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Understanding the global structure of two-level quantum systems with relaxation:
Vector fields organized through the magic plane and the steady-state ellipsoid
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The understanding of the dynamics of a two-level quantum system with relaxation is one of the fundamental
questions of quantum mechanics. We describe geometrically the structure of this system by introducing different
vector fields, which give insight into the global dynamics of the system. The vector fields are organized through
two basic geometric objects, the magic plane and the steady-state ellipsoid. We show how these latter help
analyzing the time-optimal control of two-level dissipative quantum systems.
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I. INTRODUCTION

The theoretical analysis of complex dynamical systems
can be approached from two complementary points of view.
The first one is based on numerical computations, the goal
being mainly to simulate systems of growing complexity close
to experimental conditions. The second option consists in
understanding the qualitative structures of the dynamics via
a geometric analysis of the system. These two theoretical
techniques of analysis are, of course, not disconnected,
and a precise understanding of the geometrical properties
of the system can explain quantitative results of numerical
simulations. It is this second geometric aspect which will be
at the core of this work in order to analyze the dynamics of
two-level quantum systems with relaxation. The description
of the dynamics of two-level systems has always been one
of the fundamental questions of quantum mechanics [1].
Recently, this subject has even attracted more attention because
of the ideas of quantum computing [2]. In many physical
applications, it can be sufficient to take into account only two
of the energy eigenstates of the system, for example, those in
resonance with the frequency of the control field [3,4]. The
coherent quantum effects that can be observed in such systems
are now well known in different fields extending from atomic
and molecular physics [5] to nuclear magnetic resonance [6]
and solid state physics. However, in order to deal with more
realistic experimental conditions, it is crucial to account for
environmental effects [7–14]. For instance, in quantum com-
puting, a fundamental requirement is the preservation of the
coherence in the presence of relaxation due to the interaction
with the environment [2,15–17]. Theoretically, if one lacks
a detailed microscopic description of the environment, the
interaction of the quantum system with its surroundings can
often be described by phenomenological relaxation processes.
A general description of the effective dynamics of open
quantum systems was given simultaneously by Lindblad [18]
and Gorini et al. [19]. These equations have been established
to ensure that the state of the system remains physically valid
along the dynamics. In this rigorous mathematical framework,
one crucial question is the analysis of the corresponding
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dynamics, in particular, for the simplest system, the two-state
one. In this case, the dynamics, which is governed by the
Bloch equation, is characterized by two relaxation times T1

and T2. Generally, the first step for studying such a dynamics
consists in computing analytically the solutions of the Bloch
equations through various approximations or particular cases
(see [6,9,20–23] and references therein to cite a few). However,
the explicit formulas of the corresponding trajectories are not
very helpful and give only little insight into the main features
of the dynamics. This analysis turns out to be relatively simple
if one introduces some geometrical objects, which lead to a
global overview of the dynamics.

The purpose of the present paper is to study from a
geometric perspective the dynamics of two-level quantum
systems in the presence of relaxation. This investigation
is valid in the unbounded case. When the control field is
bounded, the analysis is more involved mathematically and
requires advanced tools of optimal control theory, such as the
Pontryagin maximum principle [24–27]. As opposite to these
recent results, this paper is accessible to a broad audience
without a solid background in optimal control techniques. In
this respect, this work can also be viewed as a pedagogical
introduction which can help the interest the reader to enter
into a more mathematical literature [25,26].

The paper is organized as follows. Starting from the Bloch
equation in presence of relaxation, we introduce a general
description of the dynamics in terms of vector fields in Sec. II.
In Sec. III, we show that these vector fields are organized
through two different geometric objects, the magic plane and
the steady-state ellipsoid. We discuss the role of these two
geometric structures in Sec. IV. A conclusion and prospective
views are given in Sec. V.

