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Dynamic polarizability and photodetachment cross section
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We develop a general theoretical framework for the analytical description of the interaction of a model diatomic
molecular system with an intense, arbitrarily polarized monochromatic laser field. The model molecule comprises
an electron in the field of two zero-range potentials separated by the internuclear distance. This model has an exact
analytical solution within the theoretical framework of the quasistationary quasienergy (Floquet) approach. In
addition to the development of this general framework, we also present a detailed analysis of the weak-field limit,
within which we obtain both the frequency-dependent polarizability and the angle-resolved photodetachment
cross section for the model system. These fundamental properties are analyzed for both homonuclear and
heteronuclear molecular systems in a linearly polarized laser field, for both ground and excited electronic
states, and for arbitrary orientation of the molecular axis relative to the polarization vector of the laser field.
The analytical expressions for the polarizability and angle-resolved photoelectron spectra exhibit characteristic
double-slit interference patterns, allowing one to study their dependence on the parameters of the problem beyond
the level of the Born approximation.
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I. INTRODUCTION

The interaction of intense laser fields with diatomic
molecules provides a wider range of strong-field phenomena
than is the case for intense laser interactions with atoms. This
wider range of phenomena stems from the additional nucleus,
which can bind an electron or from which an electron can
scatter. Additionally, it introduces an additional parameter of
the problem, the internuclear separation vector, R, between
the two nuclei. Strong-field molecular processes depend
significantly on both the magnitude of R and its direction
relative to the laser polarization vector. Examples of molecular
strong-field phenomena include above-threshold dissociation
[1], molecular bond softening [2], electron-localization effects
(as R increases) on molecular ionization [3–5], molecular
alignment effects on ionization [6–9], molecular orbital sym-
metry effects on ionization rates [10], and laser polarization
effects on molecular above-threshold ionization [11].

An increasingly active area of research is directed at
obtaining information concerning target molecular properties
from strong-field molecular spectra. For the strong-field
process of high-order harmonic generation (HHG), the HHG
spectrum of an aligned N2 molecule was used to obtain a
tomographic image of the highest occupied molecular orbital
of N2 [12]. This approach, however, assumes that the active
(laser-driven) molecular electron may be described by a
free electron rather than an electron moving in the field of
the molecular ion. A more accurate theory, the quantitative
rescattering (QRS) theory [13], assumes that the (frequency-
domain) HHG spectrum of a molecule can be expressed as the
product of a wave packet (representing the active laser-driven
electron) and the field-free photorecombination cross section
of the molecular ion, which can be obtained very accurately
either by a separate calculation or from experimental data.
(For a factorization in the time domain, see, e.g., Ref. [14].)

Alternatively, the QRS theory may be used to obtain the
field-free photorecombination cross section of a molecule
from its strong-field HHG spectrum, assuming the electron
wave packet can be calculated accurately. The QRS theory
has also been used to analyze intense laser ionization of
aligned molecules. For example, laser-induced rescattering
photoelectron spectroscopy has been used to extract field-free
electron-molecular ion elastic scattering differential cross sec-
tions [15]. It has also been employed in laser-induced electron
diffraction (LIED) of aligned molecules to obtain not only
field-free elastic differential cross sections but also information
on molecular bond lengths [16]. (It should be noted that
LIED investigations can be carried out not only using linearly
polarized intense laser fields but also using circularly polarized
laser fields [17], owing to the much greater spatial extent of a
molecular target as compared to an atomic one.)

The connection between strong-field molecular processes
and field-free molecular properties has been established
empirically, based upon accurate quantum calculations of
the field-free molecular properties and upon either numerical
solutions of the time-dependent Schrödinger equation (TDSE)
or strong-field approximation (SFA) calculations of the strong-
field molecular processes (see, e.g., Ref. [13]). An analytic
quantum proof of the factorization of a strong-field molecular
process as the product of an electron wave-packet factor,
dependent on laser parameters, and a field-free molecular
property, independent of laser parameters, has yet to be given.
While such an analytic proof for any real molecular system is
unlikely, such a proof may prove possible for a simple model
of a diatomic molecule.

This latter expectation is based upon our experience in suc-
cessfully obtaining analytic derivations of such factorizations
for many strong-field atomic processes based upon a simple
model of an atom. In this model we assume that a single
electron is bound in a short-range potential and interacts with
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a monochromatic laser field. The electron’s interactions with
both the short-range potential and the laser field are treated
exactly and nonperturbatively. We have termed the theory
for this model system the time-dependent effective range
(TDER) theory [18,19]. Based on TDER theory, we have
shown analytically [20,21] that HHG rates do indeed factorize
into three factors, each corresponding to one of the three steps
of the three-step scenario: a tunneling ionization factor, a
factor describing the laser-driven motion of the electron in
the laser field, and a factor describing the recombination of
the electron to its ground state in the short-range potential
with the emission of a harmonic photon. For each factor, a
closed-form analytic expression was obtained. Since the factor
describing electron motion in the laser field is independent of
the atom, it is a universal factor appropriate for any atom.
The tunneling factor and the photorecombination factor of
course depend on the particular atom’s parameters. However,
the physical meaning of these factors is so transparent that
real atoms can be described by simply replacing the model
factors with factors appropriate for the real atom under con-
sideration [22]. Using this simple model, analytic proofs of the
factorization of other strong-field processes have been given,
including above-threshold ionization (ATI) [23] and laser-
assisted electron-atom scattering [24,25]. While the above
analytic derivations have been given for strong-field processes
involving monochromatic laser fields, analytic results have
also been derived for both HHG [26,27] and ATI [28] by short,
intense laser pulses. Furthermore, the analytical results have
shown that factorization of the rates for strong-field processes
in the frequency domain is not universal. For example, we have
recently shown that for HHG driven by an intense laser field
with a small elliptical polarization such factorization holds
only for s electrons but not for p electrons [29], while for
short-pulse ATI [28] and laser-assisted radiative recombination
[30] the factorization does not hold in general even for a
linearly polarized field.

In this paper we describe a simple model for a diatomic
molecular ion interacting with an intense, monochromatic laser
field. In this model the potential of each nuclear center is
described by a zero-range (or δ function) potential (ZRP) and
there is only a single electron. This model was introduced in
Ref. [31] to simulate the electron dynamics in a two-center
(molecular) system as the generalization of the well-known
single center ZRP model. It is widely used for a range of
molecular and collision problems (cf., e.g., the book [32] and
references therein). To the best of our knowledge, this model
was first used for the description of strong-field processes in
Ref. [33] for the case of a static electric field (see also the
recent paper [34]) and in Ref. [35] for the case of a circularly
polarized field. In the latter paper, the results of Refs. [36,37]
for the complex quasienergy of a weakly bound electron in a
single ZRP model were generalized to the case of an electron
in the field of two δ centers. An analysis of HHG for the
ZRP model molecular ion system was given in Ref. [38],
obtaining analytic expressions for HHG rates (up to one
final quadrature) using the SFA within an S-matrix approach.
However, in Ref. [38] the ZRP molecular model is used only
on a “field-free” level, i.e., using the field-free wave function of
the bound electron and employing the Volkov Green function
for the description of its evolution in the laser field. Here

we formulate the problem using a Floquet or quasistationary
quasienergy state (QQES) approach. In addition to the general
development of the QQES theory for the ZRP molecular
model, applicable for the description of any strong-field
process involving the molecular model, our goal in this paper
is to analyze the weak-field limit of the general problem,
thereby obtaining results for the dynamic polarizability and
the differential photodetachment cross section of the molecular
ion. As far as we are aware, photodetachment for this simple
molecular ion system has been analyzed previously only within
the plane-wave approximation [39–43], which we do not
employ in our analysis. Obtaining analytic expressions for the
photodetachment cross section of this simple molecular ion
model is the first step towards the goal of determining whether
the strong-field HHG rates for this model system factorize into
laser-dependent and field-free (photorecombination) factors.

The paper is organized as follows. In Sec. II we present
some basic results for the field-free molecular model that are
necessary to generalize this model to the case of a model
molecular system interacting with a strong monochromatic
field. This generalization in the framework of the QQES
approach is presented in Sec. III, in which we derive the
general equations for the QQES wave function and the
complex quasienergy, as well as for the differential probability
of n-photon detachment in a strong elliptically polarized
field. The weak-field limits of the general results in Sec. III
are analyzed in Secs. IV and V, in which explicit analytic
results for the dynamic polarizability and the differential cross
section for one-photon detachment are obtained in the lowest
order of perturbation theory (PT) for the particular case of a
linearly polarized laser field. Numerical results are presented
and discussed in Sec. VI. The main results of the paper
are summarized in Sec. VII. Two Appendices contain some
technical details of the calculations.

Atomic units are used through the paper.

II. FIELD-FREE MOLECULAR MODEL

Within the ZRP molecular model, the bound-state wave
function, ψE(r), of an electron in the field of two (generally not
identical) attractive atomic centers, separated by the distance
R = |R| = |R1 − R2| and localized at positions R1 = R/2
and R2 = −R/2, is represented as a linear combination of
one-center ZRP-like wave functions located at each of two
centers [32]:

ψE(r) = ψ
(1)
E (r) + ψ

(2)
E (r)

= c1
e−√−2E|r−R1|

|r − R1| + c2
e−√−2E|r−R2|

|r − R2| . (1)

The main advantage of the molecular ZRP model is that,
similarly to the case of a one-center δ potential, the wave
function ψE(r) satisfies prescribed boundary conditions at the
position of each δ center [32],

ψE(r)|r→Rj
≈ cj

(
1

|r − Rj | − κj

)
, j = 1,2, (2)

where the positive parameter κj determines the energy,
E

(0)
j = −κ2

j /2, of a single bound s state supported by an

isolated j th δ center. (Note also that κ−1
j is the scattering length
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for electron scattering by the j th center; for definiteness, we
assume κ1 � κ2.)

Matching the wave function (1) to the boundary conditions
(2), we obtain a system of two homogeneous linear equations
for the coefficients c1 and c2,(

κ1 − √−2E e−√−2ER

R

e−√−2ER

R
κ2 − √−2E

)(
c1

c2

)
= 0, (3)

while the energy E is given by the roots of the determinant of
the 2 × 2 matrix in Eq. (3):

(κ1 − √−2E)(κ2 − √−2E) − e−2
√−2ER

R2
= 0. (4)

Equation (4) can be split into two independent equations:

√
−2E± − κ+ = ±

√
κ2− + e−2

√−2E±R

R2
, (5)

where κ+ = (κ1 + κ2)/2 and κ− = (κ1 − κ2)/2.
We parametrize the energies E± corresponding to the signs

“+” and “−” in Eq. (5) as E± ≡ −k2
±/2, where E− > E+.

