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Ramsey-fringe shape in an alkali-metal vapor cell with buffer gas
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In this paper we describe a few phenomena that may affect the linewidth and/or the line shape of Ramsey
fringes observed in an alkali-metal vapor cell with buffer gas. Experiments are performed on a vapor-cell–
microwave-cavity arrangement in which 87Rb atoms successively experience laser pumping preparation (through
a D2 line), microwave interrogation with a couple of coherent pulses, and clock signal detection by means of laser
absorption. We show that the linewidth of the Ramsey central fringe is influenced by the Rabi pattern produced
by a single microwave pulse. Moreover, cycle memory and atomic density effects can modify the shape of the
Ramsey central fringe from the common sinusoidal behavior. A simple three-level model well reproduces the
experimental observations.

DOI: 10.1103/PhysRevA.88.033401 PACS number(s): 32.80.Xx, 06.30.Ft, 32.30.Bv

I. INTRODUCTION

Since its introduction in the 1950s, the Ramsey method
of separated oscillatory fields [1] proved to be an invaluable
tool in high-resolution atomic and molecular spectroscopy.
Originally conceived for molecular and atomic beams [2], over
the years, Ramsey fringes have been observed in several atomic
systems, such as cold atoms [3] and single trapped ions [4],
and adopting different excitation schemes, including Doppler-
free two-photon resonance [5], polarization rotation [6], and
ground-state Zeeman coherence [7].

Basically, in any Ramsey-like experiment, a first electro-
magnetic pulse of duration t1 excites a coherence oscillating
at the transition frequency ν0 (atomic Bohr’s frequency).
A second pulse, delayed by T and with a precise phase
relation to the first pulse, probes the atomic coherence.
Accordingly, any physical observable related to the excitation
will exhibit a typical interference pattern (Ramsey fringes)
with an amplitude dependent on the phase difference between
the atomic coherence and the probe field.

It is well known that the Ramsey interaction exhibits
several features particularly interesting for high-resolution
spectroscopy applications. Provided t1 � T , the shape of
the central fringe is proportional to cos(�μT ), where �μ ≡
2π (ν − ν0) is the (angular) microwave detuning, ν being the
frequency of the interrogating microwave signal. Moreover,
the linewidth �ν1/2 of the central fringe depends on T through
the relation,

�ν1/2 = 1/2T , (1)

and is, in principle, immune to any microwave and/or laser
power broadening. These properties are fully exploited in
current primary frequency standards, such as cesium-beam
clocks and cesium atomic fountains.

The possibility to implement a compact and high-
performing clock also suggested the application of the Ramsey
technique to vapor-cell devices.

To our knowledge, the first work in this regard dates back
to the 1960s [8] where two time-separated phase-coherent
microwave pulses were used to observe the 0-0 hyperfine
transition of a Rb gas cell clock, reducing, at the same time,
the frequency shift caused by the pumping light. Recently,
also thanks to the development of laser diodes as optical

pumping sources, Ramsey fringes in a hot atomic vapor
have been studied for clock applications using an all-optical
interaction (see, for example, Ref. [9]) or a more traditional
double-pulse (microwave plus laser) approach [10–13]. In
particular, ultrahigh contrast resonances leading to remarkable
improvement in the signal-to-noise ratio have been detected
in Ref. [12], whereas, record results in terms of frequency
stability have been reported in Ref. [13].

The purpose of this paper is to describe a few phenomena
that may affect the Ramsey central fringe (RCF) observed in an
alkali-metal vapor cell with buffer gas. Specifically, we show
that, in ordinary laboratory conditions, �ν1/2 may also deviate
significantly from Eq. (1) and the RCF shape may diverge from
the pure sinusoidal behavior.

The first point we discuss in the paper is the residual
effect of the Rabi interaction on the RCF. Although this is
a well-known phenomenon [14], we will make clear that,
because of relaxation, the condition t1 � T is not always
well satisfied in a buffered cell and the RCF turns out
better approximated including a contribution depending on
the microwave amplitude.

Moreover, we report on the study of nonlinear effects that
contribute to the shape of the RCF. Specifically, high-order
harmonics appear in the Ramsey pattern, and the RCF is no
more a pure cosine function of �μ. This nonlinear behavior
may be due to two different physical causes. The first one is
related to the incomplete extinction of the atomic coherence in
the ground state between one operation cycle and the following
one. This “phase memory” is responsible for the residual
light shift in a pulsed optically pumped (POP) clock and has
extensively been discussed elsewhere [15,16]. Here we show
that the atomic population may also suffer for a not complete
separation among the different operation phases of the POP
clock, leading to a not so elementary shape of the RCF.