II. THE BLOCH EQUATION IN TERMS
OF VECTOR FIELDS

We consider a two-state quantum system in the presence of
relaxation whose dynamics can be described by the following
Bloch equation:

ẋ = − x

T2
+ uyz, ẏ = − y

T2
− uxz,

(1)

ż = (1 − z)

T1
+ uxy − uyx,
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FIG. 1. (Color online) Free dynamics for different T1/T2 ratios.
The starting points of the trajectories belong to the Bloch sphere of
radius 1.

where ux and uy are the two components of the control field,
which is assumed to be on resonance with the frequency of the
quantum system [6]. The off-resonance case is not treated
here, but could be made with the same tools. The Bloch
vector �X = (x,y,z) describes the position of the system at
a given time in the Bloch ball, defined by x2 + y2 + z2 � 1.
To simplify the discussion, we consider here a specific case
of the Lindblad equation, in which the thermal equilibrium
point is the north pole of the Bloch sphere. The same analysis
can be done along the same lines in other configurations.
The parameters T1 and T2 account for the relaxation effects
along the longitudinal and transverse directions, respectively.
The two relaxation rates satisfy the relations 0 � T2 � 2T1

to ensure that | �X| � 1 at any time [18,19]. This feature is
illustrated in Fig. 1, which displays a series of free dynamics
in the (y,z) plane for different T1/T2 ratios. If T2 > 2T1, note
that some trajectories go out of the Bloch ball, which is not
possible in the general case [28–30]. For nonzero but constant
control fields, the evolution of the quantum system can be
completely different, as shown in Fig. 2. A qualitative change
of the trajectories is observed according to the value of the
field. A direct analytical computation shows a transition from
a pseudoperiodic solution to an aperiodic one when the value
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FIG. 2. (Color online) Trajectories of the quantum system in the
(y,z) plane submitted to a constant control field ux . Each panel
corresponds to a different value of ux . The relaxation rates are taken
to be T1 = 1 and T2 = 0.5. The initial points belong to the Bloch
sphere. The second vector field uy is assumed to be zero. The limit
points of the dynamics are represented by a red (dark gray) ellipse
curve. The transition from a pseudoperiodic to an aperiodic regime
occurs for ux = 0.5.

of ux decreases. Note also that the state of the system tends
asymptotically towards a point of an ellipse curve represented
in Fig. 2. This ellipse is the two-dimensional trace of a
three-dimensional ellipsoid when the two control fields are
considered (see Fig. 6 for a representation). Every point of
the ellipsoid can be reached by a trajectory of the system,
the north pole of the Bloch sphere corresponding to the limit
point of the free dynamics. Since this ellipsoid is well known
in nuclear magnetic resonance as the location of the steady
state for continuous wave irradiation [6], we refer to it as the
steady-state ellipsoid.

The results of Figs. 1 and 2 constitute a first step in the
analysis of this dynamical system. However, this approach
provides a large amount of data, which cannot be easily
interpreted. A completely different point of view emerges
if this problem is approached from a geometric perspective,
leading thus to a global description of the dynamics. The first
elementary object to introduce is the notion of vector field,
i.e., the assignment of a vector to each point of the Bloch
ball. This mathematical tool will serve as a building block
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FIG. 3. (Color online) Global representation in the (y,z) plane
of the vector fields �R1 (top panel), �R2 (bottom panel), and �R
(middle panel). The small arrows depict the corresponding fields
at discrete points. The color map encodes the length of the vectors.
The parameters are taken to be T1 = 1 and T2 = 0.5.

for the more advanced geometric concepts treated in the next
sections. According to the parametrization used to describe
the dynamical system, different vector fields can be defined.
In the simplest case of Cartesian coordinates, the system can

be rewritten in a vectorial form as follows:

�̇X = �R( �X) + ux
�Px( �X) + uy

�Py( �X), (2)

where �R( �X) = (−x/T2,−y/T2,[1 − z]/T1), �Px( �X) = (0,−z,

y), and �Py( �X) = (z,0,−x) are three vector fields associated
with the uncontrolled and controlled parts of the dynamics.
The drift vector �R can also be decomposed into a T1 part and
a T2 part, denoted �R1( �X) = (0,0,[1 − z]/T1) and �R2( �X) =
(−x/T2,−y/T2,0), respectively. The information encoded in
the vector field can be globally represented by a set of small
arrows whose length and direction show the magnitude and
direction of the corresponding vector. This point is illustrated
in Fig. 3 for the vector fields �R1, �R2, and �R. The definition of
a vector field is invariant and does not depend on the choice
of the parametrization. Introducing the spherical coordinates
given by

x = r cos θ cos φ, y = r cos θ sin φ, z = r sin θ,

one obtains the following relation between the time derivatives:

ṙ = cos θ cos φẋ + cos θ sin φẏ + sin θ ż,

rθ̇ = − sin θ cos φẋ − sin θ sin φẏ + cos θ ż,

r cos θφ̇ = − sin φẋ + cos φẏ.

Using Eq. (1), one arrives at

ṙ = − r cos2 θ

T2
+ sin θ

T1
− r sin2 θ

T1
,

θ̇ = cos θ

T1

(
1

r
− sin θ

)
+ cos θ sin θ

T2
+ ux sin φ − uy cos φ,

φ̇ = − tan θ (uy sin φ + ux cos φ). (3)

In this case, the Bloch vector �X is of coordinates (r,θ,φ)
and the components of the relaxation vector fields �R1

and �R2 are (sin θ − r sin2 θ, cos θ [1/r − sin θ ],0)/T1 and
(−r cos2 θ, cos θ sin θ,0)/T2, respectively. With these coordi-
nates, the radial and orthoradial components of �R, denoted �Rr

and �Rθ , can also be defined as vector fields. The decomposition
of the vector field �R into its radial part �Rr and its circular part
�Rθ is illustrated in Fig. 4. In the radial panel, we also observe

in black the occurrence of the ellipse of Fig. 2, for which the
modulus of �Rr is zero (see below for details). Figure 5 shows
the combination of the �R and �Px vector fields, which leads to
the full vector field during a constant pulse. To summarize this
first section, we point out that all the information about the
quantum dynamics is encoded in the different vector fields.
This formulation of the dynamics will be fundamental in the
following to interpret the dynamics in presence of relaxation.

III. GEOMETRIC STRUCTURES: STEADY-STATE
ELLIPSOID AND MAGIC PLANE

A standard way to describe the differential system (2) is
based on the computation of the invariant points �X such that
�̇X = 0 for some arbitrary constant values of the fields ux and
uy . This set of points can be mathematically determined from
the relation

�R + u0 �Px + u1 �Py = �0, (4)
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FIG. 4. (Color online) Same as Fig. 3 but for the spherical
coordinates and the vector fields �Rr (top panel: radial part), �Rθ

(bottom panel: circular part), and �R (middle panel). The amplitude
of the field is ux = 2.

where ux = u0 and uy = u1. In other words, this set, denoted
C, can be interpreted as the collinear locus of the vector
fields �R, �Px , and �Py , i.e., as the set of points for which �R
belongs to the vectorial plane defined by the vectors �Px and

FIG. 5. (Color online) Same as Fig. 3 but for the vector fields �R
(bottom panel), �Px (top panel), and the sum �R + ux

�Px with ux = 2
(middle panel).

�Py . Using the vectorial product �Px × �Py of �Px and �Py , of
components (xz,yz,z2), the collinear locus is obtained through
the equation:

�R · ( �Px × �Py) = 0, (5)
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FIG. 6. (Color online) Plot of the steady-state ellipsoid in blue
(dark gray) and of the magic plane in gray for different T1/T2 ratios
(see the text for details). The Bloch sphere and the equator are only
shown to guide the eye. The z axis is represented in yellow and in
pink for the part above and below the magic plane, respectively.

which explicitly leads to

−x2z

T2
− y2z

T2
+ (1 − z)z2

T1
= 0. (6)

For z �= 0, one gets a relation of the form

x2 + y2

T2
+ z2

T1
− z

T1
= 0. (7)

Equation (7) can be written as follows:

x2 + y2

T2
+ (z − 1/2)2

T1
= 1

4T1
, (8)

which corresponds to an ellipsoid of revolution. The only
intersection point of the steady-state ellipsoid with the z axis is
the center of the Bloch ball. Since this point trivially belongs to
C [see Eq. (7)], one deduces that the collinear locus is exactly
the ellipsoid. This geometric object is displayed in Fig. 6 for
different values of T1/T2.