Substituting E± = 0 in Eq. (5), we find the critical distance
Rc for which two bound states of an electron exist [32]: For
R < 1/

√
κ1κ2 only one bound state is supported, while two

real roots of Eq. (4) can be found for R > 1/
√

κ1κ2, and these
roots approach the energies E

(0)
j of bound s states of isolated

δ centers (k+ → κ1 and k− → κ2) as R → ∞.
For a given energy E+ or E−, the ratio of coefficients c

(±)
1

to c
(±)
2 can be written as

c
(±)
1

c
(±)
2

= ρ± ±
√

1 + ρ2±, ρ± ≡ κ−R ek±R. (6)

For equivalent δ centers (κ− = 0), the ground-state (“+”)
solution corresponds to the symmetric wave function ψE+(r)
(c(+)

1 = c
(+)
2 ), while the excited-state (“−”) solution deter-

mines the antisymmetric wave function ψE− (r) (c(−)
1 = −c

(−)
2 )

with respect to the permutation of δ centers (R1 � R2).
For nonequivalent centers (κ− �= 0), Eq. (6) shows that the
major contribution to the wave function (1) comes from one
center, while the contribution of the second one exponentially
decreases with increasing R.

The absolute values of both c
(±)
1 and c

(±)
2 are fixed by the

normalization condition for the wave function (1):
2π

k±
([c(±)

1 ]2 + [c(±)
2 ]2 + 2c

(±)
1 c

(±)
2 e−k±R) = 1. (7)

The joint solution of Eqs. (6) and (7) gives

c
(±)
1 =

√
N±
4π

[
1 ± ρ±√

1 + ρ2±

]1/2

, (8a)

c
(±)
2 = ±

√
N±
4π

[
1 ∓ ρ±√

1 + ρ2±

]1/2

, (8b)

N± =
k±

√
1 + ρ2±√

1 + ρ2± ± e−k±R

. (8c)

Note that N+ → κ1, while N− → κ2 for large R (e−k±R 	 1).
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FIG. 1. Dependence of molecular model energies E± [cf. (5)] and
wave-function coefficients c

(±)
j [cf. (8)] on the distance R between

two δ centers. (a) E+ (solid lines) and E− (dashed lines). Thin
lines, equivalent centers (κ1 = κ2 = 1 a.u.); thick lines, nonequivalent
centers (κ1 = 1 a.u. and κ2 = 0.8 a.u.). (b) Coefficients c

(±)
j for

the same parameters as in (a). Thin solid line, c
(+)
1 for equivalent

centers (c(+)
2 = c

(+)
1 ); thin dashed line, c

(−)
1 for equivalent centers

(c(−)
2 = −c

(−)
1 ); thick solid (dashed) line, c(+)

1 (c(+)
2 ) for nonequivalent

centers; thick dot-dashed (dotted) line, c
(−)
1 (c(−)

2 ) for nonequivalent
centers. On the scale of panel (b) the dashed and dot-dashed lines are
indistinguishable.

In Fig. 1(a) we present the dependence of energies E±
on the distance between δ centers. The difference between
E+, E− and the corresponding single-center energies E

(0)
1 ,

E
(0)
2 is determined by the exchange interaction, i.e., by the

overlap of the single-center wave functions described by the
nondiagonal matrix elements in Eq. (3). Since this overlap
exponentially decreases with increasing R, the energy E+
(E−) rapidly approaches the single-center energy −κ2

1 /2
(−κ2

2 /2). In Fig. 1(b) we show the typical dependence
of the coefficients c

(±)
j on R. For equivalent centers [cf.

Eq. (8) for ρ± = 0], the dependence of c
(±)
j on R is weak and

can be approximated as |c(±)
j | ≈ √

κ1/(4π ). For nonequivalent
centers, the molecular electron in the ground state is mostly
localized near the center that supports a bound state with larger
binding energy |E(0)

j | [for ρ± 
 1, c(+)
1 → √

κ1/(2π ), c(+)
2 →√

κ1/(8π )e−k+R/(κ−R); c
(−)
1 → √

κ1/(8π )e−k−R/(κ−R), and
c

(−)
2 → −√

κ1/(2π ); cf. Eq. (8)], while an electron in the
excited state is mostly localized near the center with smaller
|E(0)

j |.
The continuum (scattering) states of an electron with

momentum p and energy E = p2/2 in the field of two δ

potentials can be presented as a linear combination of a plane
wave with momentum p and two spherical waves centered at
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R1 and R2. Requiring this superposition to satisfy the boundary
condition (2), we obtain the scattering state in the form [32]

(2π )3/2ψ (+)
p (r)

= eip·r − 1

�(p)

[(
(κ2 + ip)eip·R1 − eip·R2+ipR

R

)
eip|r−R1|

|r − R1|

+
(

(κ1 + ip)eip·R2 − eip·R1+ipR

R

)
eip|r−R2|

|r − R2|
]

, (9)

where

�(p) = (κ1 + ip)(κ2 + ip) − e2ipR/R2. (10)

From the asymptotic form of the scattering state (9) at large
distances r , we obtain the amplitude, A(p,p′), for elastic
electron scattering by the molecular system

A(p,p′) = A1(p,p′) + A2(p,p′), (11a)

A1(p,p′) = −�(p)−1e−ip′ ·R/2[(κ2 + ip)eip·R/2

− e−ip·R/2eipR/R], (11b)

A2(p,p′) = −�(p)−1eip′ ·R/2[(κ1 + ip)e−ip·R/2

− eip·R/2eipR/R], (11c)

where p and p′ (=pr/r) are the initial and final asymptotic
momenta, while A1 and A2 are the constituents of the electron
scattering amplitude A originating from the two centers
located at R1 = R/2 and R2 = −R/2. (It is easy to show
that A1 and A2 reduce at large R to the scattering amplitudes
for two individual δ centers.)

The shortcoming of the δ-potential model for a molecular
system is that this model does not approach the limit of two
“merged” δ potentials as R → 0. The binding energy of the
ground state tends to infinity instead of approaching a finite
value. One way to overcome this shortcoming, suggested in
Ref. [44], is to consider κ1 and κ2 as functions of R, whose
two-term expansions for small R have the form κj (R) =
−ηj/R + αj (R), where η1, η2 > 0, η1η2 = 1, and αj (R) are
regular functions of R. For appropriately chosen η1 and η2,
this modified δ-potential model can be extended to neutral
molecules (cf. the pedagogical example for H2 in Ref. [44]).

III. MOLECULAR MODEL IN A LASER FIELD: COMPLEX
QUASIENERGIES AND QQES WAVE FUNCTIONS

In the electric-dipole approximation (length gauge) the
interaction of the molecular model electron with an elliptically
polarized, monochromatic laser field is

V (r,t) = r · F(t), (12)

where F(t) is the electric vector of the field with amplitude F

and frequency ω,

F(t) = FRe (e e−iωt ), e · e∗ = 1. (13)

The complex polarization unit vector e in Eq. (13) is parame-
terized as

e = ε̂ + iη[κ̂ × ε̂]√
1 + η2

, −1 � η � 1, (14)

where ε̂ is a unit vector along the major axis of the polarization
ellipse, the unit vector κ̂ defines the direction of laser

propagation, and η is the ellipticity. With the definition (14),
the laser intensity I does not depend on η: I = cF 2/(8π ).

For a nonperturbative account of the electron’s interactions
with both the laser field and the two δ centers, we use the QQES
(or complex quasienergy) approach [45]. In brief, instead
of solving the TDSE as an initial value (Cauchy) problem,
ψ(r,t)|t=t0 = ψE0 (r) exp(−iE0t0), to determine ψ(r,t), within
the QQES approach one solves an eigenvalue problem for
the complex quasienergy, ε = Re ε − i�/2, and the periodic
(in time) QQES wave function, ε(r,t), to which E0 and
ψE0 (r) evolve after an adiabatic turn on of the periodic
strong-field interaction V (r,t). The real and imaginary parts
of the quasienergy determine the Stark-shifted energy (Re ε =
E0 + �) and the total rate (�) for exponential (in time) decay
of the initial bound state ψE0 (r) in a laser field. The QQES
wave function satisfies the complex, outgoing-wave boundary
condition at large distances [45],

ε(r,t) ∼
∑

n

An

eipnR̃

R̃
, R̃ = r − F(t)

ω2
, (15)

where pn = √
2(nh̄ω + ε − up) is the complex-valued “mo-

mentum” of the electron after absorption of n laser photons
and up = F 2/(4ω2) is the quiver energy of the electron in the
monochromatic field F(t). In open n-photon detachment or
ionization channels [Re (nh̄ω + ε − up) > 0], the branch of
the square root for pn is taken in the fourth quarter of the com-
plex plane pn (Re pn > 0, Im pn < 0) and the coefficients An

in Eq. (15) determine the amplitudes for n-photon detachment
or ionization. In closed channels [Re (nh̄ω + ε − up) < 0] the
QQES wave function decreases exponentially and the branch
of the square root for pn is taken in the second quarter of the
complex plane (Re pn < 0, Im pn > 0).

