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We analyze the distortion of the molecular frame photoelectron angular distributions of H2
+ ionized by a

strong, circularly polarized infrared laser field using classical trajectory Monte Carlo simulations. We find that
the nonisotropic field of the molecular ion rotates the final electron momenta. The degree of distortion from the
strong-field approximation’s predictions is thereby sensitive to the field strength and the internuclear distance
but, counterintuitively, does not necessarily decrease for high field strengths. Furthermore, the distortion also
depends crucially on the initial momentum of the classical electron after tunneling, while the exact shape of the
ionization rate seems to be less important. A trajectory analysis within our simple model allows us to interpret
recent experimental results.
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I. INTRODUCTION

Strong-field–matter interaction is a complex phenomenon,
which can be well understood with a few simplifications
such as treating the electric field classically and completely
neglecting the ionic potential and the electronic structure
after ionization. These assumptions form the basis of the
strong-field approximation (SFA) [1–3]. Although neglecting
the Coulomb potential and the electronic structure of the
parent ion after ionization is often a very good approximation,
many theoretical and experimental studies have demonstrated
clear evidence of the influence of the Coulomb potential
on the continuum electron wave packet (e.g., [4–23]). In
the strong-field photoelectron spectrum, the influence of the
parent ion’s potential is responsible for the narrowing of the
photoelectron momentum distribution transverse to the field
direction (Coulomb focusing) and a distortion of the angular
photoelectron distribution (Coulomb asymmetry).

Most of the experimental and theoretical investigations
have, however, concentrated their efforts on atomic systems,
i.e., on single-center, isotropic Coulomb potentials. Recently,
a few experiments have started addressing the role of a
nonisotropic Coulomb potential and the electronic structure
on molecular photoelectron distributions by studying strong-
field ionization of molecules [24–30]. In these experiments,
strong deviations of the measured radial and angular pho-
toelectron spectra compared to the predictions from the
strong-field approximation were found. Two mechanisms
have been invoked to explain the deviations: (a) laser-driven
electron dynamics inside the molecule prior to ionization and
(b) the long-range Coulomb force. Whereas the bound-electron
dynamics can change the timing of ionization and thereby
the photoelectron emission angle, the long-range, anisotropic
Coulomb field influences the photoelectron momentum for a
long time after ionization.

In this work, we present results of classical trajectory
Monte Carlo calculations (CTMC) aiming at disentangling the

different contributions of (a) the electronic dynamics inside
the molecule and (b) the long-range potential leading to a
shift of the angular photoelectron distribution. We concentrate
on the ionization of the hydrogen molecular ion, H2

+, at
different internuclear distances R and laser intensities I .
We distinguish between two different ionization mechanisms,
tunnel-type ionization and over-the-barrier ionization, in order
to investigate the contributions and the effects of both types.
The ionization rate is assumed to follow the Ammosov-
Delone-Krainov (ADK) formalism or to mimic the temporal
behavior of the rates in the case of multiple-ionization bursts
[31,32]. This allows assembling different model systems and
comparing their final electron momentum distributions with
predictions from the time-dependent Schödinger equation and
experiments. Thus, deploying different model systems, we are
able to separately describe the influence of the long-range
Coulomb part acting on the continuum electron, investigate the
strong-field dynamics of the electron, and analyze the influence
of the ionization rate.

This paper is organized as follows: after a detailed de-
scription of the different model systems used for our classical
trajectory calculations in Sec. II, the numerical results are
presented in Sec. III. The paper concludes with discussion and
summary.

II. MODEL SYSTEMS

Within our CTMC method, classical trajectories describing
the electronic dynamics of the hydrogen molecular ion (H2

+)
in the presence of an intense, circularly polarized laser field are
propagated in two spatial dimensions, x,y, for fixed internu-
clear distances R and for an ensemble of initial conditions
in coordinate and momentum space right after tunneling.
In enhanced ionization of H2

+, the dissociating molecular
ion moves through a range of internuclear separations with
an increased ionization probability [33]. When the second
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ionization occurs, the molecular ion is projected onto the
Coulomb explosion potential, and the dissociation is further
accelerated. However, the photoelectron moves about 100
times faster than the protons. In circular polarization, as
considered here, the final-state interaction of the photoelectron
and parent ion is particularly small and usually negligible
[7]. Hence, in our model, we are using the frozen-nuclei
approximation; i.e., we neglect the nuclear dynamics after
and during the ionization step. This is a widely employed
approximation in the calculation of strong-field photoelectron
spectra (e.g., [26,34–38]).