The second effect is related to the optical thickness of the
atomic sample. We observed, in fact, that the amplitude of
high-order harmonics depends on the temperature (and then
on the atomic density).

The paper is organized as follows. In Sec. II, we will
introduce the theoretical model we adopted to reproduce
the observed phenomenology; this analysis is based on a
simple three-level system. In Sec. III, we will describe the
experimental setup, whereas, in Sec. IV, we will describe the
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experimental results and their interpretation in terms of the
model developed in Sec. II. Discussion and conclusions will
be reported in Sec. V.

II. THEORETICAL MODEL

The atomic system we consider is a vapor of 87Rb atoms in
a cell with buffer gas.

We suppose observing Ramsey fringes through the se-
quence of the three phases (optical pumping, microwave
interrogation, and laser absorption detection) that commonly
rule the operation of the POP clock, even though the effects
we will describe can easily be extended to other techniques
used to excite Ramsey fringes in a buffered cell, such as
pulsed-coherent population trapping or push-pull-Ramsey
interactions [17].

The first phase is the optical pumping that we suppose
performed by an intense laser pulse that prepares the atoms,
producing a large population imbalance in the two ground-state
hyperfine levels of 87Rb. The laser is tuned to a D1 or D2

optical line, and its wave vector is parallel to the quantization
axis defined by a static magnetic field B0 = B0ẑ. The two
circular polarization components σ+ and σ− of the linearly
polarized laser couple the �mF = 1 and �mF = −1 sublevel
transitions, respectively, according to the scheme of Fig. 1(a)
(which shows the complete Zeeman-level structure in the case
of D2).

It is well established that relaxation processes (such as
buffer gas collisions, spin exchange, and cell-wall collisions)
induce a well-precise dynamics among Zeeman sublevels of
the Rb ground state. The quantities we are interested in, the
population inversion among the two clock levels (|2〉 = |F=1,

mF = 0〉 and |6〉 = |F = 2, mF = 0〉) and the coherence
between them, are, in principle, coupled to other ground-state
sublevels as it turns out from Liouville’s equation [11].

However, to gain more physical insight without recurring to
numerical simulations, we consider an equivalent three-level
system composed of the two clock levels and an excited state.

Besides simplifying the equations, this approach is moti-
vated by the fact that the atom-microwave interaction, mainly
responsible for the Ramsey shape, reduces to a two-level
system (levels |2〉 and |6〉) also in the presence of a ground-state
Zeeman structure [11]. The other levels, in fact, play a role
during the optical pumping and the detection times only.

Reducing the multilevel scheme of Fig. 1(a) to the simpler
one of Fig. 1(b) requires, nevertheless, a phenomenological
rescaling of the values of the main parameters, especially if
we intend to compare theoretical predictions with experimental
results.

As already performed in Ref. [18], we introduce an effective
atomic density neff so that neff = kn, where n is the actual
atomic density and k is a phenomenological coefficient taking
into account that not all the atoms in the ground state are
involved in the interaction process. Basically, k is related to
the maximum steady-state value (averaged all over the entire
cell) that the population inversion may achieve at the end of
the pumping phase. According to the scheme of Fig. 1, k can
be, at most 1/3, but its value in a specific situation actually
depends on many physical parameters, such as laser power and
absorption, and on the technique adopted to perform optical
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FIG. 1. (Color online) (a) Atomic levels of 87Rb involved in the
POP clock operation; (b) reduced three-level system. ωL and ω are
the laser and microwave angular frequencies; the relative strengths of
the different components of the D2 line are also shown.

pumping (see, for example, the end of Sec. IV C). In our case,
the experimental results are well reproduced for k = 0.2. All
the other quantities related to n, such as the linear absorption
coefficient α or the optical thickness of the medium ζ , are
rescaled accordingly.

Moreover, the pumping rate 
p should also be rescaled; it
is related to the laser intensity IL through the relation,


p = Z0


∗

(
de

h̄

)2

IL, (2)

where de is the electric dipole moment of the optical transition,
Z0 is the impedance of free space, 
∗ is the relaxation rate of
the excited state, and h̄ is the reduced Planck constant. From
the optical relative transition strengths reported in Fig. 1(a)
for D2, the portion of laser intensity involving the clock level
is 1/10 of the total so that the effective pumping rate is as
follows:


eff
p = 
p

10
, (3)


p being the actual pumping rate evaluated according to
Eq. (2).

In the following, unless otherwise specified, we will always
refer to an effective pumping rate, and for convenience, we
drop the superscript.

