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Auger formation of the (3Heμp)2+
J molecule in collisions of muonic hydrogen pμ

with helium at energies 0.1–50 eV
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Results on Auger formation of the (3Heμp)2+
J molecule (and its generalization to any isotopes of hydrogen

and helium) in collisions of muonic hydrogen with helium atom and ion in the ground and singly excited state
are presented for all rotational states J of the molecule. The corresponding reaction rates are calculated in the
energy range 0.1–50 eV using a one-level adiabatic approximation for the 2pσ state of the three-body system
3He2+-μ-p and the dipole approximation for the interaction of the three-body system with helium electrons. It is
found that reaction rates corresponding to the formation of (3Heμp)2+

1 , (4Heμd)2+
2 , and (3,4Heμt)2+

2 molecules are
significantly enhanced by shape resonances in (hμ)1s + He2+ collisions (where h = p,d,t and He2+ = 3,4He2+)
situated between 7 and 33 eV. In particular, reaction rates for the formation of the (3Heμp)2+

1 molecule in the
vicinity of the resonant energy (12.9 eV) are almost two orders of magnitude greater than those presented by
Aristov et al. [Sov. J. Nucl. Phys. 33, 564 (1981)]. Average reaction rates for the formation of the molecules
in triple H-H′-He gas mixtures (H and H′ denote different hydrogen isotopes) at temperatures between 30 and
5000 K, as well as in H-He plasma at temperature T � 50 eV, are also presented. Rotational ground states
of the molecules J = 0, from which nuclear synthesis is preferred, are considerably populated both in triple
mixtures and in H-He plasma. The results may be interesting from the point of view of the experimental study of
muon-catalyzed nuclear fusion.
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I. INTRODUCTION

Negative muon μ entering a gaseous mixture of light
elements initiates a complicated chain of atomic and molecular
processes ending in the muon decay [1]. The most important
of these processes are the formation of excited muonic atoms
and their subsequent deexcitation due to radiative, Auger, and
Coulomb transitions, muon transfer between atomic orbits
of different elements, the formation of muonic molecular
ions (usually referred to as muonic molecules) such as
(dtμ)+, (3Heμd)2+, (6Liμp)3+, etc., and probably the most
spectacular process which is nuclear fusion occurring within
these molecules. Muon freed after the fusion may initiate
another chain of processes whose common designation is
muon-catalyzed fusion (MCF) [2–8]. Muonic molecules are
small objects, whose nuclei are separated by a distance being
of the order of inverse muon mass, 1/207 (in atomic units).
The nuclei of hydrogen isotopes approach one another to this
distance if their collision energy is about 3 keV [7] (∼5 keV
for collision of hydrogen and helium nuclei). However, such
low energies are hardly reachable in accelerator experiments.
Therefore, the muonic molecules provide an interesting tool
for the investigation of nucleus-nucleus interactions at low
energies, especially for the investigation of charge symmetry
of strong interactions [9] and for the problem of the abundance
of light nuclei in stars and in our galaxy [10]. At the same
time, the processes in question (including spin flip in muonic
atoms) form an unavoidable background in the experimental
investigation of weak muon capture by hydrogen and helium
nuclei [11], which provides information on such important
issues as the value of a proton’s pseudoscalar coupling constant
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gP [12], solar p-p fusion and neutrino-deuterium scattering
[13], or the structure of light [14] and heavy atomic nuclei
[15]. The observation of radiative transitions in muonic atoms
as well as muon transfer from muonic hydrogen to heavier
elements provides information on short-living radioisotopes
[16]. The muonic helium atom [(4He2+μ)+,e] plays a role
of the heaviest hydrogen isotope 4H and provides a unique
opportunity for studies of isotopic mass effects in chemical
reactions that involve hydrogen [17]. Recently, a very precise
value of the root-mean-square charge radius of proton was
obtained from the measurement of the Lamb shift in the pμ

atom [18].
Helium nuclei unavoidably appear even in initially pure

deuterium and deuterium-tritium targets exposed on a negative
muon’s beam: 3He2+ is produced in the β decay of triton as
well as in d-d fusion, and 4He2+ results from d-t fusion [5–8]. If
the muon becomes bound in the atomic orbit of helium (either
as a result of direct capture of free muon or muon transfer
from muonic hydrogen, or due to sticking to helium produced
in the fusion), a positively charged ion is formed (with a large
binding energy), which terminates the MCF chain. On the other
hand, the presence of helium atoms enables the formation
of quasistationary states (Heμh)2+

Jυ , called hydrogen-helium
muonic molecules (He = 3,4He, h = p,d,t , whereas J and
υ are rotational and vibrational quantum numbers), due to
collisions of helium atoms with muonic hydrogen isotopes
(the so-called Auger formation process),

(hμ)1s + He → [(Heμh)2+
J0 ,e]+ + e. (1a)

In particular, the formation of (3Heμd)2+
00 is of special im-

portance because nuclear fusion 3He + d → α(3.5 MeV) +
p(14.64 MeV) occurring within this molecule releases rela-
tively large energy without the emission of neutrons.

032706-11050-2947/2013/88(3)/032706(17) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.032706
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The hydrogen-helium muonic molecules correspond to
narrow Feshbach resonances [19] in (Heμ)+1s + h scattering
at about 8 keV. However, these resonant states can be formed
spontaneously in process (1a). The existence of the states for
J = 0,1 (h = p) and J = 0,1,2(h = d,t), was theoretically
predicted by Aristov et al. [20]. The resonances decay
after about 10−12 s−10−10 s [21,22] due to the transition to
the unbound (Heμ)+1s + h state via one of three processes:
predissociation, radiative decays, and Auger decays:[
(Heμh)2+

J0 ,e
]+ → [(Heμ)+1s ,e] + h → [(Heμ)+1s ,e] + h + γ

→ (Heμ)+1s + h + e. (1b)

The ground and the first excited state of the He2+-μ-h
system correspond asymptotically to (Heμ)+1s + h and He2+ +
(hμ)1s , respectively, and are described by the respective
molecular terms 1sσ and 2pσ . Their asymptotic energy
spacing is about 8 keV. Of these two terms, only the latter
produces a potential well, which allows for the existence
of quasistationary states (Heμh)2+

J0 . Energy levels of the
states, situated between 0.134 and 81.335 eV below (hμ)1s

thresholds, have been calculated quite accurately in [20,22,23]
using a one-level adiabatic approximation corresponding to
the 2pσ state of the three-body system He2+-μ-h. In this
approximation (briefly called the adiabatic approximation
hereafter), the one-dimensional partial-wave equation is solved
with the 2pσ adiabatic potential. Binding energies of the
molecules, calculated with respect to the dissociation threshold
corresponding to He2+ + (hμ)1s , are consistent (within several
percent) with those obtained in Refs. [24–28] using more
refined methods, i.e., the nonadiabatic coupled-rearrangement
channel, the hyperspherical expansion, and the complex-
coordinate rotation. Another group of resonances, i.e., shape
resonances, which are supported by the attractive part of the
2pσ potential and the centrifugal potential barrier, were found
in Ref. [23] using the adiabatic approximation. The resonances
are situated between 7 and 33 eV above the (hμ)1s threshold
and correspond to partial waves L = 2,3 of (hμ)1s + He2+

relative motion. They are collected in Table I.
Due to the small dimensions of the muonic molecules,

which are much smaller than the dimensions of a helium atom
and ion, the formation process (1a) is practically determined
by the interaction of the dipole moment of the He++-μ-h
system with helium electrons (this approximation is briefly
called the dipole approximation hereafter). The interaction
results in the transition from the scattering state (hμ)1s + He
to the bound state [(Heμh)2+

J0 ,e]+. The transition energy is
transferred to the outgoing helium electron. Consequently, in

room-temperature targets, the molecules are formed in the
rotational state J = 1 due to s-wave collisions. Reaction rates
(also referred to as formation rates) defined as λ = N0vσ ,
where N0 = 4.25 × 1022 cm−3 is the liquid hydrogen density
(LHD), v is the collision velocity, and σ is the formation
cross section, have been calculated in Refs. [20,29,30] only for
rotational states of the molecules J = 1, namely, for collision
energies up to 1 eV in Refs. [29,30] and up to 20 eV in Ref. [20].
The calculations have been performed using the adiabatic and
the dipole approximations. The results range between 107 s−1

and 109 s−1 and are significantly greater than reaction rates for
direct muon transfer [31], i.e., occurring without the formation
of the intermediate molecular state. Formation rates calculated
for slow collisions, ε � 0.4 eV, where ε is the collision energy,
are in good agreement with the rates measured experimentally
in low-temperature binary hydrogen-helium mixtures [32]. At
the same time, experimental results corresponding to collision
energies exceeding 1 eV are not yet available. Only the
s wave of (hμ)1s + He2+ relative motion was taken into
account in Refs. [20,29,30], whereas partial wave L = 2, also
contributing to the formation of the rotational state J = 1, was
not included. As was shown in Ref. [33], shape resonances in
elastic (pμ)1s + 4He2+ and (dμ)1s + 3He2+ scattering for d

and f partial waves at about 7 and 33 eV, respectively (see
Table I), lead to a significant enhancement of the forma-
tion rates for the corresponding molecules, (4Heμp)2+