The potential of the three-body system is represented by a
soft-core potential of the form (atomic units are applied if not
stated otherwise)

V (x,y) = +Z2

R
− Z√

(x ± R/2)2 + y2 + a2
, (1)

where the nuclear charge Z = 1 and the soft-core parameter
a = 0.5. The interaction with the electric field circularly
polarized in the molecular plane is

W (x,y,t) = xEx(t) + yEy(t), (2)

and the electric field in the i = x,y direction is

Ei(t) = E0f (t) cos (ωt + φi), (3)

where φi = 0 and π/2, respectively, and ω = 800 nm. The
field strength E0 is varied to give intensities between 6 × 1013

and 1.5 × 1015 W/cm2. The pulse envelope f (t) is given by a
50-fs full width at half maximum sin2 pulse. The trajectories
are propagated solving Newton’s equation in two dimensions
using a standard second-order Runge-Kutta algorithm, with
the total potential consisting of the sum of Eqs. (1) and (2).
Neglecting the potential part described in Eq. (1), the trajec-
tories are only subject to the laser field. This represents the
classical analogon to the strong-field approximation (CSFA).
Typically, 100 000 trajectories are propagated. The ionization
time is restricted to the central field cycle.

For the laser parameters used, the Keldysh parameter γ =
ω

√
2IP

E0
∼ 1. This clearly represents an intermediate regime

between multiphoton ionization and tunnel ionization. Often,
the tunneling picture is invoked in the interpretation of
results even in this intermediate regime. In our study, we
apply tunneling conditions for both the initial coordinate
and momentum values of the trajectories and the ionization
rate (following the Delone-Krainov expression [39]). These
conditions are then slightly modified, allowing us to investigate
to what extent the experimental results can be described
within the simple tunnel picture by comparing our simulations
with experimental results. The exact initial conditions for the
electron trajectories are specified in what follows.

A. Initial distribution in momentum space

In the case of tunnel ionization, the initial momentum
distribution at the time of ionization is assumed to fol-
low the Delone-Krainov momentum distribution [39]. When
ionization proceeds via over-the-barrier ionization (OBI), a
Gaussian-shaped isotropic momentum distribution in the x,y

direction is assumed, where the width of the distribution
is fitted to a quantum-mechanical (field-free) ground-state

wave function, thus mimicking a microcanonical ensemble.
Typically, OBI of atoms is described with initial conditions
corresponding to a microcanonical ensemble [40,41]. Such a
description may cause inaccuracies, as the electron distribution
in a molecule subject to a strong electric field is strongly
distorted by the field.

It is still under discussion whether in the case of OBI,
upon ionization, the electron trajectories will have an average
momentum different from zero. This is why we have also tested
the assumption that the initial electron momentum distribution
is centered around nonzero momentum values,

�p0 =
√

2(−IP − Vmax), (4)

where IP is the ionization potential (see Sec. II C) and Vmax is
the maximum height of the barrier.

B. Initial distribution in coordinate space

Within the tunneling regime, for atoms, the starting con-
dition in coordinate space is typically expressed as r0 =
(x0,y0) = (−IP /E(t0),0) for fields linearly polarized in the
x direction. For molecules, we have to consider that neither
the potential nor the ionization rate is isotropic. Thus, we
numerically search for the tunnel exit, which is found when
the following conditions are met:

�r0

|r0| = −
�E

|E| , V

(
−|r0|

|E| · �E
)

= IP . (5)

We mimic the fact that ionization of H2
+ is preferred along

the internuclear axis by replacing the electric field entering the
ADK rate by the x component of the field Ex only. In the case
of OBI, the initial conditions in coordinate space are defined
to be on top of the barrier, Vmax.

