

(d) λ=1800nm, I
0
=1.3×1013W/cm2, α=0

Re(Φ)

Im
(Φ

)

0 5 10 15 20 25 30
0

0.5
1

1.5
2

2.5
3

3.5
4

(e) λ=1800nm, I
0
=1.3×1013W/cm2, α=π/2

Re(Φ)

Im
(Φ

)

0 5 10 15 20 25 30
0

0.5
1

1.5
2

2.5
3

3.5
4

(f) λ=1800nm, I
0
=1.3×1013W/cm2, α=3π/2

Re(Φ)

Im
(Φ

)

FIG. 1. (Color online) Momentum complex-time saddle points for the four-cycle pulse at a laser intensity of 1.3 × 1013 W/cm2. The panels
in each row represent wavelengths of 1300 and 1800 nm. The panels in each column correspond to the CEP α = 0, π/2, and 3π/2. In (a),
(b), and (c) each group of points represent the positions of a saddle point for a range of photoelectron momenta px and pz ranging from −1.0
to + 1.0 a.u. for λ = 1300 nm. In (d), (e), and (f) each group of points represent the positions of a saddle point for a range of photoelectron
momenta px and pz ranging from −1.2 to + 1.2 a.u. for λ = 1800 nm. In each group, the points closest to the real axis correspond to the
smallest values of photoelectron momenta.

and for α = 3π/2, roots 4 and 5 are closest to the real axis. The
location of these roots predicts precisely which roots will make
the most significant contribution to the transition amplitude

as the CEP is varied. Further inspection of the saddle-point
distributions indicates that the symmetrical properties of the
distribution are highly sensitive to variation of the CEP. The

FIG. 2. (Color online) (a), (b), and (c) show the logarithm of the 2D momentum distributions (px,pz) of photoelectrons detached from F−

at a laser intensity 1.3 × 1013 W/cm2 with a sin2 pulse duration of four optical cycles. The panels in each row correspond to a CEP of α = 0,
π/2, and 3π/2, respectively, at a laser wavelength of 1300 nm. (d), (e), and (f) are as in (a), (b), and (c) except now the laser wavelength is
1800 nm.
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FIG. 3. (Color online) (a), (b), and (c) show the logarithm of the 2D momentum distributions (px,pz) of photoelectrons detached from
F− at a laser wavelength of 1300 nm and sin2 total pulse duration of four optical cycles at intensities of 7.7 × 1012, 1.1 × 1013, and
1.3 × 1013 W/cm2, respectively, calculated at a CEP of α = 0.

simulations in Fig. 1 show that the saddle-point distributions
are symmetric for α = π/2 and asymmetric for α = 0 and
α = 3π/2. These results indicate that the CEP controls the
photodetachment dynamics of the momentum spectra.

Similar saddle-point distributions not reported here are also
obtained for a suitable range of photoelectron energies and
angles directly from Eq. (15), for array sizes of (10 saddle
points) × (200 photoelectron energies) × (180 scattering
angles). These we use to calculate the photodetachment
probability distributions, PADs, and photoelectron energy
spectra in Figs. 4, 5, 6, and 7 respectively. The CEP is also
found to strongly control the influence of individual saddle
points on the photodetachment dynamics of the differential
detachment probability distributions, PADs, and photoelectron
energy spectra.

B. Photoelectron momentum distributions maps

In Fig. 2 we present the 2D momentum distribution
maps of the photoelectron spectra for F− with a laser pulse

duration of four optical cycles at a fixed laser intensity
of 1.3 × 1013 W/cm2 with laser wavelengths of 1300 and
1800 nm, respectively, and three different values of the CEP
(α = 0,π/2,3π/2). The 2D momentum distribution maps
have been calculated from the logarithm of the differential
detachment probabilities of F−.