1 and
(3Heμd)2+

2 . [The vibrational quantum number of molecules
formed due to process (1a) is generally equal to 0 and,
therefore, subscript υ is omitted in the following notation.
The only exception is the (4Heμt)2+

01 molecule [25], which
formation is not considered here.] The contribution of the
d wave to the formation of the (4Heμp)2+

1 molecule is
dominating above 1 eV and leads to reaction rates that are about
one order of magnitude greater than those presented in [20]
for 10 and 20 eV. One can expect, therefore, that resonances
corresponding to partial waves L = 2 and 3 in elastic (pμ)1s +
3He2+, (dμ)1s + 4He2+, and (tμ)1s + 3,4He2+ scattering will
also significantly influence the reaction rates for the formation
of the corresponding molecules: (3Heμp)2+

1 , (4Heμd)2+
2 , and

(3,4Heμt)2+
2 . In particular, it can be expected that formation

rates for the first molecule will be greater than those presented
in Ref. [20] in the vicinity of the corresponding resonant
energy.

The analogous resonant enhancement of reaction rates
corresponding to the formation of (pμd)+1 and (pμt)+1
molecules in hydrogen isotope mixtures was found in [34]. It
was shown that the enhancement was caused by resonances

TABLE I. Energies εr and widths 	r of shape resonances in (hμ)1s + He2+ scattering for partial wave L. Binding energies εb
J of (Heμh)2+

J0

molecules calculated relative to the ground-state level of (hμ)1s are also presented. The data are taken from Ref. [23].

3He 4He

εb
J (eV) εb

J (eV)

(εr,	r)L (eV) J = 0 J = 1 J = 2 (εr,	r)L (eV) J = 0 J = 1 J = 2

p (12.9,6.6)2 67.2 34.2 (7.4,2.0)2 73.85 41.6
d (32.7,21.7)3 69.5 46.5 7.25 (23.1,10.1)3 77.5 55.9 17.7
t (19.0,7.5)3 71.6 52.4 18.2 (7.9,0.8)3 80.5 62.9 30.7
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in elastic (dμ)1s + p and (tμ)1s + p scattering for partial
wave L = 2. The resonances were found in [35] for each
isotope composition of the hμ + h′ system (except pμ + p)
for L = 2 and 3, using the two-level adiabatic approximation.
The presence of the resonances at nearly the same collision
energies was confirmed by more refined calculations [36],
where several hundred terms of the adiabatic expansion for
the two-center Coulomb problem were used.

In the present paper, reaction rates for the Auger formation
of (Heμh)2+

J molecules due to collisions of (hμ)1s atoms with
helium atoms and ions in the ground and singly excited states,

(hμ)1s + He∗ → [
(Heμh)2+

J ,e
]+ + e, (2)

(hμ)1s + (He+)∗ → (Heμh)2+
J + e, (3)

are calculated for all possible rotational states of the molecules
J = 0,1,2. The rates are presented as functions of collision
energy in the range 0.1–50 eV for the principal quantum
number of the excited helium electron, n � 10. Results are
obtained using the adiabatic and the dipole approximations, as
well as the independent-particle model, to describe helium
electrons. Average reaction rates for the formation of the
molecules in triple H-D-He, H-T-He, and D-T-He gas mixtures
at temperatures T = 30–5000 K, are calculated as functions of
the kinetic energy of (hμ)1s atoms formed due to muon transfer
from lighter to heavier hydrogen isotope. Furthermore, Auger
formation of the molecules in H-He plasma at temperatures
T � 50 eV is also considered and the corresponding formation
rates averaged over the Maxwell distribution and populations
of singly excited helium atoms and ions present in the plasma
are also calculated.

This paper is arranged as follows. The method of calcula-
tions is described in Sec. II, results are presented and discussed
in Sec. III, and the summary and conclusions are given in
Sec. IV.

II. METHOD OF CALCULATION

A. Auger formation of hydrogen-helium muonic molecules

All resonances presented in Table I are situated above 1 eV
and, therefore, the electron screening in entrance channels of
Auger formation (2) and (3) is neglected. At the same time,
the simplest treatment of the two electrons involved in the
formation (2), i.e., the independent-particle model exploiting
variational and Hartree-Fock wave functions, is used. Process
(2) is considered first, taking into account a possible excitation
or deexcitation of the electron in the final complexes,

(hμ)1s + [He2+,e(1s) e(nilimi)]

→ [
(Heμh)2+

J ,e(nf lfmf)
]+ + e, (4)

where (nilimi) and (nf lfmf) are spherical quantum numbers
of the excited electron in the initial (i) and the final (f)
state. The transition is induced by the interaction of the
three-body system He2+-μ-h with helium electrons. Due to
small dimensions of the resulting muonic molecule, the dipole
approximation for the interaction of the three-body system
with electrons of helium atom and ion is justified (atomic
units are used throughout unless explicitly stated),

Vdip = −d · E, (5)

FIG. 1. Coordinates used in calculation. “CM” denotes center
of mass of the three-body system He2+-μ-h; vector r connects the
midpoint of R with the muon.

where d = ∑
c Zc rc is the dipole moment of the three-body

system, c = He2+,h,μ, and Zc is the corresponding electric
charge; E = ∑2

j=1 r̂j r
−2
j is the electric field formed by the

two electrons at the center of mass of the three-body system;
r̂j = rj /rj . Coordinates of the particles involved in process
(4) are defined in Fig. 1.

Interaction potential (5) is considered as a perturbation and
calculations are performed in the first order of perturbation
theory. Formation process (4) is induced then by the dipole
transition L → J = |L ± 1|, where L and J are the rotational
quantum numbers of the three-body system in the initial
(scattering) and the final (molecular) state, respectively. The
corresponding zero-order Hamiltonian is

Ĥ = Ĥ3b + ĤHe, (6)

where terms proportional to me/mc (me is electron mass),
which couple electronic degrees of freedom with those
of the three-body system, are neglected. Hamiltonian Ĥ3b

corresponds to the three-body system [37], whereas ĤHe =
−1/2

∑
j ∇2

j − 2
∑

j r−1
j corresponds to a helium atom with

the three-body system considered as the pointlike nucleus with
the total charge Zf = 2.

1. Wave functions

Zero-order wave functions of the initial and the final state
of the five-particle system corresponding to process (4) are


i,f(R,r,r1,r2) = φ3b
i,f (R,r)φe

i,f(r1,r2), (7)

where φ3b
i,f (R,r) are the three-body-system wave functions;

φe
i,f(r1,r2) are spatial parts of wave functions of the two

electrons. The three-body-system wave functions calculated
in the adiabatic approximation for the 2pσ molecular term
have the form [37], [23]

φ3b
i,f (R,r) = φ

μ

2pσ (R,r)φrel
i,f (R), (8)

where φ
μ

2pσ (R,r) is the two-center Coulomb function of
the muon. Functions φrel

i,f (R), describing the relative motion
of the nuclei (He2+ and h) in the initial (scattering) and
the final (molecular) state, are solutions of the Schrödinger
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radial equation with spherically symmetric potential V2pσ (R)
[expressed in μ atomic units (μ a.u.); mhμ = e = h̄ = 1, where
mhμ is the reduced mass of the hμ atom],

V2pσ (R) = E2pσ (R) + 2

R
+ UA(R)