Tunneling ionization is used if (−IP ) is lower in energy
than Vmax. If (−IP ) is higher in energy than Vmax, then
OBI is simulated. The ionization potential IP itself is model
dependent and is specified in the following section.

C. Ionization potential: Floquet vs field-dressed states

For the ionization potential, we have compared three
different models: First, we used a field-free ionization po-
tential IP (R) = Z2/R − Vi(R) (i = g,u), where Z2/R is
the repulsive potential of H2

2+ and Vg(R) and Vu(R) are
the two lowest-lying Born-Oppenheimer potentials of H2

+.
Second, we employed a light-induced ionization potential
where IP (R) = Z2/R − Vi(R), with V LI

i (R),i = low, up, are
the light-induced (LI) states obtained for each value of the
internuclear distance R via the unitary transformation

U

(
Vg −μEx

−μEx Vu

)
U † =

(
V LI

low 0
0 V LI

up

)
. (6)

Finally, we applied an ionization potential defined by the
difference potential of H2

2+ with the Floquet eigenenergies

V
Floquet

low = −(Vu − Vg)/(2ω) J0(ζ ) + 0.5(Vu + Vg),
(7)

V Floquet
up = +(Vu − Vg)/(2ω) J0(ζ ) + 0.5(Vu + Vg),

where J0(ζ ) are the Bessel functions and ζ = 2μE0/ω [32].
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FIG. 1. (Color online) Final momentum distribution of electrons
(a) neglecting the Coulomb potential after ionization and (b) including
the Coulomb potential for the continuum electrons. Internuclear
distance R = 2 Å, laser intensity is 1.5 × 1014 W/cm2, and laser
rotation is clockwise. The molecule here and in what follows is
aligned along the x axis.

If not specified otherwise, the light-induced potentials
Eq. (6) were used. When calculating the ionization rates
according to the Delone-Krainov equation, the ionization
potential was additionally shifted by

Ĩp = Ip ± Ex

R

2
(8)

for the lower and upper wells, respectively, in order to account
for the spatial extension of the molecule.

III. NUMERICAL RESULTS

In our numerical simulations, we apply a 50-fs (sin2,
full width at half maximum) circularly polarized laser field
with a central wavelength of 800 nm. The intensity and the
internuclear distance are varied. Ionization is restricted to the
central cycle of the field.

In the absence of any molecular potential after ionization, a
classical variant of the strong-field approximation is recovered
(see Sec. II): the electron in the continuum is only subject to
the circularly polarized laser field, and the final momentum
distribution of the electrons [Fig. 1(a)] is centered around px =
0,py ≈ ±0.9 a.u. (for a field strength of E0 = 0.055 a.u.).
This is in correspondence with the strong-field approximation,
where the final momentum value is defined by the vector
potential of the electrons at the moment (tb) of birth, �pf =
− �A(tb). Since ionization is preferred along the internuclear
axis (x axis), ionization occurs predominantly at times when
Ex is large. At these times, the vector potential Ay is large,
and electrons in the continuum are rotated into the y direction.

In the presence of the molecular potential, the momen-
tum distribution is rotated, such that the maximum of the
distribution is not centered around px = 0 but around a
nonzero value px , as displayed in Fig. 1(b). The degree of
rotation has been related to the strength of the parent ion’s
influence on the leaving electron [26]. In order to allow
for a quantitative description, we define the mean angle α

as the weighted mean of the rotation angle’s probability
distribution. Taking the sense of rotation of the circularly
polarized field and the result expected from SFA into account,
we further define 0◦ to correspond to px < 0, py = 0 and
90◦ to correspond to py > 0, px = 0 (see Fig. 1). Since the
probability distribution is π periodic, the mean is calculated
from the minimum of the probability distribution in the first or
fourth quadrant to the minimum in the second or third quadrant.
An angle α = 90◦ thus corresponds to the SFA result, and
the angle increases in the direction of the circularly polarized
light.
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FIG. 2. (Color online) Electron momentum distribution with Coulomb potential for R = 1.5 Å while varying the laser intensity:
(a) Ia = 6 × 1013 W/cm2, (b) Ib = 1.5 × 1014 W/cm2, and (c) Ic = 6 × 1014 W/cm2. Note the different axis ranges.
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FIG. 3. (Color online) Rotation angle α as extracted from the
final momentum distribution of electrons as a function of the starting
value r0 = (x0,y0), with x0 = −r0 cos ϕ − R/2 cos ϕ,y0 = −r0 sin ϕ,
where tan ϕ = Ex/Ey . The internuclear distance R is fixed at
R = 3 Å.