In the formalism of the ensemble-averaged density matrix
ρ̂ [ρii atomic populations, ρij atomic coherences for i �=
j, i,j = 1–3 where the atomic levels have been labeled
according to Fig. 1(b)] and in the rotating-wave approximation,
the optical pumping phase is described by the following set of
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Maxwell-Bloch equations:

�̇pump + (γ1 + 
p)�pump = −
(

neff

n

)
p


p,

(4)
∂
p

∂z
= − α


∗ 
p(1 + �pump),

where � = ρ22 − ρ11 is the population inversion among the
two clock levels and γ1 is the longitudinal relaxation rate. The
subscript pump is added to distinguish the pumping phase from
the successive ones. At the beginning, the atoms are equally
distributed among the sublevels; the initial condition for the
population inversion is then �pump(t = 0) = 0.

The factor ( neff
n

)p on the right-hand side of Eq. (4) has been
introduced to phenomenologically limit the value of the pop-
ulation inversion at the end of the pumping phase (|�| � 1

3 ).
After the pumping phase, the atoms are interrogated by

means of a couple of microwave pulses of duration t1 separated
by a time T . The cell is then supposed to be placed in a
microwave cavity where a standing-wave field is applied to the
atoms at a frequency corresponding to the hyperfine transition
(6.834 GHz). Since we are interested in observing the Ramsey
fringes in the frequency domain, the population inversion at
the end of the second pulse can conveniently be written as a
function of the microwave detuning �μ [14,15],

�Ramsey(�μ) = �pump(tp)

[
e−γ1T

(
�2

μ + b2 cos θ
)2

ξ 4
+ b2e−γ2T �2

μ cos(�μT )(1 − cos θ )2

ξ 4

+ 2b2e−γ2T �μ sin(�μT )(1 − cos θ ) sin θ

ξ 3
− b2e−γ2T cos(�μT ) sin2 θ

ξ 2

]
, (5)

where �pump(tp) is the population inversion at the end of the
pumping phase, γ2 is the relaxation rate of the ground-state

coherence, b is the microwave Rabi frequency, ξ =
√
b2 + �2

μ,
and θ = ξ t1.

Finally, the atoms that have made the clock transition are
detected (subscript det) with a laser probe pulse of duration td .
This phase is then described by the equations,

�̇det + (γ1 + 
′
p)�det = −

(
neff

n

)
p


′
p,

(6)
∂
′

p

∂z
= − α


∗ 
′
p(1 + �det),

where 
′
p is the optical pumping rate during the detection.

We notice that, of course, equations for pumping and
detection are formally identical, but in the first case, an intense
laser pulse is required to create a large population unbalance
between the two clock levels, whereas, in the second case, the
laser pulse is used as a probe, and it is expected not to change
the population inversion; this is expressed mathematically by
the condition, (

γ1 + 
det
p

)
td � 1. (7)

Under this hypothesis and for a thin atomic medium,
Eqs. (6) can be integrated easily, taking the expression given
by Eq. (5) as the initial condition for �det,


′
p(z = L) = 
′

p(z = 0){1 − ζ [1 + �Ramsey(�μ)]}, (8)

where ζ = αL/
∗ is the optical length of the cell (ζ � 1 for
a thin medium) and 
′

p(z = 0) is the detection pumping rate
at the entrance of the cell.

It is then supposed that these phases repeat cyclically; in
the ideal case, no memory is kept between one cycle and the
successive one.

In Sec. IV B, we will remove this hypothesis, whereas, in
Sec. IV C, we will analyze the case of a thick atomic medium.

III. EXPERIMENTAL SETUP

In this section, we describe the main elements that compose
our experimental setup (Fig. 2); more details can be found in
Ref. [13].

The experiments have been performed using a quartz cell of
length L = 20 mm containing a vapor of isotopically enriched
87Rb and a mixture of buffer gases Ar and N2 in the pressure
ratio 1.6 and with a total pressure of 3333 Pa (25 Torr). The
relaxation rates are, of course, affected by the interaction with
the buffer gas. In particular, the excited state is homogeneously
broadened, and the associated relaxation rate 
∗ is on the order
of 3 × 109 s−1. At the temperature of 338 K, for the ground-
state relaxation rates, we have γ1 ≈ 360 and γ2 ≈ 340 s−1.