2M
, (9)

where M is the reduced mass of the two nuclei (He2+ and
h); E2pσ (R) is the molecular term, i.e., the energy of the
muon moving in the field of the two fixed Coulomb centers,
corresponding to the 2pσ state. United-atom and asymptotic
limits of the term E2pσ (0) = −9/8 μ a.u. and E2pσ (∞) =
−0.5μ a.u., correspond to energies of the muonic lithium (Z =
3) in the excited 2p0 state and muonic hydrogen (Z = 1) in the
ground state, respectively; UA(R) is the adiabatic correction.
The initial-state wave function φrel

i (R) contains asymptotically
(besides the plane wave) an outgoing spherical wave and is
normalized to (2π )3δ3(k′

i − ki), where ki is the initial relative
momentum. Partial-wave expansion of the function [38] was
used with coefficients χi

kiL
(R) describing relative radial motion

of the nuclei in the (hμ)1s + He++ system. The final-state wave
function φrel

f (R) = χ f
J (R)YJMJ

(R̂), where χ f
J (R) describes

relative radial motion of the nuclei in the molecular state
and YJMJ

(R̂) is the spherical function depending on spherical
angles of the unit vector R̂, is normalized to unity. Electron
functions φe

i,f(r1,r2) are expressed in the independent-particle
model [39] with Coulomb repulsion between the two elec-
trons neglected (this approximation is also called the “crude
independent-particle approximation” in Ref. [40]). Each of
these functions is a symmetrized and antisymmetrized product
of single-electron functions for the singlet (S = 0) and the
triplet (S = 1) spin state of the two electrons, respectively.
The singly excited state of helium, φe

i (r1,r2) involves a wave
function of one electron in the ground state and the second
electron in an excited state. Each function is of the form
ui

ni li
(r)Ylimi

(r̂). For the ground state of helium, 11S, the radial
function ui

10(r) is taken as a hydrogenlike function R10(ZHe
var; r)

with the variational parameter ZHe
var = 27/16 [39]. However,

another form of the radial function, i.e., the analytical fit
to the Hartree-Fock function presented in Ref. [40], is also
used in the calculation. For singly excited states 2 1,3S and
2 1,3P , radial functions ui

10(r) and ui
2li

(r) are taken from [40].
For singly excited states with ni � 3, the radial functions are
taken as hydrogenlike functions R10(ZHe

2 ; r) and Rnili (Z
He
1 ; r)

for ZHe
2 = 2 and ZHe

1 = 1 (this choice corresponds to the
zero-order wave function of Heisenberg’s method [39]). The
final-state wave function φe

f (r1,r2) describes one electron
bound in the final complex [(Heμh)2+

J ,e(nf lfmf)]+ and the
second freed due to the transition. The corresponding wave
functions were chosen in the form of hydrogenlike functions of
the discrete, Rnf lf (Zf ; r)Ylfmf (r), and the continuous spectrum,1

uk(Zk; r), where k is the momentum of the outgoing Auger
electron. The latter function is normalized to (2π )3δ(k′ − k)
and contains asymptotically (besides the plane wave) an
incoming spherical wave [38]. Parameters Zf = 2 and Zk = 1

1Such functions were exploited in early papers on photoionization
of helium [41].

represent the total charge of the muonic molecule and the final
complex, respectively.

2. Cross section

The cross section for processes (2) and (3) is given by
the Fermi golden rule [38], with the transition amplitude Tfi

calculated in the first order of perturbation theory for potential
(5) and wave functions (7),

Tfi = 〈
f| Vdip |
i〉 = −dfi · E fi , (10)

with the molecular and electronic amplitude

dfi = 〈
φ3b

f

∣∣ d
∣∣φ3b

i

〉
, (11)

and

Efi = 〈
φe

f

∣∣ E
∣∣φe

i

〉
, (12)

respectively. By putting wave functions (8) into Eq. (11), one
obtains

dfi = −4π

ki

∑
L

iLeiδLdJL(ki)
L∑

ML=−L

Y ∗
LML

(k̂i)

×
1∑

m=−1

αm(JMJ ; LML)∈̂∗
m, (13)

where

dJL(ki) = a1I
(1)
JL(ki) + a2I

(2)
JL(ki); (14)

a1 = 1/2 − (mHe − mh)/mtot, a2 = 1 + 2mμ/mtot; mtot is the
total mass of the molecule; mc (c = He2+,h,μ) is the mass
of a given component of the molecule; * denotes complex
conjugation. The coefficients

I
(1)
JL(ki) =

∫ ∞

0
χ f

J (R)Rχi
kiL

(R) dR,

(15)

I
(2)
JL(ki) =

∫ ∞

0
χ f

J (R)
〈
ϕ

μ

2pσ

∣∣R̂ · r
∣∣ϕμ

2pσ

〉
χi

kiL
(R) dR

are calculated numerically; αm(JMJ ; LML) =
− i

√
4π/3〈YJMJ

|Y1m|YLML
〉, and ∈̂m are spherical

vectors [42] satisfying the orthogonality relation
∈̂∗

m · ∈̂m′ = δmm′ for m,m′ = −1,0,1.
The calculation of the electronic amplitude (12) requires

more effort due to the complicated form of wave functions
of electrons involved. After tedious calculations exploiting
partial expansion of the wave function of the outgoing electron,
uk(Zk; r), Eq. (12) receives the final form

E fi = 8 π
∑
lm

(−i)leiδC
l Ylm(k̂)

1∑
m′=−1

Eni li mi

nf lf mf ;lmm′(k)∈̂m′ , (16)

where

Eni limi

nf lf mf ;lmm′(k) = Ni√
2

{
p

ni li
kli ;nf lf

α∗
m′(00; lfmf) δlli δmmi

+ q
ni li
nf 0;kl α

∗
m′(limi ; lm) δlf 0δmf0

+ (−1)S
[
p

ni li
nf li ;kl α

∗
m′(00; lm) δlf li δmfmi

+ q
ni li
k0;nf lf

α∗
m′(mili ; lfmf) δl0δm0

]}
, (17)
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and

p
ni li
nf lf ;kl = 〈

Rnf lf

∣∣ui
ni li

〉 〈Rkl| r−2
∣∣ui

10

〉
,

p
ni li
kl;nf lf

= 〈
Rkl

∣∣ui
ni li

〉 〈
Rnf lf

∣∣ r−2
∣∣ui

10

〉
,

(18)
q

ni li
nf lf ;kl = 〈

Rnf lf

∣∣ui
10

〉 〈Rkl| r−2
∣∣ui

ni li

〉
,

q
ni li
kl;nf lf

= 〈
Rkl

∣∣ui
10

〉 〈
Rnf lf

∣∣ r−2
∣∣ui

ni li

〉
.

Each matrix element in (18) denotes radial integral∫ ∞
0 dr r2 . . .. The following identities are obvious:

p10
nf lf ;kl = q10

nf lf ;kl and p10
kl;nf lf

= q10
kl;nf lf

.

After substituting Eqs. (13) and (16) into Eq. (10), one obtains

Tfi = 25 π2

ki

∑
LML

iLeiδLdJL(ki) Y ∗
LML

(k̂i)
∑
lm

(−i)leiδC
l Ylm(k̂)

×
1∑

m′=−1

Eni li mi

nf lfmf ;lmm′(k) αμ(JMJ ; LML), (19)

where the value of the momentum of the outgoing electron
is determined by energy conservation, k = 2(εb

J − IHe
0(1) +

k2
i /2M)1/2, with IHe

0(1) being the ionization potential of a helium
atom (ion).

The cross section corresponding to the transition amplitude
(19) then receives the form

σ = 26π

3

M

k3
i

Qmol
J (ki) Qe

ni
(k), (20)

where molecular factor

Qmol
J (ki) = (2J + 1)

∑
L

(2L + 1)

(
J

0

L

0

1

0

)2

d2
JL(ki)

(21)

reduces to a simple expression for J = 0,1, and 2:

Qmol
0 (ki) = d2

01(ki), (22a)

Qmol
1 (ki) = d2

10(ki) + 2d2
12(ki), (22b)

Qmol
2 (ki) = 2d2

21(ki) + 3d2
23(ki). (22c)

The electronic factor Qe
ni

(k), averaged over rotational and
spin states of the excited helium atom and summed over all
energetically allowed electron states of the final complex, takes
the form

Qe
ni

(k) = 1(
4 − 3δni1

)
n2

i

∑
nf lf liS

(2S + 1) Qe
nf lfni liS

(k), (23)

where partial electronic factor Qe
nf lfni liS

(k) is

Qe
nf lfni liS

(k) = k
∑
mimf

∑
lm

1∑
μ=−1

∣∣Eni li mi

nf lf mf ;lmμ(k)
∣∣2 = N2

i

k

2

[
1

3
(2li + 1)(2lf + 1)

(
li

0

lf

0

1

0

)2 (
q

ni li
k0;nf lf

)2

+ (2li + 1)
(
p

ni li
nf li ;k1

)2
δli lf + (2li + 1)