In what follows, we analyze the dependence of the mean
rotation value α on the internuclear distance and the laser
intensity.

A. Dependence of the Coulomb-field-induced rotation
on the intensity and internuclear distance

First, we explore the influence of the laser intensity on
the mean rotation angle α for a fixed internuclear distance
R. As can be gathered from Fig. 2, we find that the value of
the rotation angle α shifts away from 90◦ for increasing field
strengths. In other words, the larger the laser field strength is,
the larger the distortion by the Coulomb potential is. At first
sight, this is surprising since one would expect the influence of
the Coulomb potential to decrease compared to the influence
of the electric field for higher intensities. However, the result
can be understood by the fact that, for larger field strengths,
the tunnel exit r0 of the electron [with r0 approximately given
by −Ip/E(t0)] is closer to the nucleus, leading to a larger
distortion of the electron upon entering the continuum. In order
to underline this statement, we present in Fig. 3 the dependence
of the rotation angle α on the initial coordinate r0 (the tunnel
exit) of the electron in coordinate space: instead of finding
the tunnel exit according to Eq. (5), we varied r0 for a fixed
internuclear distance R = 3 Å and for three different laser
intensities, I1 = 6.0 × 1013 W/cm2, I2 = 1.5 × 1014 W/cm2,
and I3 = 6.0 × 1014 W/cm2. Now, the intuitive picture is
recovered where the higher the intensity and the larger the
distance of the initial coordinate r0 from the parent ion are, the
smaller the Coulomb-induced shift on the electron is and the
lower the deviation of α away from 90◦ is.

Next, we examine the dependence of the mean rotation
angle α on the internuclear distance. Figure 4 demonstrates
that the rotation angle α increases for increasing internuclear
distances as long as ionization proceeds below the barrier.
The reason for the strong internuclear distance dependence
is that the ionization potential IP is lowered as a function of
internuclear distance: the larger R is, the smaller IP is, and
in turn, the closer the tunnel exit r0 ≈ −IP /E(t0) is to the
nucleus, and thus, the stronger the distortion by the Coulomb
potential on the outgoing electron is.
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FIG. 4. (Color online) Rotation angle α as extracted from the final
momentum distribution of electrons as a function of the internuclear
distance R. The general trend is that the rotation angle increases
for increasing internuclear distances. The elbow in the curve for
I = 6.0 × 1014 W/cm2 is due to the transition to over the barrier
ionization.

So far, we have focused on the mean rotation angle α

integrated over the final radial momenta of the electrons.
However, previously, it was shown that the mean rotation angle
can depend strongly not only on the final electron energy
but also on the internuclear separation [26,29]. In Fig. 5,
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FIG. 5. (Color online) Polar representation of the angular distri-
bution of electrons resolved by the final momentum pf (see text):
(a) pf < 0.7 a.u., (b) 0.7 � pf � 1.2 a.u., and (c) 1.2 > pf a.u.,
shown for two different internuclear distances, R = 2 Å and R = 5 Å.
The Laser intensity is I = 1.5 × 1014 W/cm2.
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FIG. 6. (Color online) (f) Mapping from the final momentum distributions to the initial conditions (momentum in the x and y directions
resolved for the time of birth tb and the two-dimensional projections thereof) for (a) slow electrons with pf < 0.7 a.u. (Ekin

f < 6.7 eV), marked
by the dotted blue region in (f), (b) medium electrons with 0.7 � pf � 1.2 a.u. (6.7 eV� Ekin

f � 19.6 eV), marked by the green region with

waves in (f), and (c) fast electrons with pf > 1.2 a.u. (19.6 eV> Ekin
f ), marked with the red squares in (f). (d) The electric field �E and (e) the

vector potential A.