Another interesting characterization of this locus can
be made by computing the time evolution of the radius
r =

√
x2 + y2 + z2. Its time derivative can be expressed as

1

2

d

dt
(r2) = xẋ + yẏ + zż = −x2

T2
− y2

T2
+ z(1 − z)

T1
, (9)

which gives exactly the definition of C when this derivative
is zero. We notice that this derivative does not depend on the
control fields ux and uy since, physically, the fields cannot

directly compensate for the effect of the relaxation [31]. The
points inside the region delimited by the ellipsoid satisfy
d
dt

(r2) > 0, while for the points outside d
dt

(r2) < 0. The
surface C divides, therefore, the space (x,y,z) into a region
where the modulus of the Bloch vector locally increases
and a region where it locally decreases. On the boundary
C, the modulus is preserved. This point can be qualitatively
understood by noting that the vector fields �Px and �Py are
rotation vector fields which are orthoradial (i.e., normal to
radial vectors) for each point (x,y,z) �= (0,0,0). The relaxation
vector field �R does not modify the modulus of �X if its radial
component vanishes, i.e., if �R belongs to the vectorial plane
defined by the vectors �Px and �Py (vectors with a zero radial
component), which is the definition of the surface C.

The inspection of the system (3) clearly shows that the
control fields ux and uy can only change the orthoradial
velocities θ̇ and φ̇ and not directly the radial one ṙ . The
fields ux and uy move instantaneously the state of the system
along any sphere belonging to the Bloch ball, i.e., along the
θ and φ directions if no constraint on the intensity of the
fields is used [24]. The remaining question is, therefore, to
which extent the radial dynamics can be controlled. In this
framework, the goal is to determine the points where the
change of the radial coordinate, i.e., the radial velocity ṙ , is
maximum, minimum, or zero [32]. As can be seen in Eq. (3),
the derivative ṙ only depends on the orthoradial direction θ ,
and not on the control fields. The radial dynamics cannot,
therefore, be directly controlled, but only in a two-step process
through the control of the angle θ .

For a given sphere of fixed radius r , the points of interest
are given by the zeros of the derivative of ṙ with respect to θ .
Straightforward computations lead to

dṙ

dθ
= 2r cos θ sin θ

T2
+ cos θ

T1
− 2r cos θ sin θ

T1
, (10)

which can be written in the original coordinates as follows:

dṙ

dθ
=

√
x2 + y2√

x2 + y2 + z2

(
2z

T2
+ 1

T1
− 2z

T1

)
. (11)

The maximum or minimum variation of the radius r is given
by the zeros of the derivative, dṙ

dθ
= 0. The set of solutions is

the union of a plane of equation

z = z0 = T2

2(T2 − T1)
,

that we denote the magic plane and of the z axis. This plane is
represented in Fig. 6 for different T1 and T2 values. The magic
plane intersects the Bloch ball if

T2

2|T2 − T1| � 1. (12)

In the case where T1 � T2, this leads to the condition 2T1 �
3T2. Fixing the parameter T1, the coordinate z0 decreases from
0 to −1 for T2 going from 0 to T2 = 2

3T1. In the opposite case
where 2T1 � T2 > T1, the only solution is T2 = 2T1, which
corresponds to z0 = 1. These results are summarized in Fig. 7.
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FIG. 7. (Color online) Position z0 of the magic plane as a function
of the ratio T1/T2 (red solid lines). The white zone represents the
physically accessible region for which −1 � z0 � 1 and T1/T2 �
1/2. The solid horizontal lines correspond to the limits of the Bloch
ball.