The most striking feature of the momentum distributions in
Fig. 2 is the richly structured interference pattern originating
from the oscillatory behavior of the few-cycle laser pulse
and the modulation of wave-packet dynamics. A distinctive
feature of the interference pattern recorded in the momentum
spectra is the series of concentric rings emanating from the
center of each distribution in Figs. 2(a)–2(f). These ring
structures are centered at zero momentum and correspond
to characteristic above-threshold detachment peaks. The in-
nermost rings in Figs. 2(a), 2(b), and 2(c) correspond to a
six-photon detachment channel and Figs. 2(d), 2(e), and 2(f)
correspond to an 11-photon detachment channel. Additional
interference rings are produced at the higher wavelength
(and at higher intensities as shown in Fig. 3) due to the

FIG. 4. (Color online) Differential detachment probabilities dw/dEed
 for the four-cycle pulse calculated with a CEP of α = 0. The
panels in each row represent intensities of 7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2. The panels in each column correspond to laser
wavelengths of 1300 and 1800 nm, respectively. These distributions include contributions from the m = 0, −1, and +1 states. The effect of
fine structure splitting has been taken into account. The energy axis in each plot shows the photoelectron energy in units of ω/20.
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FIG. 5. Dependence of the photoelectron angular distribution on the n photodetachment channel with the CEP α = 0. The panels in each
row correspond to the peak laser intensities 7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2. The panels in each column represent wavelengths
of 1300 and 1800 nm. (a) shows five-photon detachment and (b) and (c) show six-photon detachment. (d), (e), and (f) show nine-, ten-, and
eleven-photon detachment channels, respectively.

increased number of higher-order detachment channels and
thus more detailed structure is recorded in the distributions.
Comparison of Figs. 2(a), 2(b), and 2(c) at λ = 1300 nm
and 2(d), 2(e), and 2(f) at λ = 1800 nm shows that the yield
along each ring is strongly correlated with the direction of
emission. Inspection of Figs. 2(a)–2(f), shows that the maxima
of the rings occur along the direction of polarization while
the minima of the rings for emission occur approximately

perpendicular to the laser polarization. Our observations are
in qualitative agreement with [22].

As in [22] the regular grid of sharply defined interference
peaks in momentum space in combination with the radial
interference rings observed in Figs. 2(a)–2(f) can be interpreted
as a far-field continuum “quantum carpet” [28]. The origin of
the interferences noted in Figs. 2(a)–2(f) may be explained
by the fact that for direct electrons and a few-cycle pulse
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FIG. 6. (Color online) Dependence of the photoelectron angular distribution on the n photodetachment channel with the CEP α = π/2,3π/2.
The panels in each row correspond to the peak laser intensities 7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2. The panels in each column
represent wavelengths of 1300 and 1800 nm. (a) shows five-photon detachment and (b) and (c) show six-photon detachment. (d), (e), and
(f) show nine-, ten-, and eleven-photon detachment channels, respectively.
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FIG. 7. (Color online) Photoelectron energy spectra calculated for a CEP of α = 0 by including different numbers of saddle points in the
amplitude: two (5 and 6) shown by blue plus signs, three (4–6) shown by the red dotted line, three (5–7) shown by the green dash-dotted line,
four (4–7) shown by the blue dashed line, and ten (1–10) shown by the black solid line. The panels in each row represent laser intensities of
7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2. The panels in each column correspond to laser wavelengths of 1300 and 1800 nm.

with a sine-squared envelope as described in Eq. (2) with N

cycles there are exactly 2(N + 1) instants when the electron is
detached throughout the duration of the laser pulse. These
complex instants of time are start times of the electron
(quantum) orbits in the presence of the laser field. Each of
their contributions adds to the transition amplitude. This results
in the radial interference effects caused by the corresponding
wave packets. As reported in [22] we similarly observe that the
perpendicular radial interference pattern in our distributions
is generated by photodetachment at the two peaks of the
laser field per intracycle time and this produces a 2ω energy
separation of the ATD rings.

A notable feature in Figs. 2(a)–2(f) shows that the ATD
peaks for an n-photon detachment channel get narrower as the
threshold for absorption of additional photons increases at the
onset of the continuum.

Further comparison with (i) strong-field approximation
(SFA) calculations [22] for both (a) an infinitely long pulse and
(b) a cosine-squared pulse with total pulse duration of 18 opti-
cal cycles and (ii) full numerical time-dependent Schrödinger
equation (TDSE) simulations [22] is made. This shows that
our calculations yield closer qualitative agreement with the
TDSE results than with the analytical SFA calculations which
neglect the effect of fine structure splitting. It should be noted
that TDSE calculations automatically include the rescattered
electrons, in contrast to both our calculations and the SFA
calculations in [22]. This confirms that rescattering does not
play a significant role in the energy regime considered here.
Examination of Fig. 2 in [22] and the left-hand panel of
Fig. 3 of [22] reveals a clear center which differs from our
current results in Fig. 2(d). This qualitative discrepancy may
be reconciled by noting that the calculations in [22] are based
on employing the Hartree wave function for the initial state
of F−, which does not yield the correct asymptotic behavior.