The cell is placed in a TE011-mode microwave cavity, which
is surrounded by a solenoid producing a constant longitudinal
magnetic field of 2 μT. This field provides a quantization axis
and removes the Zeeman degeneracy. The cell and the cavity
are placed inside three cylindrical μ-metal shields to isolate the
cell-cavity arrangement from external magnetic fields. The cell
temperature is varied from 318 to 348 K; the atomic density
of 87Rb is controlled by the temperature of the cell’s stem that

FIG. 2. (Color online) Schematic of the setup used in the
experiments; the figure also shows a cycle timing sequence.
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is kept at a temperature lower than that of the cell’s body as
described in Ref. [13].

The laser light is frequency locked to the saturated absorp-
tion signal of the |F = 2〉 → |F ′ = 1〉 transition of the D2 line
observed in a cell containing only Rb (not shown in the figure).
The light is sent to the clock cell through an acoustic-optic
modulator (AOM), which acts as an optical power control
and switch. The laser power during pumping and detection
is changed through the rf signal intensity driving the AOM.
In particular, during the pumping phase, the laser intensity
IL is adjusted around 2 mW/cm2, corresponding to 
p ≈
200 000 s−1, whereas, during detection, the laser intensity
is about 0.2 mW/cm2 (
′

p ≈ 20 000 s−1). We adopted these
values for the pumping rates in all our experiments and the
corresponding effective values in the calculations.

The light transmitted through the cell is detected with a
photodiode placed outside the cavity.

The two phase-coherent microwave pulses at 6.834 GHz,
required by the Ramsey interrogation scheme, are provided by
a low phase-noise synthesis chain (see Ref. [19]).

IV. RESULTS AND INTERPRETATION

In this section, we report the experimental results related
to the observation of three phenomena that affect the RCF
observed on the laser absorption signal. Their interpretation
on the basis of the theoretical model developed in Sec. II is
also given.

A. Residual Rabi interaction effect

We consider Eqs. (8) and (5) that describe the Ramsey
fringes superimposed on the Rabi pedestal in a thin atomic
medium.

A simplified expression for the RCF can be found provided
the condition |�μ| � b is satisfied [14], that is, when t1 � T ;
it is sufficient, in this case, to develop Eq. (5) around �μ = 0,
only keeping the zero-order term in �μ/b. For θ = π/2 pulses,
we find the expression for the RCF in a cell with buffer gas [15],

�Ramsey(�μ) ≈ −�pump(tp)e−γ2T cos(�μT ). (9)

If, instead, we keep the first term in �μ/b, for π/2 pulses, we
obtain

�Ramsey(�μ) ≈ −�pump(tp) e−γ2T cos[�μ(T + 4t1/π )].

(10)

In Fig. 3, we report the RCF (black dots) as observed at the
low-temperature regime (TK = 318 K, ζ 
 0.8). In order to
reduce the noise affecting the signal, each point is the average
of 30 values. In the same figure, we report the fitting of the
experimental values with Eq. (9) (continuous line) and with
Eq. (10) (dashed line) as well.

Besides fitting the experimental behavior better, Eq. (10)
also predicts the correct value (147 Hz in our case) for the
linewidth of the RCF, which results more properly expressed
by the relation,

�ν1/2 = 1

2(T + 4t1/π )
, (11)

FIG. 3. (Color online) Black dots: experimental data at
318 K (low-temperature regime); continuous line: fit with
cos[�μ(T + 4t1/π )]; dashed line: fit with cos(�μT ); tp = 4 ms,
td = 150 μs, T = 3, t1 = 0.4 ms.

whereas, according to Eq. (1), we would expect a linewidth of
about 20 Hz larger.

B. Cycle memory effect

Figure 4 shows the RCF in the same conditions as Fig. 3,
except for the pumping time that is now tp = 400 μs.

Compared to Fig. 3, it is evident that the contrast of the
fringe is slightly lower, and the minimum appears flattened.
Although it is reasonable to attribute the contrast reduction
to a smaller value of population inversion generated during
the pumping phase, the emergence of a flattened minimum is
not immediately clear. The fit of the experimental data with a
simple cosine curve (gray line in Fig. 4) results inadequately
to correctly describe the observed behavior.