A. QQES equations for the ZRP molecular model

As for the field-free molecular model [cf. Eq. (1)], the
field-dressed (QQES) wave function for an electron in the field
of two δ potentials and a laser field F(t) can also be expressed
as a linear combination of one-center wave functions,

ε(r,t) = (1)
ε (r,t) + (2)

ε (r,t). (16)

However, as for the case of a single ZRP model in a
monochromatic field [46,47], the boundary conditions for
ε(r,t) at r → Rj involve periodic (in time) functions fj (t)
[instead of the constant coefficients cj in Eq. (2)]:

ε(r,t)|r→Rj
≈

(
1

|r − Rj | − κj

)
fj (t), j = 1,2. (17)

Each of the one-center functions 
(j )
ε (r,t) can be expressed in

terms of the function fj (t) and the retarded Green’s function,
G(r,t ; r′,t ′), of an electron in a laser field (cf. Refs. [19,46,47]):

(j )
ε (r,t) = −2π

∫
G(r,t ; Rj ,t

′)fj (t ′)eiε(t−t ′)dt ′. (18)
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The expansion of 
(j )
ε (r,t) at r → Rj can be obtained in a way

similar to that used for the TDER wave function in Ref. [19],

(j )
ε (r,t) � fj (t)

|r − Rj |

+ 1√
2πi

∫ ∞

0

eiSj (t,t−τ )+iετ fj (t − τ ) − fj (t)

τ 3/2
dτ,

(19)

where Sj (t,t ′) ≡ S(Rj ,t ; Rj ,t
′), and the classical action for

the electron in a laser field, S(r,t ; r′,t ′), has the form

S(r,t ; r′,t ′) = (r − r′)2

2(t − t ′)
+ 1

c

[
r · A(t) − r′ · A(t ′)

− r − r′

t − t ′

∫ t

t ′
A(τ )dτ

]

− 1

2c2

∫ t

t ′

[
A(ξ ) − 1

t − t ′

∫ t

t ′
A(τ )dτ

]2

dξ,

(20)

where

A(t) = cF

ω
Im (e e−iωt ) (21)

is the vector potential of the field F(t). Using expansion (19)
when applying the boundary condition (17) (for j =1, 2) to the
QQES wave function (16), we obtain a homogeneous system
of two coupled integral equations for f1(t), f2(t) and the
eigenvalue ε (cf. Ref. [48]):

−κjfj (t)

= 1√
2πi

∫ ∞

0

dτ

τ 3/2
[eiS(Rj ,t ;Rj ,t−τ )+iετ fj (t − τ ) − fj (t)]

+ 1√
2πi

∫ ∞

0

dτ

τ 3/2
eiS(Rj ,t ;Rj ′ ,t−τ )+iετ fj ′ (t − τ ), (22)

where (j,j ′) = (1,2) or (2,1). Thus, for the ZRP molecular
model, the eigenvalue problem for ε and the four-dimensional
(in r and t) QQES wave function ε(r,t) reduces to the system
(22), since with known ε and fj (t) ε(r,t) is completely
determined by Eqs. (16) and (18). The functions fj (t) are
the key objects of our theory since they describe the behavior
of the QQES wave function ε(r,t) near the atomic centers
[cf. Eq. (17)] and the modification of molecular dynamics
(including the exchange interaction) by a laser field.

An alternative form of the basic QQES equations (22) for
the ZRP molecular model can be obtained by using the velocity
gauge for the electron-laser interaction. It can be shown that
this formulation is equivalent to representing the functions
fj (t) in terms of new functions, f̂j (t), connected to fj (t) by a
unitary transformation:

fj (t) = ei/c{Rj ·A(t)+[1/(2c)]
∫ t [A2(ξ )−A2]dξ}f̂j (t),

A2

2c2
= 1

2T c2

∫ T

0
A2(ξ )dξ = F 2

4ω2
= up, T = 2π

ω
. (23)

Substituting Eq. (23) into Eq. (22), we obtain homogeneous
integral equations for f̂j (t) and ε̂ = ε − up:

−κj f̂j (t)

= 1√
2πi

∫ ∞

0

dτ

τ 3/2
[eiŜ(Rj ,t ;Rj ,t−τ )+iε̂τ f̂j (t − τ ) − f̂j (t)]

+ 1√
2πi

∫ ∞

0

dτ

τ 3/2
eiŜ(Rj ,t ;Rj ′ ,t−τ )+iε̂τ f̂j ′ (t − τ ), (24)

where

Ŝ(r,t ; r′,t ′) = (r − r′)2

2(t − t ′)
− r − r′

c(t − t ′)

∫ t

t ′
A(ξ )dξ

+ 1

2c2(t − t ′)

[∫ t

t ′
A(ξ )dξ

]2

. (25)

Although both systems (22) and (24) are equally valid for
general analyses, for numerical calculations and perturbative
(in the laser intensity) analytical analyses, the system (24)
is preferable, while for nonperturbative, low-frequency (ω 	
|E±|) analyses using the quasiclassical approximation, the
system (22) is most appropriate. Indeed, analysis shows that
the functions fj (t) are nearly constant in the low-frequency
limit, while the functions f̂j (t) oscillate rapidly, requiring that
many Fourier coefficients of f̂j (t) must be taken into account.
For F(t) = 0, the systems (22) and (24) reduce to an infinite
set of equivalent independent subsystems involving only two
linear equations similar to the system (3). Thus, in the absence
of a laser field, both functions fj (t) and f̂j (t) reduce to the
same constant coefficients c

(±)
j .

The systems of integral equations (22) and (24) can be
converted to infinite systems of linear equations for the Fourier
coefficients f

(j )
k or f̂

(j )
k of fj (t) or f̂j (t). For linear and

circular polarizations of the field F(t), in Appendix A we
give the matrix equations for f̂

(j )
k , which are equivalent to

the system (24) and which are useful for the perturbative (in
F ) analysis of the complex quasienergies and QQES wave
functions.

B. Amplitude and differential rate for n-photon detachment

According to Eq. (15), the exact amplitude for n-photon
detachment within the QQES approach can be found from
the asymptotic form of the QQES wave function (16). Using
the large-r asymptotic expansion of the one-center functions


(j )
ε (r,t) in Eq. (18) (cf. Ref. [23] for details), the amplitude

An for the two-center molecular model has the form

An = A(1)
n + A(2)

n , (26)

where A
(j )
n is a “one-center” detachment amplitude, whose

explicit forms in terms of either of the functions fj (t) or f̂j (t)
are given by

A(j )
n = 1

T

∫ T

0
e[iS(pn,t)−iPn(t)·Rj ]fj (t) dt (27a)

= e−ipn·Rj

T

∫ T

0
einωt+ipn·

∫ t A(τ )dτ/cf̂j (t) dt, (27b)
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where pn ≡ pnn̂, where pn is the complex canonical
“momentum” [cf. Eq. (15)], n̂ is the unit vector that defines
the momentum direction of the detached electron, and

Pn(t) = pn + 1

c
A(t), (28)

S(pn,t) =
∫ t

[
P2

n(τ )

2
− ε

]
dτ. (29)

The differential rate for n-photon detachment is given by (cf.
Ref. [47] for the case of a ZRP model)

d�n

d�n̂
= |√pnAn|2. (30)

Note that the complexity of the quasienergy ε is essential
for obtaining the functions fj (t) or f̂j (t) according to
Eq. (22) or (24). However, in physical applications |Im ε| 	
|Re ε|. Thus, with good accuracy, in Eqs. (27a)–(30) we can
replace ε with Re ε, so that the vector pn then represents
the physical momentum of the detached electron with pn =√

2(nh̄ω + Re ε − up).

IV. THE WEAK-FIELD LIMIT: DYNAMIC
POLARIZABILITIES FOR ψE+ AND ψE− STATES

In this section, we analyze the weak-field limit of the gen-
eral results of Sec. III. Specifically, we use PT in the amplitude
F of a linearly polarized field F(t) = F cos ωt(F = eF ) to
obtain the linear in the laser-intensity limit for the complex
quasienergy. In this limit we obtain analytic expressions for
the dynamic polarizability of the unperturbed ground [ψE+ (r)]
and excited [ψE−(r)] states of the two-center molecular model.

The dynamic polarizabilities α± of the states ψE± (r) deter-
mine the leading (quadratic in F ) terms in the expansion of the
complex quasienergies ε±, corresponding to the unperturbed
energies E± = −k2

±/2, in a PT series in F . Specifically, the
complex quasienergy up to second order in F , ε

(2)
± , is

ε
(2)
± = − 1

2k2
± − 1

4α±F 2, (31)

where α± ≡ α±(ω,R,θ ) and θ is the angle between R and F. In
Appendix B we derive the expressions for ε

(2)
± as approximate

eigenvalues of the exact integral equation (24) presented in
matrix form in Eq. (A1).

These derivations show that for an arbitrary geometry (i.e.,
an arbitrary angle θ ) the polarizability α± has the following
parametrization:

α± = α
(±)
⊥ sin2 θ + α

(±)
|| cos2 θ. (32)

Since the two-center molecular model has axial symmetry,
its polarizability is a second-rank tensor. Thus, α

(±)
⊥ and α

(±)
||

are diagonal elements of this tensor and define the linear in
laser-intensity corrections to the unperturbed energies E± for
perpendicular (θ = 90◦) and parallel (θ = 0◦) geometries.

The explicit forms of α
(±)
⊥ (ω,R) and α

(±)
|| (ω,R) are (cf.

Appendix B )

α
(±)
⊥ (ω,R) = − 1

ω2
+ N±

3ω4
[(2ω + k2

±)3/2 − 2k3
±

+ i(2ω − k2
±)3/2] ∓ N±

ω4

(g̃1 + g̃−1)√
1 + ρ2±

, (33a)

α
(±)
|| (ω,R) = α

(±)
⊥ ∓ N±R

ω4
√

1 + ρ2±

∂

∂R
(g̃1 + g̃−1)

− N±R

ω4

∑
k′=±1

{
g̃2

k′

�(pk′)

[
R(κ+ + ipk′)

± eipk′R + κ2
−R2ek±R√

1 + ρ2±

]}
, (33b)

where κ± = (κ1 ± κ2)/2, the R-dependent factors ρ± (ρ± =
0 for κ1 = κ2), and N± were introduced in Eqs. (6) and
(8c) for the field-free molecular model, pk ≡

√
2kω − k2

± =√
2(E± + kω) [cf. Eq. (B1)], and the factors g̃k=±1 are given

by [cf. Eq. (B3)]

g̃k ≡ g̃k(R,E±,ω) = 1

R

∂

∂R

eipkR − e−k±R

R
. (34)

For equivalent centers, our results [Eqs. (33a) and (33b)]
after some transformations coincide with those obtained in
Ref. [49] by direct calculations of second-order PT matrix
elements for the polarizabilities using wave functions of the
field-free molecular model described in Sec. II.

One sees that the cumbersome structures of the expressions
(33a) and (33b) for α

(±)
⊥,‖ originate from the R-dependent

terms involving the functions g̃±1. With increasing R, these
terms decrease as R−2 (for 2ω > k2

±) or faster, so that in
the limit R → ∞ (in which case N+ = κ1, N− = κ2) the
polarizabilities α

(±)
⊥ and α

(±)
‖ become equal and tend toward

the dynamic polarizabilities αZRP
κj

of individual δ centers
characterized by the parameters κj (κ1 � κ2) [36,50]:

αZRP
κj

(ω) = lim
R→∞

α
(±)
⊥ = lim

R→∞
α

(±)
|| = − 1

ω2

+ κj

3ω4

[(
2ω + κ2

j

)3/2 − 2κ3
j + i

(
2ω − κ2

j

)3/2]
.