By contrast our initial-state wave function is asymptotically
correct. It has been demonstrated in [29,30] that the use of
asymptotically correct initial-state wave functions is very im-
portant for obtaining a correct description of above-threshold
detachment in negative halide ions. Additionally, the results
in Fig. 2 of [22] were obtained by the SFA for an infinitely
long flat pulse. Another significant difference between the
calculation in the left-hand panel of Fig. 3 in [22] and our
present calculation is that the envelope used in our model
is defined for a vector potential with a sine-squared pulse
with shorter total duration of four optical cycles whereas the
authors in [22] have specified the laser pulse in terms of the
electric field using a cosine-squared pulse for 18 optical cycles.
Inspection of Fig. 2 and and the left-hand panel of Fig. 3 of [22]
in comparison with our Fig. 2 indicates that the interference
structures are more sharply resolved for longer pulses than for
short femtosecond laser pulses as considered here.

A notable general trend observed for both wavelengths is
that the momentum distributions are symmetric about both
px = 0 and pz = 0 when the CEP α = 0. For CEP values of
α = π/2 and α = 3π/2 the momentum distributions retain
their symmetry about the px axis only. It may be noted from
Figs. 2(b) and 2(e) that for the distribution with a CEP of
α = π/2 the photoelectrons are more likely to be ejected in
the backward direction, whereas Figs. 2(c) and 2(f) show
that for a CEP of α = 3π/2 the electrons are more likely
to be ejected in the forward direction. Further comparison
of Figs. 2(b) and 2(c) at λ = 1300 nm and Figs. 2(e)
and 2(f) at λ = 1800 nm shows that there is mirror-image
asymmetry between the forward direction α and the backward
direction 2π − α. This observation that the asymmetry in the
forward-backward (postive-negative) momentum distributions
is CEP dependent is consistent with results reported [21,23]
for angularly resolved electron spectra of H− detached by short
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infrared laser pulses. It is also noted from Figs. 2(b), 2(c), 2(e),
and 2(f) that the structure of concentric rings is more clearly
resolved for forward-backward-asymmetric distributions than
for the symmetric case. In the forward direction for a fixed
CEP of α = π/2 it is observed that the interference is weaker
than in the backward direction. For a fixed CEP of α = 3π/2
the distributions in Fig. 2 show that the interference effects are
more pronounced in the forward direction. Thus these results
show that the CEP is a useful tool in controlling the behavior
of the interference structures observed in photodetachment of
F− ions by few-cycle laser pulses.

The momentum maps for F− ions shown here are quite
different physically from those obtained for H− ions in [21,23],
which are characterized by a set of above-threshold detach-
ment peaks, in contrast to the above-threshold concentric rings
observed for F− ions. This difference may be accounted for by
the fact that the calculations for H− ions in [21,23] were carried
out for an l = 0 ground state, whereas the present calculations
for F− ions are carried out for an l = 1 ground state. This
indicates that the structure of the low-energy momentum
maps considered in both cases, whose spectra include only
the contribution of direct electrons, is strongly dependent on
the parity of the negative ground-state ion. Finally it should
be noted the momentum maps in Figs. 2 and 3 include the
m = 0, + 1 and m = −1 state components of the initial p

state of the F− ion. We report that additional simulations
of the momentum maps carried out (not shown here) show
that neglect of the m = −1 and m = +1 states leads to a
significant underestimation of the momentum distributions and
do not capture the complete physical picture of constructive
and destructive interference effects.

C. Photoelectron differential detachment probability

In Fig. 4 we display some sample spectra of photoelectron
differential detachment probabilities for a four-cycle pulse
at laser intensities of 7.7 × 1012, 1.1 × 1013, and 1.3 ×
1013 W/cm2 for the p states of above-threshold detachment
for the F− ion. The detachment probabilities at each intensity
are investigated by using two laser wavelengths of 1300 and
1800 nm for a fixed CEP of α = 0 in the vicinity of channel
closings.