(
p

ni li
kli ;nf 1

)2
δlf 1 + li

(
q

ni li
nf 0;k|li−1|

)2
δlf 0 + (li + 1)

(
q

ni li
nf 0;kli+1

)2
δlf0

+ (−1)S2
(
p

ni1
k1;nf 1

p
ni1
nf 1;k1 δli1δlf1 + p

ni0
k0;nf 1

q
ni0
k0;nf 1

δli0δlf 1 + q
ni1
k0;nf 0

q
ni1
nf 0;k0δli1δlf 0 + p

ni0
nf 0;k1 q

ni0
nf 0;k1 δli0δlf 0

)]
. (24)

For the formation process with a helium atom in the ground
state, the electronic factor reduces to the simple expression

Qe
1(k) = (k/2)

nf,max∑
nf=1

(
p10

nf0;k1

)2

+ (5k/12)
nf,max∑
nf=2

(
p10

k0;nf 1

)2
. (25)

In all previous calculations ([20,29,30,33]), hydrogenlike
functions R10(ZHe

var; r) describing ground-state electrons were
used, as well as the following condition:

Zf = Zk = ZHe
var = 27/16, (26)

which eliminates from Eq. (25) the contribution of electron ex-
cited states of the final complex. Consequently, the electronic
factor (25) reduces to a simple expression,

Qe
1(k) = k

(
p10

10;k1

)2/
2. (27)

The cross section for the formation of the muonic molecule
due to collision with a helium ion,

(hμ)1s + [He2+, e(nilimi)]
+ → (Heμh)2+

J + e, (28)

is given by Eq. (20) with the molecular factor (22) and the
electronic factor (averaged over rotational and spin states of
the excited helium ion)

Qe
ni

(k) = k

4n2
i

∑
li l

(2l + 1)(2li + 1)

(
l

0
li
0

1
0

)2

× ∣∣〈Rkl| r−2
∣∣Rnili

〉∣∣2
. (29)

Reaction rates normalized to LHD and corresponding to
formation processes (2) and (3) are calculated as λ = N0vσ .

B. Auger formation in triple H-H′-He gas mixtures

Collision energies corresponding to resonances presented
in Table I are practically unattainable in binary hydrogen-
helium gas mixtures at room temperature. Although the initial
kinetic energies of dμ and tμ atoms, i.e., just after reaching
their ground states, are very poorly known, some Monte
Carlo simulations indicate the presence of fractions of fast
(nonthermalized) muonic atoms in the ground states: dμ in
D2 [43] and tμ in the D-T mixture [44]. Experimentally
estimated initial energies of the fast atoms are on the level
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of several eV [45], i.e., well below the resonant energies
presented in Table I. However, the ground-state muon transfer
from a lighter to heavier hydrogen isotope leads to a significant
acceleration of the resulting muonic atoms (kinetic energies are
given in parentheses),

pμ + d → dμ (43.2 eV) + p (91.2 eV),

pμ + t → tμ (44.5 eV) + p (138.2 eV), (30)

dμ + t → tμ (18.9 eV) + d (29.4 eV).

These processes occur in triple H-H′-He gas mixtures, where
H and H′ represent two different hydrogen isotopes. It can,
therefore, be expected that the resonantly enhanced formation
of (3,4Heμd)2+

2 and (3,4Heμt)2+
2 molecules will occur in H-D-

He, H-T-He, and D-T-He mixtures even at room temperature.
However, possible deceleration of the atoms due to collisions
with surrounding hydrogen isotope molecules and helium
atoms may reduce the effect. On the other hand, results
presented in Refs. [46] show that the deceleration rate of dμ

in D2 as well as tμ in D-T and H-D-T mixtures from energies
of several tens of eV to about 1 eV is of the order of 109s−1,
which is comparable to the resonant values of the formation
rates for the above muonic molecules. Furthermore, cross
sections for dμ + H2 and tμ + H2 scattering is significantly
suppressed by the strong Ramsauer-Townsend effect in the
collision energy range 2–30 eV [36,47]. This fact suggests
that in the triple H-D-He and H-T-He gas mixtures containing
a dominating admixture of H2 molecules, the thermalization
will be significantly weaker, which may allow the resonant
formation.

Formation rates corresponding to a triple H-H′-He gas mix-
ture in thermal equilibrium can be obtained by averaging the
corresponding bare rates over the collision energy distribution,

λ(T ,Ehμ) =
∫ ∞

0
λ(ε)f (ε; Ehμ,T )dε, (31)

where

f (ε; Ehμ,T ) =
√

mhμ mHe

4πT Ehμ

1

mr
{exp[−mHe(v − vhμ)2/(2T )]

− exp[−mHe(v + vhμ)2/(2T )]}; (32)

ε and Ehμ are the collision energy and the kinetic energy of the
hμ atom in the laboratory frame, respectively; v = √

2ε/mr

and vhμ =
√

2Ehμ/m
hμ

are the corresponding velocities; T is
the temperature of the triple mixture expressed in eV; λ(ε) is
the bare formation rate calculated in Sec. II A2 as a function
of collision energy; mhμ, mHe, and mr are the mass of muonic
hydrogen isotope atom, the mass of helium atom, and the
reduced mass of the two atoms, respectively. Equation (32)
was derived using the idea of [48], i.e., from the joint velocity
distribution f (vHe,vhμ − v′

hμ) being a product of the Maxwell
distribution corresponding to helium atoms and Dirac delta
function δ3(vhμ − v′

hμ) corresponding to muonic atoms, where
vHe is the velocity of the He atom. After the change of variables
(vHe,v

′
hμ) → (vCM,v), where vCM is the velocity of center of

mass of the hμ + He system, and integration over d3vCM and
directions of v, one obtains Eq. (32).

C. Auger formation in H-He plasma

It can be expected that the resonant enhancement of the
Auger formation of muonic molecules can also occur in
hydrogen-helium plasma at temperatures greater than 1 eV,
provided that the plasma contains significant amounts of
helium atoms and ions (He+). According to theoretical
considerations presented in Ref. [49], the plasma is almost
completely ionized at a temperature comparable to ionization
energy of a helium ion (54.4 eV). Thus, the plasma temperature
should satisfy the condition 1 eV � T � 50 eV (or 104 K �
T � 6 × 105 K).

Atomic and molecular processes induced by muons in
D-T plasma have been studied theoretically in Ref. [50].
In particular, the authors suggest that formation of the dtμ

molecule due to three-particle collisions in dense plasma with
density φ ∼ 1 LHD dominates, as the corresponding formation
rate is proportional to φ2. However, if D2 or DT molecules
are present in the plasma, then the resonant formation of
weakly bound state (J,υ) = (1,1) of the dtμ molecule due
to Vesman’s mechanism must also be taken into account.
At the same time, the authors neglect formation due to
the Auger process, which is much slower for lower-lying
states and energetically forbidden for the weakly bound
state. After the formation, collision-induced breakup of the
molecule will take place if collision energy exceeds the binding
energy threshold. So, the breakup becomes important if the
plasma temperature increases. As for H-He plasma, it is
very likely that the formation of (Heμh)2+

J molecules due
to analogous three-particle collisions will also dominate for
dense plasma. However, for densities not exceeding 0.1 LHD,
one can expect that the molecules will be formed mainly
due to Auger processes, as the three-particle collisions will
be suppressed. At the same time, collision-induced breakup
restoring the (hμ)1s + He2+ system in the 2pσ state (which is
a threshold process), as well as the spontaneous and collision-
induced deexcitation to the unbound 1sσ state, will also
take place.

In this section, the calculation of average reaction rates
corresponding to Auger formation in H-He plasma in thermal
equilibrium at temperature T � 50 eV is presented for three
plasma densities, namely, φ = 10−5, 10−3, and 0.1 LHD.