To understand the physics involved in this effect, we start
to analyze the case of pumping and detection times much

FIG. 4. RCF detected for the following values of the tim-
ing parameters: tp = 0.4 ms, td = 150 μs, T = 3, and t1 = 0.4 ms.
Gray line: fit of the experimental data with a cosine function of
�μ(T + 4t1/π ).
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shorter than γ −1
1 so that we can neglect the buffer gas role

with a significant simplification of the equations. Moreover,
we remind that the signal is an average of contributions coming
from a certain number of consecutive operation cycles. For
simplicity, we initially only consider two cycles. For the first
cycle, labeled with the superscript (1), Eq. (4) becomes

�̇(1)
pump + 
p�(1)

pump = −
(

neff

n

)
p


p, (12)

whose solution is simply

�(1)
pump(tp) = �(1)

pump(t = 0)e−
ptp +
(

neff

n

)
p

(−1 + e−
ptp ),

(13)

with the initial condition �(1)
pump(t = 0) = 0. For the following

Ramsey interaction phase, according to Eq. (10), we can write

�
(1)
Ramsey(�μ) = −�(1)

pump(tp)e−γ2T cos(�μT̃ ), (14)

where T̃ = T + 4t1/π .
Under the hypothesis (7), the detection does not alter

the atomic status so that Eq. (14) basically represents the
population inversion at the beginning of the new pumping
phase,

�(2)
pump(t = 0) ≈ −�(1)

pump(tp)e−γ2T cos(�μT̃ ). (15)

At the beginning of a new pumping phase, the population
inversion �(2)

pump(t = 0) is then a function of the microwave
detuning �μ. In the ideal situation, this term is strongly
reduced by the exponential factor e−
ptp [see Eq. (13)] so
that, at the end of the pumping phase, the population inversion
is a constant on the order of −( neff

n
)p. However, laser intensity

and/or its duration may not guarantee this condition. In this
case, it is easy to see that, for the RCF, we will have

�
(2)
Ramsey(�μ) = −�(1)

pump(tp)e−γ2T cos(�μT̃ )

× [1 − e−γ2T −
ptp cos(�μT̃ )], (16)

and a second-harmonic component will appear on the signal.
Specifically, the signal turns out [see Eq. (8) for a thin medium]


′
p(L) = 
′

p(0){1 − ζ [1 + �Ramsey(�μ)]}, (17)

where �Ramsey(�μ) = [�(1)
Ramsey(�μ) + �

(2)
Ramsey(�μ)]/2 is the

average value of the contributions coming from the two cycles.
In Fig. 5, we report the behavior of 
′

p(L) given by Eq. (17)
for a temperature of 318 K (ζ ≈ 0.8) and for different pumping
times.

As observed in the experiments, the calculation confirms
that reducing the pumping time implies a decreasing in the
signal contrast as well, and at the same time, the RCF
minimum appears increasingly flattened. We also notice that
the emergence of high-order frequency components in the
resonance curve is associated with a broadening of the
resonance itself; in fact, the linewidth of the RCF of Fig. 4
is 157 Hz, slightly larger than the predicted value given by
Eq. (11).

More in general, for very low laser power and/or pumping
times, the memory effect may involve several cycles (let us

FIG. 5. (Color online) RCF calculated in the low-temperature
regime; T = 3, t1 = 0.4 ms, 
p(0) = 20 000, and 
′

p(0) =
2000 s−1; dashed line: tp = 4 ms; dashed-dotted line: tp = 0.4 ms;
continuous line: tp = 0.2 ms.

say r), the Ramsey signal will be an average of the type,

�Ramsey(�μ) = 1

r

r∑
k=1

�
(k)
Ramsey(�μ), (18)

and higher-order harmonics will be present on the RCF.
Fitting the experimental points of Fig. 4 with a function of

the type,

f (�μ) = a0 + a1 cos(�μT̃ ) + a2 cos(2 �μT̃ ), (19)

we find that the ratio a2/a1 turns out to be as large as 8.5%.
We notice that Fig. 3 refers to a pumping time tp = 4 ms;

in this case, the laser pulse area 
ptp is able to suppress
the memory between one cycle and the successive one,
and no higher-order harmonics are observed. In fact, fitting
the experimental curve with Eq. (19), the amplitude of the
second-harmonic component results less than 2%. This is not
the case when tp is much shorter as just described.

To avoid the memory effect, it is then required that the laser
pulse area during the pumping phase satisfies the condition

ptp � 1. Although this condition can easily be satisfied for
an optically thin medium, this could not be the case for a
high-density atomic sample. In fact, due to absorption, not all
the points of the cell are equally pumped, and the RCF may be
influenced by a cycle memory effect for tp ≈ γ −1

1 or larger.
An alternative approach consists of inserting a pause on

the order of several γ −1
1 between the cycles. In this case, the

relaxation induced by the buffer gas rebalances the atomic
populations, and each cycle does not keep any memory of
the previous interaction. In the same situation as Fig. 4,
inserting a dead time of 20 ms between consecutive cycles,
we experimentally observe that the Ramsey-fringe shape
essentially reduces to that of Fig. 3.