In particular Fig. 4(a) corresponds to five-photon detach-
ment, Figs. 4(b) and 4(c) yield a six-photon detachment
channel, Fig. 4(d) corresponds to nine-photon detachment,
Fig. 4(e) shows a ten-photon detachment channel, and Fig. 4(f)
depicts an eleven-photon detachment channel.

Comparison of Figs. 4(a)–4(f) shows that the probability of
detachment at a fixed wavelength of either 1300 or 1800 nm
increases with increasing intensity. We also observe that at
each fixed intensity as the wavelength increases the probability
of electron detachment also increases. These calculations
include the contribution of the m = 0, m = +1, and m = −1
components to the photoelectron emission in the ground state.
While the m = 0 component of the initial p state gives the
dominant contribution to the detachment probabilities, neglect
of the m = +1 and m = −1 spinor-spherical harmonics leads
to a significant underestimation of the detachment probabilities
in the present model. Calculations carried out by Kiyan and
Helm [1] adopting the GK theory [6] for a long periodic pulse

show very good qualitative agreement with our data at 1800 nm
for a long laser pulse of 1.1 × 1013 W/cm2. Comparison
of our predictions with [1] reveals close similarity of the
nonmonotonic structure of their spectra. The two additional
smaller peaks that occur in our spectra but not in [1] are a
manifestation of the few-cycle laser pulse.

In accord with the predictions of Bergues et al. [4] we find
that in our model saturation effects are negligible at the lower
laser intensities of 7.7 × 1012 and 1.1 × 1013 W/cm2 but begin
to have a stronger influence at 1.3 × 1013 W/cm2. Additional
calculations carried out at higher intensities of 1.7 × 1013 and
3.4 × 1013 W/cm2 (not reported here) for both wavelengths
of 1300 and 1800 nm show that the saturation effects become
increasingly significant in determining the profile of the
spectra, as depletion of the negative ions at the leading front of
the laser becomes more critical at higher intensities and thus
can no longer be neglected in the ground state in our model.
Comparison of our spectra with the results of [4] shows that
the main feature of the nonmonotonic oscillatory structures
are qualitatively well reproduced in the present calculations.
At the higher wavelength of 1300 nm and stronger intensities
of 1.1 × 1013 and 1.3 × 1013 W/cm2 it is noticeable that the
F− ions contribute to narrower energy peaks in contrast to the
results at the lower wavelength of 1300 nm where they spread
over several broader excess photodetachment peaks.

Similar trends are noted (not shown here) for probability
distributions calculated with CEP values of α = π/2 and 3π/2.
The symmetrical properties of the distributions are dependent
on the CEP, being symmetric at α = 0 and asymmetric for
α = π/2 and 3π/2. These findings indicate that the CEP
is an additional laser control parameter that can steer the
behavior of the detached electron in the photodetachment
process. The distributions in Figs. 4(a)–4(f) show clearly that
the threshold for photodetachment is strongly dependent on
both increasing laser intensity and increasing laser wavelength.
The shape of each of the distributions is strongly characterized
by the above-threshold detachment peaks which are a feature
of channel-closing-induced bifurcation effects. This behavior
has been observed in previous calculations for negative ions
whose initial state has s symmetry [11,21]. In addition, the
Sturmian-Floquet predictions for threshold effects in [11] of
negative ions with initial p-electron symmetry are confirmed
by our results.

D. Photoangular distributions

In order to obtain a deeper insight into the threshold
behavior of PADs near channel closings we analyze their
dependence in Figs. 5 and 6 on laser wavelength, intensity,
and CEP for the p bound state of F− exposed to a four-cycle
laser pulse. Comparison of Fig. 5(a) with Fig. 5(b) shows that
there is a critical bifurcation peak laser intensity I0 [defined as
in Eq. (3)] in the range 7.7 × 1012 < I0 < 1.1 × 1013 W/cm2

at which the fifth photon detachment channel closes. The
four-peak structure in Fig. 5(a) which is connected by three
minima is transformed into a five-peak structure connected by
four minima at the stronger intensity of 1.1 × 1013 W/cm2

in Fig. 5(b). This corresponds to a six-photon detachment
channel. Direct comparison of Fig. 5(b) with Fig. 5(c) shows
that at the higher intensity in Fig. 5(c) the maximum of
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the middle peak is now much higher and broader than the
maxima of the two peaks on either side of it, reversing the
trend observed in Fig. 5(b). The magnitudes of all five peak
structures in Fig. 5(c) have also increased significantly. This
profile coincides with the six-photon detachment channel in
Fig. 5(c) approaching threshold behavior near its channel
closure. It is noted in Figs. 5(a)–5(c), that the maxima of
the outermost peaks are of much smaller magnitude than the
innermost peaks.