The electrostatic interaction of components of H-He plasma
leads to a broadening and shifts of energy levels of hydrogen
and helium atoms and ions, as well as to lowering of the
corresponding ionization potentials (the so-called depression
of the continuum). In the present approximate calculation,
the treatment analogous to the one presented in Ref. [51] is
exploited, i.e., unperturbed energy levels of the atoms and ions
present in H-He plasma are used, whereas the depression of
the continuum is taken into account using the Debye-Hueckel
theory [49]. Populations of excited states of helium atoms and
ions depend on plasma temperature and number density of
free electrons. The latter can be obtained using the standard
procedure described in Refs. [52]. It is based on solving the
system of coupled equations, which depend on the fraction of
free electrons xe, fraction of hydrogen atoms xH

0 , helium atoms
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xHe
0 , and fractions of their corresponding ions: xH

1 , xHe
1 , xHe

2 ,

xH
0 + xH

1 + cHe = 1, xH
1

/
xH

0 = f H
0 (T ),

xHe
0 + xHe

1 + xHe
2 = cHe, xHe

1

/
xHe

0 = f He
0 (T ),

xe = xH
1 + xHe

1 + 2xHe
2 , xHe

2

/
xHe

1 = f He
1 (T ),

(33)

where xe = Ne/Ntot and xA
r = NA

r /Ntot; Ne and NA
r denotes

the number density of free electrons and r ion of type A = H,
He, respectively (r = 0 for H and He, r = 1 for H+ and He+,
and r = 2 for He2+); Ntot = ∑

A,r NA
r is the number density

of the plasma, also referred to as plasma density (the sum does
not include Ne in the present treatment); cHe = ∑2

r=0 NHe
r /Ntot

is the relative concentration of helium. Functions f A
r (T ) are

determined by Saha formula [51–53]

f A
r (T ) = GA

r+1(T )

GA
r (T )

(
mA

r+1

/
mA

r

)3/2
e−ηe exp

(−ĨA
r

/
T

)
, (34)

where ĨA
r = IA

r − �IA
r is the transition energy between

ground states of r- and (r + 1) ion of type A (the ionization
potential of r ion), IA

r , reduced by depression of the continuum
�IA

r ; ηe is the degeneracy parameter of electron gas [49];
mA

r is the mass of r ion of type A; however, the difference
between mA

r+1 and mA
r is neglected in the present calculation,

i.e., mA
r+1/m

A
r = 1; GA

r (T ) = ∑nA
r

n=1 gA
r,n exp(−εA

r,n/T ) is the
partition function containing summation over energy levels
of bound states,2 and gA

r,n and εA
r,n are the corresponding

statistical weights and excitation energies (calculated relative
to the ground-state energy), respectively. The excitation energy
of an excited atom and ion is approximated by the formula
εA
r,n = IA

r − 2−1(ZA
r+1/n)

2
, where r = 0,1 and ZA

r = r . For
a completely ionized hydrogen and helium atom, one has
GH

1 (T ) = GHe
2 (T ) = 1 [54]. It is a known fact that populations

of excited states of atoms and ions present in low-temperature
plasma are significantly smaller than populations of their
ground-state counterparts as well as bare nuclei [49]. One
can expect, therefore, that an excited helium atom or ion
present in H-He plasma is surrounded by the ground-state
hydrogen and helium atoms and ions (He+), as well as by H+
and He++ nuclei. Using this fact, one can estimate the maximal
principal quantum number nA

r appearing in the partition
function GA

r (T ) using the simple relation aA
r,n + aA′

r ′,1 � d,
where aA

r,n = n2/ZA
r+1 is the Bohr radius of an excited electron

orbit of hydrogen and helium atom or ion (for complete
ionization, one has aH

1,n = 0 and aHe
2,n = 0); d = N

−1/3
tot is an

estimate of the average distance between any two neighboring
nuclei present in the plasma. The density of the plasma
considered here does not exceed 0.1 LHD (6.29 × 10−4 in
atomic units). Consequently, d � 11.7 � 1 and, neglecting
aA′

r ′,1 ∝ 1, one obtains n �
√

ZA
r+1d. Another upper bound for

n comes from the depression of the continuum [51], i.e., εA
r,n �

ĨA
r , and results in n � ZA

r+1/
√

2�IA
r . The final restriction

for n is then n � nA
r = min(

√
ZA

r+1d,ZA
r+1/

√
2�IA

r ). At the

2Subscript “i” of the principal quantum number of helium atom and
ion is now omitted to simplify the notation.

same time, factor e−ηe involved in Eq. (34) can be replaced
with a high accuracy by ge(T/2π )3/2/Ne, where ge = 2 is the
statistical weight of the electron [54]. After simple calculation,
one obtains from (33) a single equation for xe,

xe = (1 − cHe)
f H

0 (T )

1 + f H
0 (T )

+ cHe
f He

0 (T )
[
1 + 2f He

1 (T )
]

1 + f He
0 (T )

[
1 + f He

1 (T )
] ,

(35)

which can be solved numerically only as f A
r (T ) depends

on xe. Depression of the continuum expressed in the
Debye-Hueckel theory equals �IA

r = ZA
r+1/λD , where

λD =
√

T/{4π [Ne + ∑
A,r (ZA

r )2NA
r ]} is the Debye shielding

radius, which can be expressed in the following form:
λD =

√
T/[8πNtot(xe + xHe

2 )], where, from Eqs. (33), xHe
2 =

cHe f He
0 (T )f He

1 (T )/{1 + f He
0 (T )[1 + f He

1 (T )]}. The low-
temperature limit of xe obtained from (35) is
xe ≈ f H

0 (T )(1 − cHe) and tends to zero for T → 0, whereas
the high-temperature limit of xe is simply xe = 1 + cHe,
as all hydrogen and helium atoms are fully ionized
for T → ∞. The Debye-Hueckel theory is justified
when λD � [8πNtot(1 + xe)]−1/3 [51]. It was proved by
numerical calculation that this inequality is fulfilled for the
following considered plasma conditions: 1 eV � T � 50 eV,
10−5 LHD � Ntot � 0.1 LHD, and 0.1 � cHe � 0.9.The
population Pr,n of excited helium atoms and ions in the
ground (n = 1) and excited (n � 2) state calculated relative
to the total number density of helium (NHe

tot = ∑
r,n NHe

r,n ) is

Pr,n = NHe
r,n

NHe
tot

=
⎛
⎝ 2∑

q=0

nHe
q∑

m=1

NHe
q,m

NHe
r,n

⎞
⎠

−1

, (36)

where NHe
r,n is the number density of excited helium atoms

or ions. For r = 2, it is assumed that nHe
2 = 1 and the

corresponding population P2,1 and number density NHe
2,1 of

He2+ ions is denoted by P2 and NHe
2 , respectively. According

to Refs. [53], the ratio NHe
q,m/NHe

r,n is determined for q = r by
the Boltzmann distribution,

NHe
r,m

NHe
r,n

= gHe
r,m

gHe
r,n

exp
[(

εHe
r,n − εHe

r,m

)/
T

]
, (37)

whereas, for q = r + 1, the ratio is determined by the Saha
formula,

NHe
r+1,m

NHe
r,n

= ge

Ne

gHe
r+1,m

gHe
r,n

(
T

2π

)3/2

× exp
[−(

ĨHe
r + εHe

r+1,m − εHe
r,n

)/
T

]
. (38)

The population of fully ionized helium atoms, P2, can be

expressed as P2 = 1 − ∑1
r=0

∑nHe
r

n=1 Pr,n.
The effective formation rate, which can be measured

experimentally in H-He plasma, is λ = cHeφλav, where λav is
the average rate obtained from the corresponding bare rates
λr,n(ε) [r = 0 for process (2) and r = 1 for process (3)]
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by averaging the latter over the Maxwell distribution of the
collision energy and populations Pr,n,

λav =
1∑

r=0

nHe
r∑

n=1

Pr,nλ
Maxw.
r,n , (39a)

where

λMaxw.
r,n =

∫ ∞

0
λr,n(ε)fMax(T ,ε) dε, (39b)

and fMax(T ,ε) = 2
√

ε/π T −3/2 exp(−ε/T ) is the Maxwell
distribution.

III. RESULTS AND DISCUSSION

A. Formation rates corresponding to collisions
with the ground-state helium atoms

The rates corresponding to cross section (20) for ni = 1 and
electronic factor (27) are presented in Fig. 2 for the (3Heμp)2+

0,1,
(4Heμp)2+

0 , (4Heμd)2+
0,1,2, and (3,4Heμt)2+

0,1,2 molecules (reac-
tion rates for the formation of (3Heμd)2+

0,1,2 and (4Heμp)2+
1

were presented in Ref. [33]). As is seen from the figure,
formation rates for the (3Heμp)2+

1 , (4Heμd)2+
2 , (3Heμt)2+

2 , and
(4Heμt)2+

2 molecules are significantly enhanced near collision

energies corresponding to shape resonances in (hμ)1s + He2+

scattering. Maximal values of the rates are of the order of
108–109 s−1. The resonances influence the formation rates
via radial function χi

kiL
(R), which calculated for a resonant

energy has a large amplitude in the region of V2pσ (R) potential
well, where the radial function of the bound (molecular) state,
χ f

J (R), is localized. As a result, integrals (15) and hence
coefficients dJL(ki), given by Eq. (14), and molecular factors
(22) receive large values.