It is expected that the cycle memory may affect the RCF as
well in a high-temperature regime where, however, its effects
may be masked by the nonlinearities related to the thickness
of the atomic medium as described in the following section.
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FIG. 6. RCF in the high-density regime (338 K); tp = 4, T =
3, t1 = 0.4, and td = 0.15 ms; dead time between consecutive cycles:
20 ms. The gray line is a fit of the data with a cosine function.

C. High density

In this subsection, we will investigate the effects related to
a thick atomic sample. Figure 6 refers to a RCF as detected at
a temperature of 338 K. To assure that the operation cycles are
well separated and to exclude that any modification of the line
shape may be attributed to the memory effect, a dead time of
20 ms between consecutive cycles is included.

It is observed that, also in this case, the curve is not a
pure cosine function, but the minimum appears flattened with
respect the two side maxima, highlighting the presence of
a second-harmonic component in the Ramsey signal. As in
Fig. 4, the fit of the data with a cosine function does not
reproduce the observed shape of the resonance line. To make
this effect more evident, the experimental points have been
interpolated with a curve of the type (19) and the ratio a2/a1

results of 7%.
We observed the RCF for different atomic densities, and

through a nonlinear fit of the experimental curves, we inferred
the amplitude of the second-harmonic component present on
the signal. The result is shown in curve (a) of Fig. 7.

To theoretically explain this behavior, we perform a first
preliminary step. In order to simplify the equations gaining at
the same time in physical insight, we consider an intense laser
pulse able to completely invert the ground-state population
between the two clock levels in the entire cell so that

�pump(z) ≈ −
(

neff

n

)
p

for each z. (20)

Supposing that condition (7) also holds for a thick medium,
it is easy to see that the detection pumping rate 
′

p can be
written as


′
p(L) = 
′

p(0)e−ζ [1+�Ramsey(�μ)]. (21)

Taking Eqs. (10) and (20) into account, the previous relation
becomes


′
p(L) = 
′

p(0) exp

{
−ζ

[
1 +

(
neff

n

)
p

e−γ2T cos(�μT̃ )

]}
,

(22)

A

FIG. 7. (Color online) Ratio between the coefficients of second
and first harmonics versus the cell temperature, (a) experiment and
(b) theory.

where we considered the RCF only of the total Ramsey pattern.
The emergence of high-order harmonics in the RCF is

evident recalling that the exponential of a circular function
can be expanded in terms of the modified Bessel function of
the first type Ik(x) with a k integer �0 [20],


′
p(L) = 
′

p(0)e−ζ

{
I0(χ ) + 2

∞∑
k=1

Ik(−χ ) cos(k�μT̃ )

}
,

(23)

where χ = ζ ( neff
n

)pe−γ2T .
Since the Ik(x)’s are monotone functions of the argument,

the amplitude of the high-order harmonics increases with
the product ζ ( ne

n
)i ; then, this effect is proportional to the

optical length of the cell and to the population inversion
generated by the pumping light. We note, however, that γ2

also increases with the atomic density due to the spin-exchange
contribution [14], leading to a suppression of the effect above a
certain density value and explaining the two different regimes
observed in Fig. 7(a).

In the general case where the condition expressed by
Eq. (20) is not satisfied, the set of Eqs. (4) can be solved
numerically.

The ratio a2/a1 versus the cell temperature obtained by the
numerical solution is reported in curve (b) of Fig. 7.

Up to about 333 K, the second-harmonic component
amplitude increases due to the enhancement of the medium
optical thickness ζ with temperature. Above that value,
absorption and spin exchange prevail and overcome the pure
density effect.

As for the memory effect previously described, we also
notice that, in this case, the emergence of high-order harmonics
in the line shape is associated with a linewidth broadening.

The higher-order components in the RCF, related to the
atomic density, may appear relatively small. However, we
point out that this nonlinear effect is greatly enhanced when
a pumping technique, able to collect most of the atoms in
only one of the two clock levels, is used (see, for example,
Ref. [21]).
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FIG. 8. Calculated RCF in the high-density regime and assuming
a large population inversion at the end of the pumping phase; a2/a1 ≈
0.5, a3/a1 ≈ 0.16, a4/a1 ≈ 0.4.

Figure 8 shows the computed RCF at a temperature of
343 K (ζ ≈ 9) for the same values of laser intensities adopted
in previous figures but assuming ( neff

n
)p = 0.9. In this case,

the ratio a2/a1 is about 50%, and third- and fourth-order
harmonics (whose amplitudes are a3 and a4, respectively) are
also required to reproduce the full curve well.