In Fig. 5(d) corresponding to nine-photon detachment there
is a distinct signature of six peaks. Similarly the tenth and
eleventh photon detachment channels depicted in Figs. 5(b)
and 5(c) are characterized by unique signatures of seven and
eight peaks, respectively. As in Figs. 5(a)–5(c) it is observed
that the heights of the peaks for each detachment channel at
the fixed laser wavelength of 1800 nm increase with increasing
intensity. Further analysis of Figs. 5(a)–5(f) also demonstrates
that the maxima of the lowest peaks become washed out
and they evolve into a flat-shouldered plateau as the intensity
increases. The bifurcation phenomenon which is a feature of
channel closure in Figs. 5(a)–5(f) is governed by increase of the
ponderomotive shift Up = F 2

0 /4ω2. The critical bifurcation
intensity and wavelength for n-photon detachment for a short
pulse are determined from the law Ee ≈ nω − Up − |E0|j and
occur close to Ee → 0, where Ee is the final kinetic energy of
the detached electron and |E0|j (with j = 1/2) the bound-state
energy of the F− ion.

Comparison of the plots in Figs. 5(a)–5(f) illustrates that
with the CEP α = 0, the PADs for the odd photon channels
considered here (n = 5,9,11) are distinguished by a minimum
in the direction of laser polarization but the PADs for even
photon detachment channels (n = 6,10) are characterized by
a maximum located along the polarization direction of the
laser field. This pattern of electron emission for even- and
odd-n PADs was also found in the study [21,24] of H−,
which indicates that this particular characteristic of the PADs
is independent of the initial-state symmetry.

Our results show that for F− with initial orbital angular
momentum l = 1, if an odd number of photons is absorbed,
the distributions have an even number of peaks, while if an
even number of photons is absorbed, the distributions have
an odd number of peaks. Similar observations were made in
[11,21] in H− for an s ground state for two- and three-photon
detachment but the topologies of the structures are qualitatively
different, indicating that the geometrical structure of the PADs
is sensitive to the initial-state symmetry of the active electron.

Next we study the effect of the CEP dependence of PADs
for a laser wavelength of 1300 nm and intensities of 7.7 ×
1012, 1.1 × 1013, and 1.3 × 1013 W/cm2. In Figs. 5(a)–5(f)
we see that for each intensity considered the PADs are
symmetric about 90◦ for a CEP of α = 0. Comparison with
Figs. 6(a)–6(f) shows that the PADs calculated at α = π/2
are shifted to the right of the α = 0 distributions and the PADs
calculated for α = 3π/2 are shifted toward the left of the α = 0
distributions. The positions of the maxima and minima in the
jetlike structures in Figs. 6(a)–6(f) are observed to be highly
dependent on the CEP.

The distributions for α = π/2 are the mirror images of those
at 3π/2 about 90◦ along the angular axis for the three laser
intensities considered. This shows that the photodetachment

probabilities in the forward direction of α = π/2 are equal to
those in the backward direction α = 3π/2. The wavelength
dependence of this asymmetry is also noted in Fig. 6.
With increasing wavelength at a fixed laser intensity the
corresponding asymmetry amplitudes in Figs. 6(a)–6(f) yield
a higher value than the corresponding symmetric amplitudes
considered in each case in Fig. 5. It is further noted from Figs. 5
and 6 that for a fixed wavelength with increasing intensity the
amplitudes of the oscillatory peaks for both the symmetric and
asymmetric PADs increase.

These results in this section show that the degree of
asymmetry and the structures in the PADs are highly sensitive
to variation in the CEP. Thus measuring such distributions
provides a robust tool for determining this phase in multipho-
ton detachment of negative ions where in the initial state the
electron’s orbital angular momentum has p symmetry.