The formation rates presented in Fig. 2 for rotational states
J = 0 are negligibly small at slow collisions, in contrast to
the rates for J = 1. This is due to the fact that the former
states are formed due to the L = 1 → J = 0 transition and,
consequently, radial function χi

ki1
(R) is suppressed by the

centrifugal potential barrier in the region where χ f
0(R) is

localized. As a result, the corresponding coefficient d01(ki)
entering molecular factor (22a) receives small values [the
similar situation is in the case of the formation of the
(4Heμt)2+

2 molecule, which is dominated by a 1 → 2 transition
at slow collisions]. At the same time, the formation of the
rotational state J = 1 is dominated by a 0 → 1 transition
at slow collisions and, consequently, radial function χi

ki0
(R),

which is not suppressed by a centrifugal barrier, leads to a
relatively large value of coefficient d10(ki), which dominates

FIG. 2. Formation rates (normalized to LHD) corresponding to the collision of a muonic hydrogen isotope atom with the ground-state
helium atom. Black dots represent the results obtained in Ref. [20] for J = 1. Dashed line in (a) represents the formation rate for the (4Heμp)++

0

molecule.
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in molecular factor (22b). Thresholds of 6.9 and 6.4 eV
exist for the formation of the (4Heμd)++

2 and (3Heμt)++
2

molecules since their binding energies, 17.7 and 18.2 eV,
are smaller than the ionization potential of the helium atom,
IHe

0 = 24.6 eV.
The dots in Fig. 2 represent the results obtained in Ref. [20]

for the rotational state of the molecules J = 1. The results co-
incide with the present ones for the (4Heμd)2+

1 and (3,4Heμt)2+
1

molecules for all collision energies, whereas for (3Heμp)2+
1 ,

they coincide at slow collisions and differ by about two and
one orders of magnitude at 10 and 20 eV, respectively. The
difference is due to the resonance in elastic (pμ)1s + 3He2+

scattering at 12.9 eV for partial wave L = 2 (see Table I),
whose contribution was omitted in [20]. At the same time,
all formation rates for J = 1 corresponding to slow collisions
are in good agreement (within an order of magnitude) with
the rates measured experimentally [32] in low-temperature
binary H-He mixtures3 where s-wave scattering, populating
the rotational state J = 1, dominates. It is therefore clear why
the resonant enhancement of the formation of (3,4Heμp)2+

1

3The exception is the experiment of Gartner et al. [32] where a very
small admixture of H2 and HD molecules in D-He targets was added.

molecules corresponding to collision energies above 7 eV has
not been found experimentally so far.

Reaction rates for the formation of muonic molecules
depend on electron wave functions used in calculation. An
independent-particle approximation was used in [20] for the
description of the conversion electron. According to the
authors, the variation of the total charge Zk of the final
complex, [(Heμh)2+, e(1s)]+, between 1 and ZHe

var changes
the formation rates by about 20–40%. At the same time, the
results of Ref. [29] obtained without inclusion of electron
screening and using static approximation for the description
of the interaction of the final system with the Auger electron
differ from those of [20] by about 6%. According to [29], the
inclusion of electron screening in the initial channel of the
formation process increases the corresponding rates by up to
70% at energies below 0.02 eV. Above 0.1 eV, the electron
screening is practically unimportant. In the present calcu-
lation concerning relatively fast collisions (ε � 0.1 eV), the
electron screening is neglected. In order to determine how
the results change with variation of the charges involved in
the formation process, constraint (26) must be abandoned and
the electronic factor (25) should be used. Results obtained
show that the electronic factor is much less sensitive to a
variation of Zf than Zk. Namely, the variation of Zf from ZHe

var

FIG. 3. (Color online) Formation rates (normalized to LHD) corresponding to the collision of a muonic hydrogen isotope with a singly
excited helium atom for different principal quantum numbers of excited electron.
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to 2 (with the remaining charges equal to ZHe
var) reduces the

electronic factor (25) (and the resulting formation rates) by
less than 5%, whereas variation of Zk from ZHe

var to 1 (with
the remaining charges equal to ZHe

var) reduces the electronic
factor by at most 50%. The reduction is maximal for slow
collisions and small binding energies of the muonic molecules,
i.e., for small values of the momentum of the Auger electron.
At the same time, the electronic factor (25) calculated using
an analytical fit to the Hartree-Fock wave function of the
ground-state helium electrons [40], and the charges Zf = 2 and
Zk = 1, is about 60% smaller than the electronic factor (27)
calculated using the variational function R10(ZHe

var; r) and the
condition (26).

B. Formation rates corresponding to collisions
with excited helium atoms and ions

Formation rates for process (4) for ni � 2 are calculated
using cross section (20) with the electronic factor defined by
Eqs. (23) and (24). Characteristic examples of the formation
rates are presented in Fig. 3 for ni = 2–5 and 10. The rates
for ni = 2 are several times smaller than their counterparts,
corresponding to collisions with the ground-state helium
atoms. The results very weakly depend on ni in the whole

collision energy range considered if the binding energies of
the molecules exceed the ionization potential of the helium
ion, εb

J > IHe
1 = 2 (54.4 eV). According to Table I, this holds

for molecules in the rotational ground state, J = 0, and for
molecules (4Heμd)2+

1 and (4Heμt)2+
1 . Exemplary results are

presented in Figs. 3(a) and 3(b) for (3Heμd)2+
0 and (4Heμt)2+

1 ,
respectively. Formation rates for molecules with εb

J < IHe
1

significantly decrease with increasing ni for collision energies
below thresholds IHe

1 − εb
J , whereas above the thresholds,

they reveal a very weak ni dependence. The corresponding
examples are presented in Fig. 3(c) and 3(d) for (4Heμp)2+

1 and
(3Heμd)2+

2 , respectively. This ni dependence of the formation
rates can be explained in the following way. It was proved
by numerical calculation that the dominant contribution to
the average electronic factor (23) comes from electron bound
states of the final complex, [(Heμh)2+

J ,e(nf lfmf)]+, with nf

belonging to the interval �nf = [ni,ni + δni], where δni

increases from 0 (for ni = 2) to 4 (for ni = 10). These nf

states are called the relevant nf states hereafter. Numerical
results show that Qe

ni
(k) (and, consequently, the formation

rate) exhibits weak ni dependence when all of the relevant
nf states are energetically allowed and included in Eq. (23).
At the same time, the ionization energy corresponding to the
transition from He∗ to the final complex can be approximated

FIG. 4. Formation rates (normalized to LHD) corresponding to the collision of a muonic hydrogen isotope atom with an excited helium
ion for different principal quantum numbers.
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by the expression 2 + (2n2
i )−1 − 2n−2

f , which for the relevant
nf states is an increasing function of ni and tends to the
limit IHe

1 = 2. If binding energies of the molecules fulfill the
condition εb

J > IHe
1 , then all relevant nf states are energetically

allowed (for all collision energies) and included in Eq. (23).
If binding energies satisfy the condition εb

J < IHe
1 , then

all of the relevant nf states are energetically allowed for
collision energies exceeding the thresholds IHe

1 − εb
J . Below

the thresholds, some of the states, which are energetically
forbidden, are excluded from (23) and, as a consequence,
formation rates reveal strong ni dependence. The rates possess
then numerous jumps, corresponding to zero momentum of
the Auger electron and resulting from electron excitations of
the final complex.

The formation rates corresponding to collisions with helium
ion (28) are presented in Fig. 4 for the (3Heμp)2+

1 , (4Heμt)2+
2 ,

(3Heμd)2+
0 , and (3Heμd)2+

2 molecules, for the principal
quantum number of the ion ni = 1−4,7,10. The rates decrease
with increasing ni . Resonant peaks are clearly pronounced
in the reaction rates corresponding to (a) (3Heμp)2+

1 and
(b) (4Heμt)2+

2 formed due to collisions with excited helium
ions. For collisions with the ground-state ones, energy thresh-
olds situated above the corresponding resonant energies cut
off the resonant peaks. The same holds for the (d) (3Heμd)2+

2
molecule; however, the resonant enhancement of the

FIG. 6. Fraction of free electrons in H-He plasma as a function of
temperature, calculated for helium relative concentrations cHe = 0.5
(solid curve) and cHe = 0.1 (dashed curve), and three plasma densities
indicated on curves.

corresponding formation rate is very weakly pronounced at
about 30 eV.