(35)

A. The plane-wave approximation for α±(ω,R)

To clarify the origin of the different terms in the expressions
(33a) and (33b), which provide the laser-field-dependent
contributions to the complex quasienergies ε

(2)
± in Eq. (31)

(including an exact account of both the potentials of the
individual short-range centers and the exchange interaction
effects), it is useful to compare Eqs. (33a) and (33b) with a less
exact result. For the latter, consider the polarizabilities α

(pw)
± of

the states ψE±(r) in Eq. (1) in the plane-wave approximation
(PWA), using the velocity gauge for the operator V (r,t),

α
(pw)
± = −ω−2

[
1 − 〈ψE±|V G

(0)
E±+ωV |ψE±〉

−〈ψE±|V G
(0)
E±−ωV |ψE±〉], (36)

where V = (e · p̂), e = F/F , p̂ = −i∇, and G
(0)
E =

ei
√

2E |r−r′|/(2π |r − r′|) is the outgoing-wave Green’s function
of a free electron. Thus, in the PWA we neglect spherical
waves in the scattering state (9), as well as the contribution
of the bound state ψE− (r) [or ψE+ (r)] when calculating
α

(pw)
+ (or α

(pw)
− ). After calculating the integrals in Eq. (36)

(which is simplest in the momentum representation), the
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result for α
(pw)
± acquires the form (32), where α

(±)
⊥ and α

(±)
||

are replaced with their PWA counterparts, α
(±,pw)
⊥ and α

(±,pw)
|| .

Moreover, α
(±,pw)
⊥ coincides with the exact result in Eq.

(33a), i.e., α
(±,pw)
⊥ = α

(±)
⊥ , while α

(±,pw)
|| is given by Eq. (33b)

with omission of the terms ∝g2
k . These latter beyond-PWA

terms in Eq. (33b) describe the much more complicated
frequency and R dependencies of the polarizabilities α

(±)
|| as

compared to α
(±,pw)
|| , as well as the resonant behavior of α

(±)
||

for frequencies ω ≈ (E− − E+) (cf. Sec. VI).
The PWA analysis provides clear interpretations of the

individual terms in Eq. (33a) for α
(±)
⊥ (ω,R). The terms in

brackets originate from “diagonal” matrix elements in Eq. (36)
with functions ψ

(1)
E± or ψ

(2)
E± instead of ψE± [cf. Eq. (1)] and take

into account exchange interaction effects only on the minimal,
zero-field level (by means of N±). For large R, these terms
in Eqs. (33a) and (33b) become the polarizabilities (35) of
individual δ centers. The last term in Eq. (33a), involving
g̃1 + g̃−1, corresponds to “nondiagonal” matrix elements in
Eq. (36) with functions ψ

(1)
E± and ψ

(2)
E± . For α

(±)
|| , this term in

Eq. (33a) for α
(±)
⊥ joins with the last term in the first line

of Eq. (33b) to form the combination ∂[R(g̃1 + g̃−1)]/∂R.
These “interference” terms originate solely from the exchange
interaction and exhibit exponential and (for 2ω > k2

±) os-
cillatory dependence on the laser frequency [cf. Eq. (34)].
The coincidence of exact and PWA results for α

(±)
⊥ is not

surprising in view of the selection rules for dipole transitions
in our two-center system: While the angular momentum is not
conserved in this case, its projection m on the quantization axis
z directed along the vector R is a good quantum number. Thus,
for dipole transitions in a linearly polarized field, the selection
rule for orthogonal geometry (e · R = 0) is |�m| = 1. For this
reason, a one-photon transition from the unperturbed states
ψE± is possible only to the p-wave channel of the plane wave
exp (ip · r) in the scattering state (9). For similar reasons, a
dipole transition between the states ψE+ and ψE− is forbidden
for the case of orthogonal geometry.

B. The static-field limit for α±(ω,R,θ )

Expanding the expressions (33a) and (33b) (including g̃k)
in series in ω for small ω up to terms ∼ω4, one obtains
(after lengthy but straightforward algebra) static-field results
for α

(±)
⊥,‖(ω,R), which we present separately for nonequivalent

(κ1 > κ2) and equivalent (κ1 = κ2) δ centers. For the former,
the results for α

(±)
⊥,‖(0,R) are

α
(±)
⊥ (0,R) = N±

4k5±

[
1 ± e−k±R√

1 + ρ2±

(
1 + k±R + k2

±R2

3

) ]
,

(37a)

α
(±)
‖ (0,R) = α

(±)
⊥ (0,R) + N±R2

4k3±

{
1 ± k±Rek±R√

1 + ρ2±

− 4d2
0

[
1 ± k±Rek±R + (1 − 2k±R) e−k±R√

1 + ρ2±

]}
,

(37b)

where

d0 = ± ρ±N±

2k±
√

1 + ρ2±
= κ−R

2(e−2k±R ±
√

e−2k±R + κ2−R2)
.

(38)

Note that the results in Eqs. (37a) and (37b) coincide with the
TDER results of Ref. [34] for a two-center system in a static
electric field F (neglecting there the effective ranges r

(1)
0 and

r
(2)
0 of the two atomic centers [51]).

For identical centers (ρ± = 0, d0 = 0), the results for
α

(±)
⊥,‖(0,R) reduce to those obtained in Ref. [33]:

α
(±)
⊥ (0,R)|κ1=κ2

= N±
4k5±

(
1 ± e−k±R

[
1 + k±R + k2

±R2

3

])
,

(39a)

α
(±)
‖ (0,R)|κ1=κ2

= α
(±)
⊥ (0,R)|κ1=κ2

+ N±R2

4k3±
(1 ± k±Rek±R).

(39b)

Comparison of the results in Eqs. (37) and (39) with those
in Eqs. (33a) and (33b) is instructive in two respects. First,
it shows how the exchange interaction is modified by an
alternating electric field as compared to the case of a true static
field F. The factors g̃k in Eq. (34), which describe the effects
of the exchange interaction, become frequency-dependent
in an alternating field F(t). Whereas they are exponentially
decreasing in R (as for the case of a static field) for ω < k2

±/2
(when both p1 and p−1 are purely imaginary), the factor g̃k=1

acquires an oscillating (in R) component for ω > k2
±/2 (when

the one-photon detachment channel becomes open and p1

gives the momentum of the detached electron). Furthermore,
the decrease of this component with increasing R is much
slower (∝R−2) than the exponential decrease of the component
involving e−k±R in Eq. (34). Second, the parallel polarizability
(37b) involves the parameter d0 ∼ κ−, which determines a
permanent dipole moment, d0 = d0R, of a heteropolar two-
center system [as can also be verified by straightforward
calculation of the matrix element 〈ψE±|r|ψE±〉 with the zero-
field wave function (1)]. However, the frequency-dependent
result (33b) for α

(±)
‖ (ω,R) does not involve any features related

to the permanent dipole moment d0: These features appear
only after expansion of the beyond-PWA (i.e., containing g̃2

±1)
terms in Eq. (33b) in a series in ω. Moreover, in a static electric
field F, the PT expansion of field-induced corrections to the
unperturbed energies E± besides the quadratic Stark-shift
contains also the linear Stark-shift given by the term −(d0 · F)
[34], while the weak-field expansion of the quasienergy in
Eq. (31) is valid for any nonzero frequency ω and remains
quadratic in the field amplitude F .

For a system having a permanent dipole moment, the
question of the manifestation of linear Stark effect features
with decreasing frequency ω of an alternating field F(t) with
a given amplitude F was studied long ago in Ref. [52] (for
a polar molecule) and Refs. [52,53] (for the hydrogen atom
in an excited state). As shown in Ref. [52], for a polar
molecule in a linearly polarized, low-frequency field F(t) these
features become pronounced in the spectrum of “quasienergy
harmonics” [or Fourier coefficients (n)

ε (r)] of the QQES
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wave function ε(r,t) when the condition, |d0 · F| � ω, is
fulfilled, i.e., when the photon energy is comparable with (or
smaller than) the maximum value of the dipole interaction,
−d0 · F(t), of a molecule with an oscillating field F(t). The
ordinary PT approach used in this section for analysis of the
complex quasienergy ε based on the integral equations (24)
is not appropriate for a proper analysis of effects caused by
a permanent dipole moment. The most appropriate approach
for this purpose is an analysis of the integral equations (22) in
the low-frequency (quasiclassical) limit. However, this latter
analysis is beyond the scope of this paper and will be published
elsewhere.