E. Photoelectron energy spectra

We now consider threshold effects in the photoelectron
energy spectrum of the negative F− ion near channel closure.
The dominant characteristic of the spectra in Figs. 7(a)–7(f)
is a clear structure of above-threshold peaks corresponding
to a multiphoton mechanism, where each peak is separated
approximately from its nearest neighbor by the photon energy
ω, as for a short pulse Ee + Up + |E0|j ≈ nω for some integer
n. These peaks are wider (as expected [20,21]) than is the
case for a long laser pulse, due to the combined wave-packet
interference effects from the 2(N + 1) saddle-point contribu-
tions, over the duration of the short laser pulse. Figure 7(a)
shows the five-photon detachment channel and Figs. 7(b)
and 7(c) are the results for six-photon detachment channels.
Figures 7(d), 7(e), and 7(f) show the calculations for nine-, ten-,
and 11 eleven-photon detachment channels, respectively. From
Figures 7(a)–7(f) it is observed that as the ponderomotive shift
is increased with increasing intensity and wavelength the num-
ber of prominent excess photon detachment channel increases,
corresponding to the absorption of many more photons than
necessary at the onset of the continuum. It is noted from
Figs. 7(a)–7(f) that an increase in higher-order detachment
channels is accompanied by increasing probability of closure
of the lower-order channels. This happens because as the pon-
deromotive potential raises the continuum threshold the min-
imum number of photons required to detach an electron from
a negative ion increases when the laser intensity and/or wave-
length is increased. This leads to closure of lower photon de-
tachment channels. Our results show that the threshold for pho-
todetachment increases as the ponderomotive shift increases.

In Fig. 7 we analyze how the behavior of the energy
spectrum is influenced by the number of saddle points included
in the evaluation of the transition amplitude. It can be seen from
Fig. 7 that at the lower wavelength of 1300 nm all ten saddle
points need to be included to obtain the complete spectrum,
as compared with the calculations for λ = 1800 nm, where
Figs. 7(d)–7(f) show that only roots 4–7 need to be included
to give accurate results. This is because at λ = 1300 nm the
laser field is weaker than at λ = 1800 nm for the range of laser
intensities considered here. At the higher wavelength roots 5–7
give the dominant contribution to the transition amplitude. This
is consistent with the results in [20], where it was also found
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that at lower wavelengths all saddle points need to be included.
This indicates that at lower electron energies and wavelengths,
the saddle points further from the real axis play a stronger
role than at higher wavelengths and electron energies. Similar
behavior was noted in [21].

The limit of applicability of our adiabatic saddle-point
approach can be determined from the Keldysh parameter
γ = ωκ

F0
where ω, κ , and F0 have been defined in Sec. II.

The multiphoton regime requires that γ � 1 and the tunneling
regime requires γ < 1. Here γ = 1.192, 0.998, and 0.918 at
λ = 1300 nm for laser intensities of 7.7 × 1012, 1.1 × 1013,
and 1.3 × 1013 W/cm2, respectively. At the higher wavelength
of 1800 nm considered, the Keldysh parameter satisfies γ < 1
(i.e., γ = 0.8615, 0.7208, and 0.6631 for increasing laser
intensities of 7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2,
respectively). The present results in Fig. 7 indicate that the
multiphoton mechanism is dominant for the range of laser
parameters considered in this paper, despite the Kelydsh theory
predicting that when γ < 1 the photodetachment dynamics are
governed predominantly by tunneling. It should be noted that
in our calculation the effect of averaging over the spatial laser
inhomogeneity to take account of the radial dependence of the
intensity has not been considered. As shown by Reiss [31] this
modification might be expected to cause the multiphoton peaks
in Fig. 7 to disappear and be replaced by continuous energy
spectra characteristic of the tunneling regime expected at
higher intensities and longer wavelengths. However Reiss [31]
explained that the inclusion of spatial laser inhomogeneity
yielding a smoother distribution does not necessarily mean
that the spectra may be interpreted as indicating a tunneling
mechanism. This is because the spatial integration over the
the intensity distribution is physically a superposition of
many different photon orders and the contributions from
different orders overlap and result in continuous spectra. The
present calculations highlight an apparent contradiction in the
multiphoton-tunneling dichotomy if interpreted very strictly,
according to whether the Keldysh parameter γ is greater than
or less than unity. The present results in Fig. 7 show that γ < 1
does not necessarily preclude the multiphoton mechanism for
the range of laser parameters considered here. Our calculations
here show that a few-cycle laser pulse can produce 2(N + 1)
photoelectron wave packets and guide them through different
multiphoton pathways in the continuum, thus controlling the
interference effects in the various multiphoton detachment
electron spectra as observed in Figs. 7(a)–7(f).