The maximum or minimum character of the radial velocity is
given by the second derivative of ṙ with respect to the angle θ :

d2ṙ

dθ2
= 1

r

[
2(

√
x2 + y2 − z2)

(
1

T2
− 1

T1

)
− z

T1

]
. (13)

For the z axis (x = y = 0), it is straightforward to check that a
maximum in absolute value is reached for z0 < z < 0, i.e., for
the points located between the magic plane and the steady-state
ellipsoid. A minimum is obtained if z < z0 � 0. If z0 > 0, the
points of the z axis outside the ellipsoid are also maxima.
In this last case, since ṙ < 0, such points are associated with
a maximum shrinkage of the value of the radius r . All the
points of the magic plane for which z = z0 also correspond
to a maximum in absolute value of ṙ . The magic plane can,
therefore, be viewed as a set of maximum shrinking directions
of the radial coordinate. Finally, it can be shown that the the
growth of r is maximum on the portion of the z axis for which
0 � z � 1. A global description of ṙ in the (y,z) plane is
depicted in Fig. 8.
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FIG. 8. (Color online) Contour plot of ṙ in the (y,z) plane for
two sets of (T1,T2) values. The dashed and solid lines represent,
respectively, the projections of the magic plane and of the Bloch
sphere.

FIG. 9. (Color online) Optimal trajectories to reach in minimum
time the center of the Bloch ball for different sets of (T1, T2)
parameters. The initial point of the dynamics is the north pole of
the Bloch ball.

IV. APPLICATION TO THE TIME-OPTIMAL CONTROL
OF A DISSIPATIVE TWO-LEVEL QUANTUM SYSTEM

We show in this section how to use the preceding geometric
objects in order to determine the quickest way to connect
two points of the Bloch ball. In the control terminology, this
corresponds to solving a time-optimal control problem [24].
We recall that no bound is considered for the control field. The
first step of this analysis consists in computing the constraints
on the control fields to travel along the magic plane. To ensure
that z = z0 at any time, the following equation has to be
fulfilled:

ż = 0 = (1 − z0)

T1
+ uxy − uyx, (14)

leading to a relation between ux and uy .
Figure 9 displays different optimal trajectories for reaching

the center of the Bloch ball from the north pole. This constitutes
a standard example of a control problem in nuclear magnetic
resonance [24]. When −1 < z0 < 0, the optimal solution is
the concatenation of a circular arc to reach the magic plane,
followed by a moving along this plane up to the z axis. The
control field is then switched to zero to follow this line. As
shown in Sec. III, the z axis between the magic plane and the
ellipsoid maximizes the absolute value of the radial velocity
and thus minimizes the time to reach the center of the Bloch
ball. In the case where z0 < −1 or z0 � 1, the magic plane does
not intersect the Bloch ball and only the z axis can be used
from the south pole to the center of the Bloch ball. A particular
case for which z0 ∈ (−1,0) is represented in Fig. 10.
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FIG. 10. (Color online) Optimal synthesis in the (y,z) plane in
the case of an unbounded optimal control field. The initial state is
the north pole of the Bloch ball. The blue (black) and red (dark
gray) arrows represent the control vector field ux

�Px for positive and
negative values of ux , respectively. The green (light gray) lines display
different examples of optimal trajectories, which can use the magic
plane and the z axis. The ratio T1/T2 is taken to be 3/5, which gives
z0 = −0.2.

V. CONCLUSION

We have presented a geometric analysis of the dynamics
of a two-level quantum system in presence of relaxation. The

procedure is built from the introduction of particular vector
fields which are organized around two fundamental geometric
objects: the steady-state ellipsoid and the magic plane. By
their simplicity and generality, the results of this work lead to
important insights into the way to manipulate such systems.
As such, they should be given the status of a fundamental
textbook concept in quantum control. In this paper, only the
unbounded case has been analyzed. The complete description
of the bounded situation is far more involved than the one
described here. This analysis requires advanced tools of
geometric optimal control theory, but also in this case the
steady-state ellipsoid and the magic plane play a fundamental
role. In particular, the magic plane is defined in the control
terminology as the singular locus, i.e., the manifold where
the intensity of the optimal control field is lower than the
prescribed bound. We refer the reader to the works [24,33,34]
for a more detailed background on this approach.
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