V. THE WEAK-FIELD LIMIT: PHOTODETACHMENT
CROSS SECTIONS FOR THE ψE+ AND ψE− STATES

Besides the quadratic Stark shift of the energy of a bound
state in a monochromatic light field, the dynamic polarizability
tensor also determines the amplitude for elastic photon scat-
tering by a bound system [54]. For ω > k2

±/2, the one-photon
detachment channel becomes open and the polarizability
α±(ω) acquires an imaginary part that determines the total
(i.e., integrated over the angular distribution of the detached
electron) photodetachment cross section, σ±, according to the
optical theorem for the elastic photon scattering amplitude
[54]:

σ± = 4πω

c
Imα±. (40)

It follows from the parametrization (32) for α± that the total
detachment cross section has a similar parametrization (cf.
Ref. [55]):

σ± = σ
(±)
|| cos2 θ + σ

(±)
⊥ sin2 θ, (41)

where σ
(±)
|| and σ

(±)
⊥ are the detachment cross sections for

parallel and perpendicular orientations of the molecular axis
R with the direction of linear laser polarization e = F/F . The
explicit forms of σ

(±)
⊥ , σ

(±)
|| can be obtained from Eqs. (33a)

and (33b) and are discussed in Sec. VI.
To obtain the angular distribution of the detached elec-

tron, we use the exact QQES amplitude (26) for n-photon
detachment. Expanding the amplitudes (27b) with j = 1 and
2 up to terms linear in F and using the explicit form (B4)
for the coefficients f̂

(j )
1 , we obtain the amplitude A

(±)
1 (p) for

angle-resolved one-photon detachment from the states ψE±(r)
as

A
(±)
1 (p) = F

2ω2

[
c

(±)
1 A

(1)
1 (p) + c

(±)
2 A

(2)
1 (p)

]
, (42a)

A
(1)
1 = [i(e · p) − (e · R)g̃1A2(−p,p)] e−ip·R/2, (42b)

A
(2)
1 = [i(e · p) + (e · R)g̃1A1(−p,p)] eip·R/2, (42c)

where p is the momentum of the detached electron, p =√
2ω − k2± = √

2(E± + ω), and two constituents of the elec-
tron scattering amplitude A, A1 and A2, are given by
Eqs. (11b) and (11c). From these equations follows an
important symmetry relation between A1 and A2 for the case
of equivalent atomic centers (κ− = 0),

A1(−p,p) = A2(p,−p), (43)

while the similar relation for nonequivalent centers is

A1(−p,p) = A2(p,−p) − κ−
�(p)

e−ip·R. (44)

Equation (43) leads to the symmetry relation, A
(1)
1 (p) =

−A
(2)
1 (−p), for the partial amplitudes A

(j )
1 (p). As a result, it

gives also the following symmetry relation for the detachment
amplitude (42a) for equivalent centers (c(±)

1 = ±c
(±)
2 ):

A
(±)
1 (p) = ∓A

(±)
1 (−p). (45)

Using the amplitude (42a), the differential cross section for
one-photon detachment can be obtained from the general result
(30) for the differential n-photon detachment rate, d�n/d�:

dσ±
d�

= 8πω

cF 2

d�1

d�
= 8πωp

cF 2
|A(±)

1 (p)|2

= 2πp

cω3

∣∣c(±)
1 A

(1)
1 (p) + c

(±)
2 A

(2)
1 (p)

∣∣2
. (46)

The two terms in each of Eqs. (42b) and (42c) describe
two contributions (having different physical origins) to the
amplitudes A

(1)
1 and A

(2)
1 . The first term (proportional to e · p)

in A
(1)
1 (or A

(2)
1 ) describes a one-photon transition from the

first, ψ
(1)
E± (or second, ψ

(2)
E±), constituent of the bound state (1)

to the plane-wave part of the scattering state (9), while the
second term (proportional to e · R) describes the transition
to the spherical wave of the scattering state (9) with origin
at R2 (or R1). Thus, this term describes the beyond-PWA
interaction of an electron detached from one center with
the other center. Therefore, photodetachment of a two-center
molecular system may be considered as involving two pairs of
interfering pathways: two “direct” (or “PWA”) paths, involving
detachment from each of the two atomic centers, and two
paths, each involving detachment from one center followed by
interaction of the detached electron with the other center.

For equivalent centers (κ1 = κ2 ≡ κ), the photodetachment
cross sections (46) for the ground (c(+)

1 = c
(+)
2 ) and excited

(c(−)
1 = −c

(−)
2 ) states take relatively simple forms owing to the

symmetry relation (43):

dσ±
d�

= dσ
(pw)
±

d�
+ N±p

cω3
(e · R){2ReG±(e · p) sin(p · R)

+ |G±|2(e · R)[1 ∓ cos(p · R)]}, (47)

where

dσ
(pw)
±

d�
= N±p

cω3
(e · p)2 [1 ± cos(p · R)] , (48)

G± = g̃1

κ + ip ∓ eipR/R
. (49)

Expression (48) is the differential cross section in the PWA (or
Born approximation), i.e., neglecting spherical waves in the
scattering state (9). Note that the exact cross section (47) is
valid for any geometry and reduces to the PWA result only for
orthogonal geometry (e · R = 0).

In agreement with the symmetry relation (45), the explicit
form (47) of dσ±/d� shows that the detached electron angular
distribution for the case of equivalent atomic centers has
inversion symmetry with respect to the momentum p. This
is similar to the case of a single-center problem, such as
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atomic photoionization. In general, this symmetry vanishes
for the case of nonequivalent centers [cf. Eq. (44)]. However,
even in this case it exists for orthogonal geometry (e · R = 0),
for which only the plane-wave part of the scattering state (9)
contributes to the amplitude A

(±)
1 (p) and the exact detachment

cross section (46) coincides with that in the PWA:

dσ
(±)
⊥

d�
= N±p

cω3
(e · p)2

[
1 ± cos(p · R)√

1 + ρ2±

]
. (50)

Thus, Eq. (50) presents the general PWA result for the
detachment cross section (46) for any geometry including the
result (48) as a special case for ρ± = 0 [cf. Eq. (6) for κ− = 0].

VI. NUMERICAL RESULTS AND DISCUSSION

A. Identical ZRP centers (κ1 = κ2 ≡ κ)

In Figs. 2 and 3, we present results for the frequency
dependence of the polarizabilities α

(±)
||,⊥(ω,R) for two values

of R (small and large). [Instead of Im α||,⊥, we use the
total photodetachment cross section, σ

(±)
||,⊥, related to Im α||,⊥

according to Eq. (40).] One sees a number of marked
differences between the exact results for α

(±)
|| and α

(±)
⊥ , as

well as between the exact and PWA results for α
(±)
|| (recall that

α
(±)
⊥ = α

(±,pw)
⊥ ). In what follows, we discuss these differences

in turn.

1. Resonant features in the polarizabilities α
(±)
|| (ω,R)

For orthogonal geometry (e · R = 0), the frequency depen-
dencies of both Re α

(±)
⊥ (ω,R) and σ

(±)
⊥ (ω,R) are relatively

smooth and qualitatively similar to that for a single δ center
[cf. Eq. (35) with κj = κ], and this similarity becomes more

distinct with increasing R [cf. Fig. 2]. However, for parallel
geometry (e || R), the frequency dependence of α

(±)
|| (ω,R) dif-

fers crucially from the case e · R = 0 for both below-threshold
(ω < |E±|) and above-threshold (ω > |E±|) frequencies (cf.
Fig. 3). For moderate R (when the exchange interaction effects
are significant), the behavior of Re α

(±)
|| (ω,R) is governed

predominantly by the contribution of the second bound state,
ψE− for α

(+)
|| or ψE+ for α

(−)
|| , which are neglected in the

PWA result (36). The straightforward calculation of the matrix
element for a dipole transition between states ψE+ and ψE−
gives

〈ψE−|e · p̂|ψE+〉 = i(e · R)

√
N+N−
ωr

g1(R,E+,ωr ), (51)

where ωr = (k2
+ − k2

−)/2 = E− − E+. Note that only “nondi-
agonal” transitions [between constituents ψ

(1)
E± and ψ

(2)
E± of the

wave function (1); cf. discussion below Eq. (36)] contribute to
the matrix element (51). Since these transitions are exchange-
interaction-induced [cf. the factor g1(R,E+,ωr ) in Eq. (51)],
the matrix element (51) should vanish in the limit R → ∞.
The result (51) is valid for both equivalent and nonequivalent
centers, while in the former case it allows a further sim-
plification. For this case, expanding the factor g1(R,E+,ωr )
[cf. Eq. (34) with ipk=+1 = −k−] for large R, we obtain an
estimate,

〈ψE−|e · p̂|ψE+〉 ≈ iωr (e · R), (52)

where the frequency ωr decreases exponentially with increas-
ing R [cf. Eq. (5) and Fig. 1]. For near-resonant frequencies,
the dominant term in the polarizability α±(ω) in Eq. (32) is
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FIG. 2. Dependence of the real part of α⊥ (a),(b) and σ⊥ (c),(d) on ω for κ1 = κ2 = 1 a.u. and two values of R. Solid thick lines, results
for the ground state ψE+ ; solid thin lines, results for the excited state ψE− ; dotted lines, results for a single δ center. In (c),(d) the dashed thick
(thin) lines are the results for σ

(±)
⊥ (ω,R) of Refs. [39–41] [see text below Eq. (61) for discussion] for the ground (excited) state, with proper

normalization of the ground (excited) state wave functions.
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FIG. 3. The same as in Fig. 2 but for α|| and σ||. The vertical dash-dotted line in (a) marks the position of the resonant frequency, ωr =
0.138 a.u. The vertical dashed line in (b) marks the position of the one-photon threshold for the ground state.

given by the expression

α± ∝ ±|〈ψE−|e · p̂|ψE+〉|2
ω − (E− − E+)

(53)

= ±(e · R)2 N+N−g2
1(R,E+,ωr )

ω2
r (ω − ωr )

, (54)

which describes the resonant features in Fig. 3(a). [Note that
the resonant term (54) for e || R follows also from the exact
result (33b) for α

(±)
|| (ω,R) by considering there the limit ω →

ωr ; in this case, the resonant denominator ω − ωr in Eq. (54)
originates from expansion of the factor �(p+1) about ω = ωr .]
In agreement with the estimate (52), the resonance becomes
more narrow with increasing R, its position moves to the low-
frequency region, and resonant features completely disappear
in the limit R → ∞. We note that the ordinary PT approach,
used in this paper, is not applicable for analytic analysis
of resonant features in polarizabilities for close-to-resonance
frequencies (including the case of an exact resonance,
ω = ωr ). Such analysis requires the use of a modification of
PT for treatment of almost degenerate or resonant levels within
the QQES approach (cf., e.g., Refs. [50,56]). We do not pursue
this question in the present paper.

2. Oscillation patterns

In the case of small R, the beyond-PWA effects for α
(±)
||

are very significant, causing resonant features in the frequency
dependence of Re α

(±)
|| and considerable differences between

exact and PWA results for the photodetachment cross sections
σ±

|| [cf. Fig. 3(c)]. In contrast, the most prominent features for
the case of large R are oscillation patterns in the frequency
dependence of both Re α

(±)
|| for above-threshold frequencies

(ω > |E±|) and the cross sections σ±
|| [cf. Figs. 3(b) and 3(d)].

These are well described already in the PWA, at least, for
far-from-threshold frequencies and/or large R.