Additional calculations carried out but not reported here
show that the electron energy spectrum is CEP controlled. The
contribution of individual saddle points to the energy spectra is
directly determined by the value of the CEP. Our calculations
show that increasing either the wavelength or intensity causes
the low-energy peaks to vanish. In particular we have seen that
the properties that evolve with increasing laser intensity or
wavelength or variation of the CEP of the energy spectra serve
as useful diagnostic probes of the photodetachment dynamics
of channel closure at threshold.

IV. CONCLUSIONS

We have extended the adiabatic saddle-point method
in [20,21] to direct photodetachment of F− electrons by

mid-infrared short (femtosecond) linearly polarized laser
pulses in the multiphoton regime. In particular the model can
be used to investigate threshold effects. We have considered
the behavior of the photoelectron momentum saddle points
(px,pz) in the upper half plane of complex t and found that
they are highly sensitive to variation in (i) laser wavelength,
(ii) laser intensity, and (iii) CEP.

Analysis of the momentum distribution probability maps
of photoelectron spectra reveals a remarkably detailed
concentric-ring structure of above-threshold detachment, at-
tributed to quantum wave-packet interference effects arising
from 2(N + 1) saddle points, emitted at various complex-
valued moments of time. The distinctive complex patterns
produced by these momentum maps are consistent with the
predictions of [22]. Further comparison of these results with
those for H− in [21] demonstrates the importance of the
initial-state symmetry of the active electron. It has been noted
that as the wavelength increases at fixed intensity, the number
of concentric rings increases due to increase in the number of
photodetachment channels. It has further been observed that
the momentum distributions in the forward direction for a CEP
α are identical to those in the backward direction for 2π − α.
Thus controlled CEP-dependent asymmetry provides a pow-
erful tool for extracting information about the mechanism
underlying photodetachment on a femtosecond time scale.

Calculated detachment probability distributions predict
the oscillatory behavior expected from quantum interference
effects due to coherent electronic wave-packet dynamics.
Comparison of these results with those of [20,21] shows that
a similiar trend was noted for H−. The geometrical structure
of the probability distributions is determined by bifurcation
effects which occur in the region of multichannel photon
closure. These distributions indicate that the threshold for
each higher-order individual n-photon detachment channel
is governed directly by increasing laser wavelength and
increasing intensity. Additionally these distributions exhibit
sensitivity to CEP control as a function of both laser intensity
and wavelength.

The formation of near-threshold structures in the PADs
for n-photon absorption (for n = 5, 6, 9, 10, and 11) in the
vicinity of channel closings has been probed. Variation of the
PADs as a function of laser wavelength and intensity has been
found to be strongly dependent on the initial-state symmmetry.
These findings are in qualitative agreement with predictions
of the Floquet-Sturmian theory [11] and the Keldysh saddle-
point approach [6]. Additionally the PADs of the electron
spectra exhibit strong asymmetric dependence on the CEP.
The angular distributions calculated in opposite directions
(α = π/2, α = 3π/2) depict forward-backward asymmetry
and the resulting distributions are mirror images of each other.
Accordingly, since optimal emission of photoelectrons varies
with CEP, control of the photoelectron angular distributions
can be obtained by steering electrons via this parameter.
Our calculations further show that control of the PADs can
be achieved by manipulating the ponderomotive shift. This
parameter dominates the shape of the PADs and plays a crucial
role in determining the threshold for n-photon detachment.

We have shown that the photoelectron energy spectra
consist of a structure of pronounced oscillatory peaks due to
above-threshold detachment, a correlated process, where the
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final-state energy of the detached electron is constrained to in-
teger multiples of the photon energy above the ponderomotive-
shifted ground state. The peaks are due to quantum interference
effects caused by the 2(N + 1) saddle-point contributions to
the photodetachment amplitude. The photoelectron energy
spectra are also found to be sensitive to variation of the CEP.

Future directions for applications and extensions include
extending this model to incorporate the rescattering mech-
anism in order to consider the high-energy regime which
was not taken into account in this paper. It would also be
very interesting to extend this model to consider electron

detachment in the Si− negative ion, which is an open-shell
system, and compare with any available existing experimental
data. This work may also be of use to experimentalists
in combining a pump-probe approach with CEP control
technology to study electronic quantum interference in halide
negative molecular ions.
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