the angle distribution of the final momenta, integrated over
different final electron energies, is shown in polar coordinates
for two different internuclear separations. In order to ease the
comparison with the experiment [29], we choose three radial
momentum ranges (rows) and two internuclear separations
(columns). At an internuclear separation of 2 Å (left column),
electrons with low final momentum pf < 0.7 a.u. (p2

f =
p2

x + p2
y), corresponding to an energy of Ekin

f < 6.7 eV, are
preferentially emitted at angles α ≈ 100◦ [Fig. 5(a)]. Electrons
with a final momentum 0.7 � pf � 1.2 a.u. (6.7 eV � Ekin

f �
19.6 eV) are emitted over a wider range of angles peaking
at α = 105◦ [Fig. 5(b)]. Finally, electrons with the highest
momentum pf > 1.2 a.u. (19.6 eV > Ekin

f ) are preferentially
emitted to even larger angles around α = 120◦ [Fig. 5(c)].
In good qualitative agreement with the experiment and the
time-dependent Schrödinger equation calculations [29], our
model shows that larger final radial momenta experience a
stronger distortion. For a larger internuclear separation (right
column of Fig. 5) the rotation in our simulation is generally
larger, thereby also reproducing the trend observed in the
experiment.

Having established the agreement between our simulation
and the experimental results, we will now take advantage
of the fact that our investigations are based on classical
calculations, which allows us to interpret and analyze the
results in terms of trajectories. By virtue of a one-to-one
mapping in configuration space, we can follow the electrons

with low, medium, and high final momenta backwards in time
and associate the initial conditions, i.e., the time of birth tb,
the birthplace �r0, and the initial momenta �p0, of the respective
trajectories. Such a mapping is presented in Fig. 6.

While the probability distributions of the time of birth tb
of all trajectories are all peaked around the maximum of the
electric field in the x direction Ex [see top panels of Figs. 6(a),
6(b), and 6(c)] without any significant time shift, the initial
momentum distributions differ significantly for different final
momenta [see lower color map images in Figs. 6(a), 6(b),
and 6(c)]. Fast trajectories [Fig. 6(c)] are born with a large
initial y momentum p0

y opposing the direction of the instanta-
neous y-vector potential Ay [cf. Fig. 6(e)]. For fast trajectories,
the initial momentum p0

y in the y direction thus adds to

the final momentum expected from SFA �pSFA
f = − �A(tB),

leading to a high final momentum pf . The opposite is true
for the slow trajectories [cf. Fig. 6(a)]. The role of the initial
transversal momentum p0

y is thus primarily to define the final
momentum pf .

Additionally, the initial momentum in the x direction differs
for the slow and fast trajectories: For fast trajectories, the
initial x momentum is large and points in the direction of
the electric field at the time of birth Ex(tb), while for slow
electrons, it opposes the x electric field. Since the tunnel exit
lies in the (−Ex) direction, the fast trajectories start off with
a momentum component pointing backwards, in the direction
of the nucleus, whereas the slow trajectories directly head
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away from the nucleus while being decelerated by the nuclear
attraction. Consequently, the fast trajectories come very close
to the nuclei, feel a very strong Coulombic force, and are hence
rotated strongly.

Within the model used, the initial momentum distribution in
the x direction p0

x , i.e., parallel to the electric field at the time of
birth, plays a major role since it seems to be responsible for the
experimentally observed strong rotation of the fast trajectories.
If the momentum distribution parallel to the electric fields were
neglected and p0

x were set to zero, the experimental finding
would not be reproduced. Therefore, this model suggests that
the often neglected momentum distribution parallel to the field
may play an essential role.

We note parenthetically that the initial x momentum is not
the only possible way to reproduce the experimental results.
One possibility is to restrict the starting point of the trajectories
to the x axis. This modifies the time of birth distributions: Slow
trajectories are then born before the maximum of Ex , while fast
trajectories are still born mainly at the maximum of Ex , which
would also lead to a stronger rotation of fast trajectories. Based
on highly accurate calculations and experimentally accessible
data of the angle-dependent ionization probability [24,26,42],
we believe, however, that this quasi-one-dimensional picture is
less likely to describe the physical process than our approach
in which the tunnel exit is not clamped to the molecular axis.