For parallel geometry, the exact result for the cross section
σ

(±)
|| can be presented in factorized form after integration of

Eq. (47) over the momentum directions:

σ
(±)
|| = σ

(±)
0 f

(±)
|| (pR), (55)

where the first factor,

σ
(±)
0 = 4πN±

3cω3
p3, p =

√
2E =

√
2ω − k2±, (56)

reduces to the detachment cross section σ ZRP
κ for a single ZRP

model [cf. Eq. (35)] for R → ∞ (when both N±, k± → κ),
while the modulation function f

(±)
|| (x) involves the spherical

Bessel functions jl(x) describing oscillation patterns:

f
(±)
|| (x) = 1 ± 3

x
j1(x) ∓ 3j2(x) + 6

R

p
ReG±j1(x)

+ 3
R2

p2
|G±|2[1 ∓ j0(x)], (57)

where G± is given by Eq. (49).
The PWA result for σ

(±)
|| follows from Eq. (55) neglecting

terms with G± in Eq. (57):

σ
(±,pw)
|| = σ

(±)
0 f

(±,pw)
|| (pR), (58)

f
(±,pw)
|| (x) = 1 ± 3

(
sin x

x
+ 2

cos x

x2
− 2

sin x

x3

)
. (59)

Since σ
(±)
⊥ = σ

(±,pw)
⊥ , a factorization similar to (58) for the

perpendicular geometry is exact:

σ
(±)
⊥ = σ

(±)
0 f

(±)
⊥ (pR), (60)

f
(±)
⊥ (x) = 1 ± 3

x
j1(x) = 1 ± 3

x2

(
sin x

x
− cos x

)
. (61)
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For the ground state ψE+ , the modulation functions f
(+,pw)
||,⊥ (x)

in Eqs. (59) and (61) coincide with results obtained in
Refs. [39–41] using a simplified two-center model for pho-
todetachment of a negative molecular ion, while instead
of R-dependent cross sections σ

(±)
0 , the results in Refs.

[39–41] contain the ZRP cross section σ ZRP
κ with k± = κ;

i.e., Refs. [39–41] neglect exchange interactions in both
ground and scattering states. [As is seen in Figs. 2(c)
and 2(d) and Figs. 3(c) and 3(d), this difference is considerable
only for small R.]

For ω > |E±|, an oscillatory dependence of both Re α
(±)
||

and Im α
(±)
|| on the parameter pR causes interference fringes

in the frequency dependence of Re α
(±)
|| and σ

(±)
|| , as seen in

Figs. 3(b) and 3(d). Moreover, these fringes become pro-
nounced only for those R and ω (or p), for which the de Broglie
wavelength, λ = 2π/p, becomes of the order of (or smaller
than) the interatomic distance R, thereby providing clear
evidence for the double-slit origin of the oscillation patterns.
The original idea to observe Young’s double-slit interferences
in photoionization of homonuclear diatomic molecules was
proposed by Cohen and Fano [57], who obtained a remarkably
simple result for the interference factor, 1 + sin(pR)/(pR),
in the total photoionization cross section for the case of
randomly oriented molecules. [This result follows also by
averaging σ+ in Eq. (41) taking into account Eqs. (59) and
(61) [39–41]. For the excited state, a similar averaging of σ−
gives the interference factor 1 − sin(pR)/(pR).] Double-slit
interferences in angular distributions of fast photoelectrons
for a fixed-in-space molecule were predicted for the first time
by Kaplan and Markin [58] within the PWA analysis for H2

taking into account nondipole effects. Recently, the first direct
experimental observation of Young’s double-slit interferences
in vibrationally resolved photoionization of homo- and het-
eronuclear diatomic molecules has been reported [59].

To estimate the positions of the maxima and minima in
the R-dependence of the total cross section σ||, we take into
account only the first two terms in the modulation function
(59) for large x. In this approximation we obtain

pRmax / min = π (n + 1/2), (62)

where even (odd) n correspond to the maxima of σ|| for
the ground (excited) state, while odd (even) n determine the
minima for the ground (excited) state. In Fig. 4 we demonstrate
the accuracy of the estimate (62), as well as the comparison of
exact and PWA results for the R dependence of σ|| for two laser
frequencies. One sees that for near-threshold frequencies [cf.
Fig. 4(a)] both the PWA and estimate (62) become applicable
only for large R. However, for large frequencies [cf. Fig. 4(b)]
the PWA and the exact results agree well even for small R,
while the positions of the maxima/minima agree with Eq. (62),
showing that the oscillation pattern in the R dependence
of σ|| originates from double-slit interference in the angular
distribution of the detached electrons.

While the features of double-slit interferences are not
visible in Figs. 2(c) and 2(d) for orthogonal geometry [in
view of the damping factor x−2 ≡ (pR)−2 in Eq. (61)], they
become pronounced in the angular distributions of detached
electrons in this geometry with increasing pR, as shown in
Fig. 5. The angular distributions provide a clear explanation of
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FIG. 4. The dependence of σ|| on R for κ1 = κ2 = 1 a.u. and two
different values of ω. Solid thick lines, result (55) for the ground
state; solid thin lines, result (55) for the excited state; dashed thick
and thin lines, PWA results (58) and (60) for the ground and excited
states. Vertical dot-dashed lines mark the approximate positions of
the maxima/minima of σ|| according to Eq. (62).

the origin of the interference fringes. The amplitudes (42b) and
(42c) (omitting the beyond-PWA terms proportional to g̃1), as
well as the expression (50), explicitly show that two atomic
centers emit two outgoing waves with the phase difference,
δ = p · R = pR cos �p, dependent on p, R, and �p. Thus, the
positions of the maxima (minima) in the angular distributions
for electrons detached from the ground state are given by
Young’s formula, p · R = 2πn [p · R = (2n + 1)π ]. [For the
antisymmetric excited state, these conditions for the positions
of the maxima or minima are inverted, as follows from
Eq. (59) and as visible in Figs. 3(b) and 3(d)].

To illustrate the interference patterns in axially symmetric
(with respect to the direction of the parallel vectors e and R)
angular distributions for parallel geometry and the accuracy
of PWA results for this case, in Figs. 6 and 7 we present the
results obtained using the exact and the PWA differential cross
sections [Eqs. (47) and (48)]. As expected, for large frequen-
cies and R, all side lobes in the angular distributions originate
from the double-slit interference of two waves produced by
two atomic centers and they are well described in the PWA.
However, for frequencies close to the one-photon threshold
and/or small R, the PWA results differ considerably from
the exact ones (cf. the first columns and first rows in Figs. 6
and 7). Moreover, besides the quantitative differences, addi-
tional (not PWA) side lobes appear in the exact results for the
angular distributions for R = 2 (cf. the results for pR = 3.39
in Fig. 6 and for pR = 1.19 in Fig. 7). These side lobes clearly
indicate the different, not double-slit origin of the interference
structures, i.e., the interference between the “PWA” and the
“beyond-PWA” pathways of the photodetachment amplitudes,
which were discussed below Eq. (46).
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FIG. 5. (Color online) Detached electron angular distributions from the ground state of a molecular system (with κ = 1 a.u.) for
perpendicular geometry and four values of pR: (a) pR = 2 a.u.; (b) pR = 8 a.u.; (c) pR = 16 a.u.; (d) pR = 32 a.u. The vectors R
and e are directed along the z axis (�p = 0◦) and the y axis (�p = 90◦, φp = 90◦), respectively, where �p and φp are the polar and azimuthal
angles of the detached electron momentum p in the reference frame (x,y,z). (e) Sketch of molecular detachment for perpendicular geometry.

3. Threshold laws for photodetachment cross sections and
threshold phenomena in the polarizabilities

As should be expected, the most striking difference between
the exact and the PWA results for the total photodetachment
cross sections σ±(ω,R) should appear for p → 0, i.e., in the
threshold behavior of σ±. For the perpendicular geometry, σ (±)

⊥

pR=6.92

pR=17.32

pR=17.43

pR=43.59

ω=2 a.u.

pR=3.39
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pR=4.47

FIG. 6. Angular distributions of electrons detached from the
ground state ψE+ of a two-center system (with κ = 1 a.u.) for parallel
geometry (e || R) and different R and ω. Arrows show the direction
of the vectors R and e. Solid lines, exact result (47); dashed lines, the
PWA result (48).

coincides with σ
(±,pw)
⊥ ; thus, Eq. (60) shows that

σ
(+)
⊥ ≈ c

(+)
th p3, σ

(−)
⊥ ≈ 1

10c
(−)
th R2p5, (63)

where

c
(±)
th = 64πN±

3ck6±
. (64)

For parallel geometry, mutual cancellations between dif-
ferent terms in f

(±,pw)
|| at pR → 0 give f

(+,pw)
|| |pR→0 ∼

const, while f
(−,pw)
|| |pR→0 ∼ (pR)2, which leads to a rapidly
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FIG. 7. The same as in Fig. 6 but for the excited state ψE− .
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decreasing threshold behavior for the excited state,
σ

(−,pw)
|| |p→0 ∼ p5, while σ

(+,pw)
|| |p→0 ∼ p3. However, the ex-

act result for the threshold behavior based on the expression
(57) gives

σ
(+)
|| ≈ c

(+)
th

[
1 + G(+)

th R2
(
1 + 1

2G
(+)
th R2

)]
p3, (65)

σ
(−)
|| ≈ 3c

(−)
th [G(−)

th ]R2p, (66)

where

G(±)
th = 1

κR ∓ 1
[e−k±R(1 + k±R) − 1]. (67)

For nonequivalent centers, due to lack of permutation symme-
try of the wave functions with respect to the atomic centers,
the threshold behavior of σ

(±)
|| [from analysis of Im α

(±)
|| in

Eq. (33b)] is the same: σ
(±)
|| |p→0 ∼ p for both states ψE+

and ψE− , while σ
(+)
⊥ |p→0 ∼ p3 and σ

(−)
⊥ |p→0 ∼ p5 for the

perpendicular geometry. Therefore, the exchange interaction
significantly affects the threshold behavior of the detachment
cross sections for both the ground and the excited states of a
two-center system. Note that the above results are compatible
with the general analysis of threshold behavior for the total
(integrated over θ ) photodetachment cross section of diatomic
molecular negative ions in Ref. [60] (which does not specify
the prefactors multiplying the p dependence of the cross
sections).