FIG. 5. (Color online) Average reaction rates (normalized to LHD) for the formation of (Heμh)2+
J molecules in triple H-H′-He mixtures.

Vertical dashed lines indicate maximal kinetic energies of dμ and tμ atoms formed due to muon transfer.
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W. CZAPLIŃSKI PHYSICAL REVIEW A 88, 032706 (2013)

C. Average formation rates corresponding
to H-H′-He gas mixtures

Average formation rates for the (3,4Heμd)2+
J and

(3,4Heμt)2+
J molecules calculated according to Eq. (31) are

presented in Fig. 5 as functions of kinetic energy of dμ

and tμ atoms, for target temperatures T = 30,300,1000, and
5000 K. As expected, resonant peaks are shifted above the
corresponding resonant collision energies (see Table I) and
are also lower and wider with increasing temperature. The
formation rates for molecules in the rotational state J = 2,
(3,4Heμd)2+

2 and (3Heμt)2+
2 , practically dominate above the

energies corresponding to collision energy thresholds, whereas

the formation rate for the (4Heμt)2+
2 molecule dominates

above 1.5 eV (compare with Fig. 2 of the present paper and
Fig. 2 of Ref. [33]). Below these energies, formation rates for
J = 1 dominate. Kinetic energies gained by muonic atoms
due to muon transfer (30), Emax

hμ , are indicated by vertical
dashed lines. One can expect that in addition to molecules
in the rotational state J = 1, molecules (3,4Heμd)2+

2 and
(3,4Heμt)2+

2 , whose formation is resonantly enhanced, will
be effectively formed in the corresponding triple H-D-3,4He
and H(D)-T-3,4He gas mixtures at all temperatures considered.
This results from the fact that the energy domain of the
resonant enhancement of the formation rate for each of these

FIG. 7. Populations of the (a), (c), (e) ground state and (b), (d), (f) excited states of a helium atom and ion in H-He plasma, for cHe = 0.5
and Ntot indicated in figures. Total populations of excited states of helium atom (P0,ex) and ion (P1,ex) are presented in (a), (c), and (e).
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molecules occupies a significant part of the corresponding
energy range (0,Emax

hμ ). The temperature dependence of the
average formation rate in the vicinity of the resonant energy
is mostly pronounced for the (4Heμt)2+

2 molecule [Fig. 5(d)].
The maximum value of the corresponding rate increases from
7.5 × 108 s−1 for T = 5000 K to 2.7 × 109 s−1 for T = 30 K.
Formation rates for J = 0 are negligibly small at low energies
when compared with those for J = 1. However, near the
thresholds for the formation of J = 2 states, the formation
rates for the (3,4Heμd)2+

0 and (3,4Heμt)2+
0 molecules are of the

order of 106 s−1, i.e., they are smaller than the corresponding
rates for J = 1 [and 2 for (4Heμt)2+

0 ] by about one order of
magnitude only. This fact may be important for experimental
studies of nuclear fusion reactions occurring within these
molecules. For example, the theoretically estimated fusion
rate for the (3Heμd)2+

0 molecule, λ
f

0 ∝ 105 s−1−106 s−1

[24,55,56], is about three to four orders of magnitude greater
than the fusion rate corresponding to the rotational state J = 1
of the molecule. In low-temperature binary mixtures, the
rotational state J = 1 is mostly populated, thus, to be able
to observe the fusion, a fast J = 1 → J = 0 transition must
occur. Experiments give an effective fusion rate, i.e., the rate
averaged over populations of the rotational states. Therefore,
λ

f

0 can be obtained indirectly only; what is required is the

precise value for the 1 → 0 transition. Mechanisms of this
transition are, however, still hypothetical and the correspond-
ing reaction rates were roughly estimated in [55,57]. Values of
λ

f

0 for d − 3He fusion extracted from experimental data [58],
(4.5+2.6

−2.0) × 105 s−1 and (6.9+3.6
−3.0) × 105 s−1, for two densities

of a D − 3He mixture, ϕ = 0.0585 LHD and ϕ = 0.168 LHD,
respectively, are subject to significant errors resulting from
insufficient knowledge of the 1 → 0 transition rate. To clarify
the situation and remove the existing ambiguities, more
reliable data on the rotational transition is required. However,
the accuracy of the experimental results should be improved
in the H-D-3He mixture, where an increased population of
(3Heμd)2+

0 molecular states is expected.

D. Average formation rates corresponding to H-He plasma

The fraction of free electrons in H-He plasma, xe, obtained
by numerical solution of Eq. (35), is shown in Fig. 6 for
plasma densities Ntot = 10−5 LHD, 10−3 LHD, and 0.1 LHD,
and for helium relative concentrations cHe = 0.1 and 0.5.
Results corresponding to the same Ntot and different cHe are
close at small temperatures and tend to zero for decreasing
T . At the same time, results corresponding to the same cHe

and different Ntot tend to the limit 1 + cHe for increasing T .

(a) (b)

FIG. 8. (Color online) (a) Average reaction rates (normalized to LHD) for the formation of (3Heμh)++
J molecules in H-He plasma, for

plasma density Ntot = 10−5 LHD (left column) and 0.1 LHD (right column), and for helium relative concentration cHe = 0.5 LHD. (b) The
same as in (a), but for (4Heμh)++

J molecules.
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Both observations are in agreement with the corresponding
temperature limits obtained in Sec. II B.

Populations Pr,n calculated according to Eqs. (36)–(38)
largely determine the temperature dependence of the average
formation rates corresponding to H-He plasma. For a better
understanding of the latter, Pr,n are presented in the separate
Fig. 7. Namely, Pr,1 corresponding to helium atom (r = 0)
and ion (r = 1) as well as population P2 (corresponding
to He2+) are presented for cHe = 0.5 in Figs. 7(a), 7(c),
and 7(e) for Ntot = 10−5 LHD, 10−3 LHD, 0.1 LHD, respec-
tively. Populations Pr,n�2 are presented in Figs. 7(b), 7(d),
and 7(f). Total populations of excited helium atoms and ions

defined as Pr,ex = ∑nHe
r

n=2 Pr,n are also shown in Figs. 7(a),
7(c), and 7(e). It was proved by numerical calculation
that all populations very weakly depend on helium relative
concentration when 0.1 � cHe � 0.9.

Average formation rates are calculated according to
Eqs. (39). For n > 10, bare rates λ0,n(ε) (corresponding to
collisions with singly excited helium atoms) are approximated
by λ0,10(ε). This is justified by the fact that the rates λ0,n>5(ε)
do not practically depend on n in the whole range of collision
energy for molecules with εb

J > IHe
1 and above the collisional

thresholds IHe
1 − εb

J for molecules with εb
J < IHe

1 (see Fig. 3).
Below the thresholds, the contribution of λ0,n>10(ε) is irrele-
vant since λ0,n(ε) decrease with increasing n, and λ0,10(ε) is
negligibly small. At the same time, λ1,n>10(ε) (corresponding
to collisions with an excited helium ion) are neglected since
λ1,n(ε) decrease with increasing n in the whole energy range
considered, and λ1,10(ε) is negligibly small (see Fig. 4). The
average formation rates are presented in Figs. 8(a) and 8(b)
for (3Heμh)2+

J and (4Heμh)2+
J , respectively, for two extreme

plasma densities, Ntot = 10−5 LHD (left column) and 0.1
LHD (right column), and helium relative concentration cHe =
0.5. Zero-temperature limits of the rates corresponding to
rotational states J = 0 and 1 of all molecules, as well as for the
(4Heμt)2+

2 molecule, i.e., for molecules characterized by εb
2 >

IHe
0 = 24.6 eV, do not practically depend on plasma density

and are equal to zero-energy limits of the corresponding bare
rates for transitions induced by collisions with the ground-state
helium atoms (Fig. 2). This is due to the fact that for all
plasma densities, the population of helium atoms in the ground
state is P0,1 = 1 for T → 0 (see Fig. 7). As a consequence,
one obtains, from Eqs. (39), λav = λMaxw.

0,1 = λ0,1(0). At the
same time, reaction rates for the formation of the remaining
molecules in the rotational state J = 2 (characterized by
εb

2 < IHe
0 = 24.6 eV) reach values that tend to zero at low

temperatures. This is because formation of the molecules
proceeds either on excited helium atoms and ions at slow
collisions, or on the ground-state ones at energies exceeding
the corresponding energy thresholds IHe

0 − εb
2. Therefore, the

rates vanish due to vanishing populations of the excited atoms
and ions at T → 0 in the first case (see Fig. 7), or due to
vanishing bare formation rates below the thresholds in the
second case.