So far we have assumed that the tunneling picture holds
and that ionization occurs from the lower field-dressed state
[Eq. (6)] via tunneling. For the major part of the results
presented in the last section, neither OBI nor any electronic
dynamics prior to ionization was included. (The only exception
is Fig. 4, where OBI was included at high intensities and
large internuclear distances: I = 6.0 × 1014 W/cm2 for R �
2.0 Å.) Now, we address the possibility of OBI occurring at
lower intensities as well as electronic dynamics by mimicking
different ionization rates.

B. Towards a description of OBI in molecules

First, we aim at including the contribution of ionization
from the upper field-dressed state. Ionization from the upper
field-dressed state is, for the values of R used, in almost all
cases above the internuclear barrier. As described in Sec. II,
we mimic OBI by choosing an isotropic initial momentum
distribution with a (Gaussian) width of 0.44 a.u. Including
OBI, which originates from an estimated amount of 10% of
the population in the upper field-dressed state (estimated from
the time-dependent Schrödinger equation calculations), does
not change the result for the momentum-integrated angle α

much (figure not shown).
Note that our model approximating OBI via isotropically

distributed initial momenta starting on top of the internuclear
barrier is sensitive to changes in the initial conditions.
Changing the initial coordinate such that the trajectories start
near one nucleus changes the rotation angle substantially.
Thus, the results obtained within our OBI model should be
taken with care.

C. Non-ADK-type ionization in the over-the-barrier regime

The ionization rate of a molecule is typically described
by (molecular) ADK. In Ref. [26] it was suggested that
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FIG. 7. (Color online) Electronic density ρ(x,t) = ∫
dy

|ψ(x,y,t)|2 obtained from a two-dimensional calculation of the
time-dependent Schrödinger equation with nuclei fixed at 3 Å
subject to a short, 10-fs (Gaussian FWHM), circularly polarized laser
field.

electron localization dynamics in the hydrogen molecular ion
in the enhanced ionization region result in multiple ionization
bursts (MIB), which were made primarily responsible for the
deviations of the rotation angle α from 90◦.

For visualization, we numerically integrated the time-
dependent Schrödinger equation on a grid in two spatial
dimensions using the same Hamiltonian as for the classical
model (i.e., including the soft-core potential, using circularly
polarized light in dipole approximation). The internuclear
distance is set to R = 3 Å, and for computational reasons,
the pulse length is reduced to 10 fs (Gaussian FWHM).
Figure 7 displays the time evolution of the electronic density
ρ(x,t) = ∫

dy|ψ(x,y,t)|2 obtained from the solution of the
time-dependent Schrödinger equation. The multiple ionization
bursts per laser half cycle (as in Refs. [31,32]) are clearly
visible, e.g., near t = 13,14.5, and 16 fs. Further, it can be
seen that the electron localizes near the left or right potential
well. At this internuclear distance, R = 3 Å, ionization does
not follow the ADK rate at all, and bound electron dynamics
prior to ionization plays a major role.

In the following, we include an ionization rate mimicking
a multi-ionization burst structure, which has been related to
electron localization dynamics in Floquet states [31]. We
hence use Eq. (7) to determine the electron localization as
in Ref. [31]. The ionization rate is then assumed to be given
by