Branch-point singularities of the polarizabilities α
(±)
|| (ω,R)

of the kind
√

ω − ωth at photodetachment thresholds ωth
± =

|E±| = k2
±/2 (originating from the threshold laws for the cross

sections σ
(±)
|| ) induce known threshold phenomena for the

cross section of a process involving a short-range potential
(in our case, elastic photon scattering) at the opening of a new
reaction channel as the parameters of the problem vary [61,62]
(cf. also Ref. [63] on multiphoton detachment from a single δ

center). In our case, these threshold phenomena are manifested
as “steps” (in which the first derivative in ω does not exist) in
the real parts of the polarizabilities at ω = ωth. They are visible
in inserts in Fig. 3(b) for equivalent centers and in Fig. 8(a)
for nonequivalent centers. Note that αZRP

κ (ω) has only a higher
order branch-point singularity [of the kind (ω − ωth)3/2], so
that Re αZRP

κ (ω) in Figs. 2(a) and 2(b) and 3(a) and 3(b) has
a point of inflection at ω = ωth = κ2/2, in which only the
second derivative in ω has a discontinuity.

B. Nonequivalent centers

For nonequivalent centers, an additional parameter, ρ±, in
Eq. (6) governs the behavior of polarizabilities and detachment
cross sections. While for ρ± 	 1 the atomic centers are
approximately equivalent (|c(±)

1 | ≈ |c(±)
2 |), the contribution of

one of them becomes exponentially suppressed for ρ± 
 1,
as discussed below Eq. (8). Hence, results for polarizabilities
and total detachment cross sections for ρ± 
 1 are similar to
those for a single δ center. In Fig. 8 we present the real part
of the polarizability and the total detachment cross section for
parallel geometry [the frequency dependencies of α

(±)
⊥ and σ

(±)
⊥

are similar to those in Figs. 2(a) and 2(b) and 3(a) and 3(b)].
As for the case of equivalent centers, there is a one-photon
resonance; however, its position depends only slightly on
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FIG. 8. Frequency dependence of α|| and σ|| for R = 4 a.u. and
κ1 = 1 a.u., κ2 = 0.8 a.u. Thick solid line, ground state (ρ+ = 21.8);
thin solid line, excited state (ρ− = 9.8); thick (thin) dotted lines:
ZRP result (35) for j = 1 (j = 2). Vertical dot-dashed line marks the
position of the resonance frequency ωr . Vertical dashed lines mark
the positions of the threshold frequencies ωth

± (ωth
+ ≈ 0.5 a.u. for the

ground state; ωth
− ≈ 0.32 a.u. for the exited state).

R since the resonance frequency is well approximated by
ωr = (κ2

1 − κ2
2 )/2. With increasing R, the resonance features

disappear, just as for the case of equivalent centers [cf.
Eqs. (51) and (53)].

Two-center interferences in Re α
(±)
|| and σ

(±)
|| are strongly

suppressed as compared to the case of equivalent centers due

to the large value of the factor 1/

√
1 + ρ2± in Eqs. (33a) and

(33b). Thus, the results in Fig. 8 are close to those for a single
ZRP. Similarly to Eqs. (60) and (61), the detachment cross
section for perpendicular geometry can also be expressed in
terms of σ

(±)
0 and f

(±)
⊥ (pR),

σ
(±)
⊥ = σ

(±)
0

[
1 + f

(±)
⊥ (pR) − 1√

1 + ρ2±

]
, (68)

while the PWA result for σ
(±)
|| follows from Eq. (68) by

replacing f
(±)
⊥ by f

(±,pw)
|| [cf. Eq. (59)].

For perpendicular geometry, the interference patterns in
the electron angular distributions for the case of nonequivalent
centers rapidly disappear with increasing R due to the damping

factor 1/

√
1 + ρ2± in Eq. (50), in which the parameter ρ±

exponentially increases with R [cf. Eq. (6)]. In Fig. 9
we present an example of the modification of the angular
distributions for the same value of pR, but two different values
of R. For small ρ±, the shape of the angular distribution
is similar to that for equivalent centers [compare Fig. 9(a)
with Fig. 5(c)], while in Fig. 9(b) the interference is smeared
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FIG. 9. (Color online) Detached electron angular distributions
from the ground state of an asymmetric molecular system (κ1 = 1 a.u.,
κ2 = 0.8 a.u.) for perpendicular geometry and the same value of the
parameter pR = 16 a.u., but different values of R: (a) R = 2 a.u.,
ρ+ = 1.53; (b) R = 4 a.u., ρ+ = 21.85. The vectors R and e are
directed along the z axis (�p = 0◦) and the y axis (�p = 90◦, φp =
90◦), respectively, where �p and φp are the polar and azimuthal
angles of the detached electron momentum p in the reference frame
(x,y,z).

out and the angular distribution is similar to that for the
single-center case [64]. Recall that even for nonequivalent
centers the left-right asymmetry in the angular distributions
(with respect to the substitution p → −p) is absent for per-
pendicular geometry. (Note that a similar result was observed
in numerical calculations of the differential photoionization
cross section for the molecule HeH2+ [64].)

1. Left-right asymmetry in detached electron angular distributions

For parallel geometry, the crucial difference from the case of
equivalent centers consists of breaking the left-right symmetry
in the angular distributions, as is seen in Figs. 10 and 11. A
number of authors (cf., e.g., Refs. [64–66]) pointed out that
the asymmetry cannot be explained within the PWA and that
a more accurate treatment of the molecular potential in the
continuum state is necessary for its description. Our results
also show that the PWA fails to describe even qualitatively the
asymmetry of the angular distributions in Figs. 10 and 11.

In our model, the origin of the left-right asymmetry is
clear because the symmetry relation (45) for the detachment
amplitude A1(p) is not valid for nonequivalent centers due to
the relation (44). That leads to an asymmetry in the angular
distributions,

�

(
dσ

d�

)
≡ dσ (p)

d�
− dσ (−p)

d�
, (69)
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FIG. 10. Left-right asymmetry in detached electron angular
distributions from the ground state ψE+ of a two-center system
with nonequivalent centers (κ1 = 1 a.u., κ2 = 0.8 a.u.) for parallel
geometry (e || R) and different R and ω (cf. Fig. 6). Arrows show the
directions of the vectors R and e. Solid lines, exact result (46); dashed
lines, the PWA result (48).

which originates from an interference between the “symmet-
ric” and “antisymmetric” parts of the amplitude A1(p) (with
respect to the substitution p → −p).

Equation (46) shows that the contribution of one of the two
centers (let us say the second one) to dσ±/d� is exponentially
small for middle and large distances R due to the exponential
smallness of the coefficients c

(±)
2 as compared to c

(±)
1 . Thus,

for simplicity, we retain only the term with partial amplitude
A

(1)
1 in Eq. (46). [However, we emphasize that this amplitude

stores a “memory” of the second center through the factor
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u.

pR=7.5, ρ =3x10

ω=2 a.u.

pR=3.7, ρ =0.9

pR=7.3, ρ =9.8

pR=18.3, ρ =3x10

ω=10 a.u.

pR=8.8, ρ =0.9

pR=17.6, ρ =9.8

pR=44.0, ρ =3x10

FIG. 11. The same as in Fig. 10 but for the excited state ψE− .
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A2(−p,p) in Eq. (42b).] Moreover, to simplify the explicit
form for �(dσ/d�), we consider only the major (∼R−2) term
in the expansion of �(dσ/d�) in series in R−1. As a result,
after expansion of g̃1 and A2(−p,p) in Eq. (42b) in R−1, we
obtain

�

(
dσ

d�

)
= 4p2κ1

cω3

(e · p)(e · R)

R2
√

κ2
2 + p2

cos(pR + δ2) cos(p · R),

(70)
where tan δ2 = −p/κ2, so that δ2 is the s-wave scattering phase
for the second δ center (which is the only nonzero scattering
phase for a single-center ZRP model [32]). Note that the factor

1/

√
κ2

2 + p2 in Eq. (70) is the modulus of the isotropic electron
scattering amplitude for a ZRP, fκ2 (p) = 1/(κ2 + ip) [32],
to which the modulus of A2(−p,p) reduces for large R. [In
Eq. (70) we give the result for the ground state, while the result
for the excited state can be obtained from Eq. (70) by changing
the overall sign and making the replacements: κ1 → κ2, κ2 →
κ1, δ2 → δ1.]

The result (70) provides a transparent physical explanation
for the interference origin of the asymmetric angular distribu-
tions. After absorption of a photon by the electron localized
near the first center, one part of the electron wave function
(the plane-wave part) reaches the detector directly while the
other part scatters from the second δ center, accumulating
a phase difference pR + δ2 (where pR is the “geometrical”
phase and δ2 is the quantum mechanical scattering phase).
Thus, the second center produces a secondary (scattered) wave
(cf. Fig. 12). The geometrical phase difference between the
secondary and initial (“direct”) waves leads to an interference
factor cos(p · R) in Eq. (70). This is a direct analog of the inter-
ference patterns observed in heteronuclear diatomic molecules
[59,67,68]. In complex systems, similar interference patterns
in photoionization of well-localized core electrons due to
scattering from adjacent atoms form the basis of extended
x-ray absorption fine structure (EXAFS) spectroscopy [69].

Integrating Eq. (70) over the electron momentum angles in
the right hemisphere, we obtain (to lowest order in R−1)

�σ = 8πp2κ1

ω3c

(e · R)2

R4
√

κ2
2 + p2

cos(pR + δ2) sin(pR). (71)

Analysis of Eq. (71) shows that for p > κ+ and R > κ−1
− ,

�σ takes negative values only over small intervals of pR.
Thus, the angular distribution is mostly localized on the side
of the atomic center with larger κ (i.e., κ1), in agreement with
numerical results in Fig. 10. The general shapes of the angular
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FIG. 12. Sketch of two pathways for one-photon detachment.

distributions for detachment from the excited state are inverted
from those for the ground state (cf. Fig. 11).

VII. SUMMARY AND CONCLUSIONS

In summary, we have presented a general analysis for a two-
center δ potential model of a one-electron diatomic molecular
ion system interacting with an intense, monochromatic laser
field. Our results generalize the results for a single-center
ZRP model [46], obtained for an arbitrarily polarized, intense
laser field, to the case of two δ centers. The ultimate goal
of this work is to obtain closed-form analytic expressions for
the rates for strong-field molecular processes involving this
simple model system. Such closed-form analytic formulas will
provide analytical insight into the dependence of these rates
on key laser and molecular parameters.