V. DISCUSSION AND CONCLUSIONS

In this paper, we described a few phenomena that may affect
the line shape of the RCF observed in an atomic vapor cell with
buffer gas.

The theoretical model, based on a simple three-level system
with an appropriate rescaling of the parameters (pumping rate

and atomic density), proved to be adequate to reproduce the
observed experimental behavior of the resonances.

We observe that the two effects leading to the emergence
of high-order harmonics in the RCF are, indeed, very different
from a physical point of view. The cycle memory directly
affects the atomic variables. To better clarify this concept,
we recall that the observation of the clock transition can also
be made by detecting the ground-state coherence under the
form of a maser emission [18]. It is then easy to guess that an
equation similar to Eq. (16) will hold for the coherence as well,
leading to high-order harmonics in the RCF observed in the
microwave domain. In other words, the cycle memory affects
the line shape of the resonance through either population or
coherence.

The high-density effects are, instead, related to the tech-
nique adopted to observe the resonance. The optical trans-
mission signal is, in fact, represented by an “exponential
filter” expressed by Eq. (22), which is responsible for the
higher-order harmonics in the RCF as made clear by Eq. (23).
On the contrary, provided the cycles are well separated, the
atomic coherence is not affected by higher-order harmonics,
and the detection of the maser signal is expected to be simply
proportional to cos2(�μT̃ ) [15].

We observe that the effects related to the emergence of
high-order harmonics in the RCF are negligible in an atomic
fountain. In fact, at each cycle, the atoms are renewed so that
the interaction is intrinsically free of memory effect. Moreover,
the atomic sample is diluted (ζ � 1), and no phenomena
related to the atomic density affect the line shape.

We finally point out that the phenomena we described in
the paper modify the line shape symmetrically, therefore, they
do not produce any frequency shift. However, their analysis is
important since the shape of the resonance lines provides key
information about the physical interactions experienced by the
atoms.
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and C. Bréant, Phys. Rev. A 30, 1836 (1984).

[3] M. A. Kasevich, E. Riis, S. Chu, and R. G. DeVoe, Phys. Rev.
Lett. 63, 612 (1989); F.-X. Esnault, D. Holleville, N. Rossetto,
S. Guerandel, and N. Dimarcq, Phys. Rev. A 82, 033436 (2010).

[4] V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, Phys. Rev. A
70, 033419 (2004); R. J. Rafac, B. C. Young, J. A. Beall, W. M.
Itano, D. J. Wineland, and J. C. Bergquist, Phys. Rev. Lett 85,
2462 (2000); L. Marmet and A. A. Madej, Can. J. Phys. 78, 495
(2000).

[5] M. M. Salour and C. Cohen-Tannoudji, Phys. Rev. Lett. 38, 757
(1977).

[6] B. Schuh, S. I. Kanorsky, A. Weis, and T. Hansch, Opt. Commun.
100, 451 (1993).

[7] A. S. Zibrov, I. Novikova, and A. B. Matsko, Opt. Lett. 26, 1311
(2001); A. S. Zibrov and A. B. Matsko, Phys. Rev. A 65, 013814
(2001).

[8] M. Arditi and T. R. Carver, IEEE Trans. Instrum. Meas. 13, 146
(1964).

[9] M. Merimaa, T. Lindvall, I. Tittonen, and E. Ikonen, J. Opt.
Soc. Am B 20, 273 (2003); T. Zanon, S. Guerandel, E. de
Clercq, D. Holleville, N. Dimarcq, and A. Clairon, Phys. Rev.
Lett. 94, 193002 (2005); G. S. Pati, F. K. Fatemi, and M. S.
Shahriar, Opt. Express 19, 22388 (2011); P. Yun, Y. Zhang,
G. Liu, W. Deng, L. You, and S. Gu, Europhys. Lett. 97, 63004
(2012).

[10] B. Yan, Y. Ma, and Y. Wang, Phys. Rev. A 79, 063820
(2009).

[11] S. Micalizio, A. Godone, F. Levi, and C. Calosso, Phys. Rev. A
79, 013403 (2009).

[12] J. Lin, J. Deng, Y. Ma, H. He, and Y. Wang, Opt. Lett. 37, 5036
(2012).

[13] S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, Metrologia
49, 425 (2012).

[14] J. Vanier and C. Audoin, The Quantum Physics of Atomic
Frequency Standards (Hilger, Bristol, 1989).

[15] A. Godone, S. Micalizio, and F. Levi, Phys. Rev. A 70, 023409
(2004).