�
MIB
l/r = �

ADK
e−α(pl/r−0.5), (9)

where �
ADK

is the Delone-Krainov ionization rate used before,
α = 50 is a parameter controlling the modulation depth
of the multiple ionizations, and pl/r is the probability of
finding the electron at the left and right nucleus, respectively.
Despite the strong non-ADK-like ionization, the precise form
of the ionization rate seems to be of minor importance. For the
tested OBI models, changing the ionization rate to multiburst
structure induced only minor changes to the average shift [cf.
Figs. 8(a) and 8(b)]. The change of IP due to switching from
Eq. (6) to Eq. (7), however, introduced noticeable changes.
However, none of the models induce a shift different from
90◦ if the Coulomb continuum after ionization is switched
off [Fig. 8(c)], demonstrating thus the importance of the
long-range Coulomb potential. In other words, independent
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FIG. 8. (Color online) Polar representation of the angular distribution of electrons for the final momentum range 0.7 � pf � 1.2 a.u.
(see text): (a) using the ADK rate and IP defined for the lower Floquet state [Eq. (7)], (b) assuming multi-ionization bursts, (c) assuming
multi-ionization bursts, but neglecting the Coulomb continuum, and (d) assuming multi-ionization bursts, neglecting the Coulomb continuum,
together with an initial momentum p0 as defined in Eq. (4). Calculations are for R = 3 Å, laser intensity I = 1.5 × 1014 W/cm2.

of whether electronic ionization is below the barrier or over
the barrier or whether multiple ionization bursts are present,
without a Coulomb continuum, an SFA-type momentum
distribution is recovered.

In Ref. [29], it was demonstrated with the help of a quantum
model capturing the bound-state dynamics but coupling it
to a flat continuum (i.e., without Coulomb effects) that the
combination of the multiburst ionization rate, the bound-state
electronic dynamics, and, in particular, a significant initial
momentum upon ionization may lead to a rotated momentum
distribution. However, it was also shown that the model
neglecting the Coulomb influence in the continuum cannot
reproduce the direction of the rotation correctly. This seems
to hold also for our CTMC calculations: Including an initial
momentum according to Eq. (4) but neglecting the Coulomb
potential in the continuum, a rotation of the momentum
distribution is observed, but in the direction opposite to the
shift of the Coulomb field, resulting in α < 90◦ [see Fig. 8(d)].
Possibly, these OBI events correspond to the experimentally
observed “lobes” of the momentum distribution related to
electrons rotated into directions significantly different from
the main rotation direction.

We would like to stress that our CTMC calculation
cannot exclude delayed emission, which was found in other
calculations using a fermion molecular dynamics model as
the dominant mechanism [43]. However, our model strongly
suggests that to reproduce the experimentally measured shift
of the momentum distribution, inclusion of the molecular
Coulomb continuum is necessary.

IV. DISCUSSION AND SUMMARY

We have presented results of classical trajectory Monte
Carlo calculations simulating the ionization of H2

+ in intense,
circularly polarized laser fields. Our simulations aim at exam-
ining to what extent the experimental results can be described
within the tunneling picture and at investigating the influence
of the nonisotropic Coulomb potential on the photoelectron

momentum distribution. This is achieved by comparing the
angular distribution of the electron momentum spectra at
different laser intensities and internuclear distances while
varying the initial conditions of the electron trajectories and the
ionization rate. In our simulation, we can neglect the Coulomb
field in the propagation of the electron trajectories and are thus
able to extract the influence of the Coulomb continuum.

Our model provides an explanation for the counterintuitive
fact that the deviation from the SFA predictions does not
necessarily decrease at higher field strengths: the tunnel exit
moves closer to the Coulombic center at higher field strengths,
leading to a stronger distortion of the trajectories at the initial
stage after tunneling. Furthermore, we indicate the importance
of the initial momentum distribution of the classical electrons
in interpreting momentum-resolved angular distributions of
the final momentum by mapping the initial conditions of the
trajectories to final momenta and comparing with experimental
results [29]. Investigating the influence of the precise form
of the ionization rate, we show that the shift of the rotation
is largely insensitive to whether the ionization rate follows
a Delone-Krainov form or features a multiburst structure. In
contrast, the inclusion of the Coulomb field is a requisite to
obtain a non-SFA-like momentum distribution, as has been
observed experimentally [29]. Allowing for a nonzero initial
momentum in combination with the multiburst ionization rate,
as done in Ref. [26], leads to a shift of the mean rotation
angle towards smaller values. Our results encourage further
investigations of classical electron dynamics in nonisotropic
Coulomb fields possibly extending to a classical description
of enhanced ionization and over-the-barrier dynamics.
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