In this paper we have focused on the development of a
general formulation of the strong-field molecular problem
and on the application of this formulation in the weak-
field limit. In the weak-field limit we have analyzed the
frequency-dependent polarizability and the photodetachment
cross section for the molecular ion model system. We have
examined these molecular properties for both homonuclear
and heteronuclear cases and for various values of the key laser
and molecular parameters of the problem. Where possible,
we have delineated the connection to analyses of other
authors concerning both interference effects on detached
electron angular distributions and the validity of the PWA for
describing the detached electron. We have also analyzed the
low-frequency limit of our results in order to present results
for a static electric field.

From the weak-field results we have obtained, we conclude
that the simple molecular model we have analyzed does
provide results that reflect the essential physics of the problem
and its dependence on key laser and molecular parameters.
Knowledge of the weak-field limit results we have presented
in this paper will be essential in order to determine if the rates
for strong-field molecular processes, such as for HHG, can be
factorized. Analysis of the rates for such strong-field processes
will be presented elsewhere.
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APPENDIX A: MATRIX FORM OF THE
INTEGRAL EQUATIONS (24)

To convert Eqs. (24) to an infinite system of linear equations
for the Fourier coefficients f̂

(j )
k of f̂j (t), we expand both the

right and left sides of Eqs. (24) in Fourier series and equate
coefficients for the same harmonics. In what follows, we
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present the matrix form of these equations for the cases of
linear and circular polarization of the field F(t).

1. The case of linear polarization: F(t) = F cos ωt

Using the above-described procedure, for the case of linear
polarization we obtain the following pair of coupled matrix
equations for the Fourier expansion coefficients:

(i
√

2ε̂k,k + κ1)f̂ (1)
k + R−1ei

√
2ε̂k,kRf̂

(2)
k

=
∑
k′

[
M̂k,k′ f̂

(1)
k′ + N̂k,k′(R)f̂ (2)

k′
]
,

(A1)
R−1ei

√
2ε̂k,kRf̂

(1)
k + (i

√
2ε̂k,k + κ2)f̂ (2)

k

=
∑
k′

[
N̂k,k′(−R)f̂ (1)

k′ + M̂k,k′ f̂
(2)
k′

]
,

where the matrix elements N̂k,k′ can be presented in integral
form,

N̂k,k′(R) = − (−1)k−k′

√
2πi

∫ ∞

0

dτ

τ 3/2
eiε̂k,k′ τ+i R2

2τ

× [eiλ(τ )Jk−k′[λ(τ ),β(τ )] − δk,k′], (A2)

where Jk−k′ is the generalized Bessel function,

Jk−k′(λ,β) =
∑

s

i−sJs(λ)Jk−k′+2s(β), (A3)

and where we have introduced the notations,

ε̂k,k′ = ε̂ + k + k′

2
ω, (A4a)

λ(τ ) = 4up

ω

sin2(ωτ/2)

ωτ
, (A4b)

β(τ ) = F · R
ω

sin(ωτ/2)

ωτ/2
. (A4c)

The matrix elements M̂k′,k equal zero for odd k − k′ = 2s + 1,
while for even k − k′ = 2s, they are given by

M̂k−2s,k = − is√
2πi

∫ ∞

0

dτ

τ 3/2
eiε̂k,k−2s τ

×{eiλ(τ )Js[λ(τ )] − δk,k−2s}. (A5)

The explicit forms of the matrix elements (A2) and (A5)
allow one to verify the important symmetry relations,

M̂k,k′ = M̂k′,k, N̂k,k′(R) = N̂k′,k(−R), (A6)

where the first relation follows from the properties of the Bessel
function,

J−s(x) = (−1)sJs(x),

while the second one follows from the relation,

Jk−k′(λ,β) = Jk′−k(λ, − β).

It follows from the symmetry relations (A6) that the matrix in
Eq. (A1) can be presented in a symmetric form, so that it can
be diagonalized. Thus, the system (A1) of homogeneous equa-
tions has nontrivial solutions for those complex quasienergies
ε̂, for which one of the matrix elements of the diagonalized
system (A1) vanishes. The corresponding Fourier coefficients

f̂
(j )
k can be found as the components of the eigenvectors for a

given ε̂.
Note that matrix elements M̂k′,k do not depend on the

internuclear distance R, which enters only into the exchange-
interaction-induced matrix elements N̂k,k′ . Since the latter
vanish in the limit R → ∞ [as do the R-dependent factors on
the left sides of Eqs. (A1)], the system (A1) in this limit reduces
to two independent subsystems for the complex quasienergies
and Fourier coefficients of functions f̂j (t) for two isolated δ

centers [46].

2. The case of circular polarization:
F(t) = F√

2
(ex cos ωt + ηe y sin ωt), η = ±1

Since the function f (t) for an electron in a single δ center
becomes independent of the time t for the case of a circularly
polarized field [36,37], the matrix form of Eq. (24) for this
case simplifies significantly as compared to Eq. (A1) and may
be presented in the form

(i
√

2ε̂k,k + κ1 + M̂k,k)f̂ (1)
k + R−1ei

√
2ε̂k,kRf̂

(2)
k

=
∑
k′

N̂k,k′(R)f̂ (2)
k′ ,

(A7)
R−1ei

√
2ε̂k,kRf̂

(1)
k + (i

√
2ε̂k,k + κ2 + M̂k,k)f̂ (2)

k

=
∑
k′

N̂k,k′(−R)f̂ (1)
k′ ,

where

M̂k,k = 1√
2πi

∫ ∞

0

dτ

τ 3/2
eiε̂k,kτ [eiλ(τ ) − 1], (A8)

N̂k,k′ = − 1√
2πi

∫ ∞

0

dτ

τ 3/2
eiε̂k,k′ τ+i R2

2τ

×{eiλ(τ )Jk′−k[β̂(τ )] − δk,k′ }, (A9)

β̂(τ ) = FR cos �√
2ω

sin(ωτ/2)

ωτ/2
, (A10)

and where � is the angle between the vector R and the
polarization plane of the laser field.

We have confirmed that the system of exact eigenvalue
equations (A7) for the complex quasienergies of an electron
in the ZRP molecular model is equivalent to that obtained
in Ref. [35] using different mathematical techniques for the
treatment of the QQES equations.

APPENDIX B: DERIVATIONS OF EQS. (31)–(33b)

The general form (31) for the complex quasienergy ε±
in the lowest nonvanishing order in the amplitude F of a
monochromatic field F cos ωt follows from general arguments,
as well as from a perturbative (in F ) analysis of the exact
matrix equation (A1). To obtain explicit expressions for the
polarizability α±, we analyze the matrix elements in the system
(A1) in the limit F → 0. This analysis shows that only Fourier
coefficients f̂

(j )
k with |k| = 1 are induced by the laser field in

the lowest (first) order of PT in F . The explicit form of these
coefficients can be found from the system of Eqs. (A1) by
considering the right-hand side (rhs) in these equations as a
perturbation. Substituting in the rhs of Eq. (A1) the coefficients
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f̂
(j )
k′ in the form f̂

(j )
k′ = f̂

(j )
0 δk′,0 and taking into account that

M̂±1,0 = 0 [cf. Eq. (A5)], we obtain(
ipk + κ1

eipkR

R
eipkR

R
ipk + κ2

)(
f̂

(1)
k

f̂
(2)
k

)
=

(
N̂k,0(R)f̂ (2)

0

N̂0,k(R)f̂ (1)
0

)
, (B1)

where pk ≡ √
2ε̂k,k = √

2(ε̂ + kω). The matrix elements N̂k,0

to first order in F (but with the exact quasienergy ε̂) are

N̂k,0(R) = −N̂0,k(R) = −FR cos θ

2ω2
gk, (B2)

gk ≡ gk(R,ε̂,ω) = 1

R

∂

∂R

eipkR − ei
√

2ε̂

R
. (B3)

The solution of Eq. (B1) for f̂
(1)
k and f̂

(2)
k in terms of the

coefficients f̂
(j )
0 is given by

f̂
(1)
k = −FR cos θgk

2ω2�(pk)

[
eipkR

R
f̂

(1)
0 + (κ2 + ipk)f̂ (2)

0

]
,

(B4a)

f̂
(2)
k = FR cos θgk

2ω2�(pk)

[
eipkR

R
f̂

(2)
0 + (κ1 + ipk)f̂ (1)

0

]
,

(B4b)

where the definition for �(pk) is given by Eq. (10).
Two equations of the system (A1) for k = 0, in which only

terms with k′ = −1,0,1 are taken into account and the explicit
form (B4) for the coefficients f̂

(1)
±1 and f̂

(2)
±1 is used, compose

a homogeneous system of equations for the coefficients f̂
(j )
0

and the quasienergy ε̂,(
M(1)

0,0 N0,0

N0,0 M(2)
0,0

)(
f̂

(1)
0

f̂
(2)
0

)
= 0, (B5)

where

M(j )
0,0 = i

√
2ε̂ + κj − M̂00 −

∑
k′=±1

N̂2
0,k′ (R)

κj + ipk′

�(pk′)
,

N0,0 = ei
√

2ε̂R

R
− N̂0,0 −

∑
k′=±1

N̂2
0,k′ (R)

eipk′R

R�(pk′)
, (B6)

and the lowest (second)-order in F expansions of the matrix
elements M̂0,0 and N̂00 have the form

M̂0,0 = − F 2

12ω4
[(2ω − 2ε̂)3/2 − 2(−2ε̂)3/2 + i(2ω + 2ε̂)3/2],

N̂0,0 = − F 2

4ω4

(
1 + R cos2 θ

∂

∂R

)
(g̃1 + g̃−1), (B7)

where the factors g̃±1 are given by Eq. (34).
Nontrivial solutions of the homogeneous system (B5)

exist for those quasienergies ε̂ (or ε = ε̂ − up) that satisfy
a transcendental equation,

M(1)
0,0M

(2)
0,0 − N 2

0,0 = 0, (B8)

which also can be represented in an alternative form as a set
of two independent equations [cf. Eqs. (4) and (5)]:

M(1)
0,0 + M(2)

0,0

2
= ∓

√(M(1)
0,0 − M(2)

0,0

2

)2

+ N 2
0,0. (B9)

Substituting the expansion (31) for ε in Eq. (B6) for the matrix
elements M(j )

0,0 and N0,0 (involving ε̂ = ε − up), expanding
then both sides of Eq. (B9) in series in F up to terms of
order ∼F 2 and then equating coefficients multiplying the
same powers of F , we obtain the parametrization (32) for
α± in Eq. (31) and explicit expressions (33a) and (33b) for the
perpendicular and parallel polarizabilities.
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