According to Figs. 7(a), 7(c), and 7(e), it can be stated
(without taking into account the population of He2+ ions,
P2) that populations of the ground-state helium atoms (P0,1)
and ions (P1,1) dominate at plasma temperatures below 7,
12, and 30 eV, respectively. The populations decrease rapidly
with increasing T (e.g., for Ntot = 10−5 LHD, P0,1 decreases

FIG. 9. (Color online) Contribution of helium atoms (short-
dashed line) and ions (dotted line) to the average formation rates
for the (3Heμd)2+

J molecule for cHe = 0.5 and two plasma concen-
trations: (a) 10−5 LHD and (b) 0.1 LHD.

rapidly above 2 eV and P1,1 above 5 eV); however, the decrease
becomes milder with increasing Ntot. As a consequence, the
average formation rates presented in Fig. 8 exhibit a similar
temperature and density behavior. For similar reasons, this
effect occurs also at higher temperatures, where collisions
with excited helium atoms and ions dominate. The increase
of λav with increasing Ntot is particularly evident for reaction
rates corresponding to J = 2.

The average formation rates for J = 1 dominate for all
plasma densities at low temperatures, whereas for (3,4Heμp)2+

1
molecules, it dominates in the whole temperature range. This is
a consequence of an analogous behavior of the corresponding
bare formation rates as functions of collision energy (see
Fig. 2). At the same time, (4Heμt)2+

2 is the only molecule
whose formation rate for Ntot = 10−5 LHD exceeds the corre-
sponding formation rate for J = 1. This is due to the existence
of strong resonance in (tμ)1s + 4He2+ scattering at collision
energy 7.9 eV [Fig. 2(d)]. Resonantly enhanced formation
of (3,4Heμd)2+

2 and (3,4Heμt)2+
2 molecules in H-He plasma

dominates for T > 5 eV and T > 3 eV, respectively, at plasma
density 0.1 LHD, whereas the formation of (3,4Heμp)2+

1
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FIG. 10. Relative contribution of excited states of helium atoms
and ions to the average reaction rate for the formation of the (a)
(4Heμp)++

J and (b) (3Heμd)++
J molecule in H-He plasma, for cHe =

0.5 and different plasma concentrations.

molecules dominates in a wide range of plasma temperature
(T � 50 eV) and density (10−5–0.1 LHD). However, the most
interesting conclusion resulting from Figs. 8(a) and 8(b) is that
in some regions of temperature, the average formation rates
for (3,4Heμd)2+

0 and (3,4Heμt)2+
0 molecules are smaller than

the corresponding rates for J = 1 (10−5 LHD) and J = 1,2
(0.1 LHD) by at most one order of magnitude.

The average formation rates, λav,r = ∑nHe
r

n=1 P He
r,n λMaxw.

r,n ,
corresponding to collisions with helium atoms (r = 0) and
ions (r = 0), are presented in Fig. 9 for (3Heμd)2+

0,1,2 molecular
states, as examples. For plasma density Ntot = 10−5 LHD, for-
mation induced by collisions with helium atoms (in the ground
and excited states) dominates for rotational states J = 0,1, and
2 at temperatures below 2, 3, and 5 eV, respectively. For plasma
density 0.1 LHD, the corresponding temperatures are 5, 8,
and 16 eV. Above these temperatures, formation induced by
collisions with helium ions (in the ground and excited states)
dominates. To illustrate the role of excited states of helium
atoms and ions in the formation processes, the parameter η =
λav,ex/λav, where λav,ex = λav − ∑1

r=0 P He
r,1 λMaxw.

r,1 , is presented
for cHe = 0.5 and three plasma concentrations (Ntot = 10−5,
10−3, and 0.1 LHD) in Figs. 10(a) and 10(b) for (4Heμp)2+

0,1

and (3Heμd)2+
0,1,2, respectively. As is seen from the figures, η

increases with decreasing Ntot and increasing J (i.e., decreas-
ing binding energy). For T = 50 eV, η receives about 35−43%
and 61−72% for (4Heμp)2+

1 and (3Heμd)2+
2 , respectively. For

the latter molecule, η receives even 100% below 2 eV for
all plasma concentrations considered. This is caused by the
small value of binding energy of the molecule (7.25 eV),
which formation proceeds mainly due to collision with an
excited helium atom or ion. However, according to Fig. 8(a),
the corresponding average formation rate is negligibly small
below 2 eV.

IV. SUMMARY AND CONCLUSIONS

The reaction rates for the Auger formation of (Heμh)2+
J

molecules, where h = p, d, t and He = 3,4He, in collisions of
(hμ)1s atoms with helium atoms and ions in the ground and
singly excited states (n � 10) were calculated for all rotational
states of the molecules (J = 0,1,2) in the energy range
0.1–50 eV. Results were obtained using a one-level adiabatic
approximation for the description of the three-body system
He2+-μ-h in the 2pσ state and the dipole approximation for
interaction of the system with helium electrons. The latter were
described using an independent-particle model. All partial
waves of relative (hμ)1s + He2+ motion contributing to the
formation process were included. It was found that shape
resonances corresponding to the partial d wave (for h = p) and
f wave (for h = d, t) significantly enhance the formation rates
for J = 1 and J = 2, respectively. The rates (normalized to the
liquid hydrogen density) corresponding to collisions of (hμ)1s

with the ground-state helium atoms reach maximum values
of the order of 108−109 s−1 and are several times greater than
their excited-state counterparts. The latter very weakly depend
on n for all collision energies considered if binding energies of
the molecules exceed the ionization potential of the helium ion
(εb

J > 54.4 eV). For molecules with εb
J < 54.4 eV, the rates

very weakly depend on n for collision energies exceeding
the thresholds IHe

1 − εb
J , whereas below the thresholds, they

significantly decrease with increasing n. The formations rates
corresponding to collisions with excited helium ions with
n = 2 are at least one order of magnitude smaller than their
ground-state counterparts and decrease with increasing n in
the whole range of energy considered.

Using the above results, the average formation rates corre-
sponding to triple H-H′-He gas mixtures (H and H′ are different
hydrogen isotopes) at several temperatures between 30 and
5000 K, as well as hydrogen-helium plasma at temperature
T � 50 eV, were calculated. It was found that resonantly
enhanced formation of the molecules in the rotational state
J = 2, (3,4Heμd)2+

2 and (3,4Heμt)2+
2 , dominates in the cor-

responding H-D-3,4He and H(D)-T-3,4He mixtures for kinetic
energy of (dμ)1s and (tμ)1s atoms greater than 10 eV. The
atoms obtain such a high kinetic energy due to the ground-state
muon transfer from lighter to heavier hydrogen isotope. It is
expected that thermalization of the resulting muonic atoms
in H-D-He and H-T-He mixtures, in which hydrogen is the
dominant component, is suppressed due to a strong Ramsauer-
Townsend effect in dμ + H2 and tμ + H2 collisions [36,47].
However, Monte Carlo simulations are necessary to draw a
final conclusion. It was found that the resonantly enhanced
formation of (3,4Heμd)2+

2 and (3,4Heμt)2+
2 molecules in H-He
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plasma dominates for T > 5 eV and T > 3 eV, respectively,
at plasma density of 0.1 LHD, whereas the formation of
(3,4Heμp)2+

1 molecules dominates in a wide range of plasma
temperatures (T � 50 eV) and density (10−5−0.1 LHD).

Molecules in the rotational ground state J = 0,
(3,4Heμd)2+

0 and (3,4Heμt)2+
0 , can be directly formed in

triple H-H′-He gas mixtures as well as in H-He plasma. The
corresponding formation rates are [in certain areas of kinetic
energy of muonic hydrogen isotopes (H-H′-He mixtures) or
temperatures (H-He plasma)] only one order of magnitude
smaller than the rates for the formation of the molecules in
excited states J = 1 and 2. This fact may be important for the
experimental study of nuclear synthesis reactions occurring
within these molecules.

The above results provide an extension of Auger forma-
tion rates corresponding to collisions of muonic hydrogen
isotopes with the ground-state helium atoms, presented in
Refs. [20,29,30] for the rotational state of the resulting muonic

molecules J = 1, and in Ref. [33] for the (4Heμp)2+
1 and

(3Heμd)2+
0,1,2 molecules.
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