033401-7

http://dx.doi.org/10.1103/PhysRev.78.695
http://dx.doi.org/10.1103/PhysRevLett.48.867
http://dx.doi.org/10.1103/PhysRevLett.48.867
http://dx.doi.org/10.1103/PhysRevA.30.1836
http://dx.doi.org/10.1103/PhysRevLett.63.612
http://dx.doi.org/10.1103/PhysRevLett.63.612
http://dx.doi.org/10.1103/PhysRevA.82.033436
http://dx.doi.org/10.1103/PhysRevA.70.033419
http://dx.doi.org/10.1103/PhysRevA.70.033419
http://dx.doi.org/10.1103/PhysRevLett.85.2462
http://dx.doi.org/10.1103/PhysRevLett.85.2462
http://dx.doi.org/10.1139/p00-027
http://dx.doi.org/10.1139/p00-027
http://dx.doi.org/10.1103/PhysRevLett.38.757
http://dx.doi.org/10.1103/PhysRevLett.38.757
http://dx.doi.org/10.1016/0030-4018(93)90243-X
http://dx.doi.org/10.1016/0030-4018(93)90243-X
http://dx.doi.org/10.1364/OL.26.001311
http://dx.doi.org/10.1364/OL.26.001311
http://dx.doi.org/10.1103/PhysRevA.65.013814
http://dx.doi.org/10.1103/PhysRevA.65.013814
http://dx.doi.org/10.1109/TIM.1964.4313389
http://dx.doi.org/10.1109/TIM.1964.4313389
http://dx.doi.org/10.1364/JOSAB.20.000273
http://dx.doi.org/10.1364/JOSAB.20.000273
http://dx.doi.org/10.1103/PhysRevLett.94.193002
http://dx.doi.org/10.1103/PhysRevLett.94.193002
http://dx.doi.org/10.1364/OE.19.022388
http://dx.doi.org/10.1209/0295-5075/97/63004
http://dx.doi.org/10.1209/0295-5075/97/63004
http://dx.doi.org/10.1103/PhysRevA.79.063820
http://dx.doi.org/10.1103/PhysRevA.79.063820
http://dx.doi.org/10.1103/PhysRevA.79.013403
http://dx.doi.org/10.1103/PhysRevA.79.013403
http://dx.doi.org/10.1364/OL.37.005036
http://dx.doi.org/10.1364/OL.37.005036
http://dx.doi.org/10.1088/0026-1394/49/4/425
http://dx.doi.org/10.1088/0026-1394/49/4/425
http://dx.doi.org/10.1103/PhysRevA.70.023409
http://dx.doi.org/10.1103/PhysRevA.70.023409


MICALIZIO, CALOSSO, LEVI, AND GODONE PHYSICAL REVIEW A 88, 033401 (2013)

[16] E. I. Alekseyev, Y. N. Bazarov, and G. I. Telegin, Radio Eng.
Electron. Phys. 20, 73 (1975); E. I. Alekseyev, Y. N. Bazarov,
and A. E. Levishin, ibid. 19, 77 (1974).

[17] X. Liu, J.-M. Merolla, S. Guerandel, C. Gorecki, E. de Clercq,
and R. Boudot, Phys. Rev. A 87, 013416 (2013).

[18] A. Godone, S. Micalizio, F. Levi, and C. Calosso, Phys. Rev. A
74, 043401 (2006).

[19] G. Kramer, in Proceedings of the Conference on
Precision Electromagnetic Measurements, London, 1974

(IEE, Luxembourg, 1974), p. 157; A. Joyet, G. Mileti,
G. Dudle, and P. Thomann, IEEE Trans. Instrum. Meas. 50, 150
(2001).

[20] Handbook of Mathematical Functions With Formulas, Graphs,
and Mathematical Tables, edited by M. Abramowitz and I. A.
Stegun (Dover, Mineola, NY, 1972), Vol. 55, tenth printing.

[21] N. D. Bhaskar, Phys. Rev. A 47, R4559 (1993); S. Micalizio,
A. Godone, F. Levi, and C. Calosso, ibid. 80, 023419
(2009).

033401-8

http://dx.doi.org/10.1103/PhysRevA.87.013416
http://dx.doi.org/10.1103/PhysRevA.74.043401
http://dx.doi.org/10.1103/PhysRevA.74.043401
http://dx.doi.org/10.1109/19.903893
http://dx.doi.org/10.1109/19.903893
http://dx.doi.org/10.1103/PhysRevA.47.R4559
http://dx.doi.org/10.1103/PhysRevA.80.023419
http://dx.doi.org/10.1103/PhysRevA.80.023419



