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Loss of wave-packet coherence in stationary scattering experiments
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We consider the cross section for a scattering reaction averaged over a statistical ensemble of incident beam
wave packets. We generalize a result known from neutron diffraction that static experiments involving stationary
scattering via conservative interactions and steady beam currents cannot distinguish the wave-packet nature of
the incident beam. Thus we interpret the results of recent experiments on the loss of interference effects in proton
scattering from molecular hydrogen as due to the weak collimation of the incident beam rather than alterations
to beam wave packets.
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I. INTRODUCTION

A nice example of the van Cittert–Zernike theorem of
transverse coherence from an extended, incoherent source is
an estimation of the area of coherence of sunlight around
a point on a screen at the Earth’s surface [1]. The theorem
yields a transverse coherence length, viz. the diameter of
the area of coherence, proportional to λ/α, where α is the
angular diameter the sun’s disk subtends at the Earth’s surface.
With a mean wavelength of 550 nm and α � 9.3 mrad, one
has a transverse coherence length of 0.06 mm. To observe
for example double-slit interference with sunlight, one has to
introduce slits closely spaced by less than this amount [2].

Egodapitiya et al. [3] have measured in a precision
experiment the transverse coherence length of a nearly
monochromatic beam of protons, de Broglie wavelength λ,
passing through a collimator aperture and scattered by a
crossed beam of molecular hydrogen. The two-center nature
of the molecular scattering gives rise to a well-established
“double-slit interference” effect [4], which the authors were
able to suppress by reducing the distance L of the reaction
volume to the collimator aperture. A decrease in L increases
the angular width α � a/L the collimator aperture subtends at
the target, where a � L is the aperture width in the scattering
plane. They found that the corresponding decrease in the
transverse coherence length λ/α of the scattered protons
relative to the two-center molecular bond length suppresses
as expected the observed interference effects in the scattering
cross section.

A sampling of their results is shown in Fig. 1 along
with the theoretical cross sections of Chowdury, Schulz, and
Madison [5]. The measurements involved 75 keV incident
protons, monochromatic to less than 1 eV, scattered at extraor-
dinarily small angles of less than 1 mrad in 0.1 mrad bins. With
an aperture width of a = 0.15 mm in the scattering plane, they
varied the distance to the reaction volume from L = 50 cm
down to L = 6.5 cm and thereby increased the collimator
angular width from α = 0.30 mrad to α = 2.3 mrad. Thus,
with a de Broglie wavelength of λ = 0.10 pm, they reported a
corresponding decrease in the transverse coherence length of
the incident beam from λ/α � 6.6 a.u. at L = 50 cm to λ/α �
0.86 a.u. at L = 6.5 cm, and therefore a change in λ/α from
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greater to smaller than the “two-slit” intermolecular separation
D = 1.6 a.u. of the molecular hydrogen. They thus accounted
for their observed loss at L = 6.5 cm of the interference dip
evident in the cross section around 0.8 mrad for large L. They
have recently extended their studies of coherence to electron
capture by protons colliding with molecular hydrogen [6].

While we feel these experiments demonstrate the role of
transverse coherence in establishing interference effects, we
disagree with the conclusions of Egodapitiya et al. [3] that
the variable collimation somehow affects the incident beam
in a fundamental quantum way. In the next section, we use
an S-matrix momentum formulation of scattering theory to
average the cross section in a general way over a statistical
ensemble of rather arbitrary incident-beam wave packets. We
follow an approach given long ago by Wichmann [7] but
generalize it somewhat to allow for poorly collimated incident
wave packets with mean centroid momenta off axis relative to
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FIG. 1. (Color online) Proton-scattering cross section for ioniza-
tion of H2 as a function of the proton-scattering angle as in Fig. 1 of
Egodapitiya et al. [3]. The round (blue) and square (red) points are
the L = 50 cm and L = 6.5 cm measurements, respectively, while
the solid (blue) and the dashed (red) curves show the calculated cross
section from Ref. [5] averaged according to Eq. (14). The size of
the data points corresponds roughly to the error bars in the data, and
differences in the blue and red measurements are well outside the
statistical error.
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the incident-beam axis. Thus we show that the static energy-
conserving scattering reactions with steady beam currents
considered here will distinguish neither wave-packet structure
nor coherence in the incident beam. Instead, we account for the
loss of interference observed by Egodapitiya et al. as simply
an incoherent average over the poorly collimated ensemble of
incident-beam momenta.

Our conclusions are analogous to ones derived some time
ago by Bernstein and Low [8] (see also [9]) in connection with
the notion of lost wave-packet coherence in neutron diffraction,
although they assumed strong collimation throughout. Our
approach uses the density matrix to describe the incident beam
and is similar to the derivation of the cross-section average
given by Gottfried [10] (we found the reference to Wichmann
there), except Gottfried also assumes strong collimation
throughout. Zeilinger and co-workers have thoroughly studied
the effects of beam preparation and collimation on wave-
packet coherence while compiling a long and well-documented
record of work on matter-wave interferometry beginning with
precision neutron-diffraction experiments back in the 1980s.
See for example [11,12] and references therein.

We stress that our results here are not new. No fundamen-
tal changes to familiar quantum scattering descriptions are
required to explain the observations of Egodapitiya et al., con-
trary to their claims. Wichmann’s approach is based on asymp-
totic momentum wave packets, removing from the discussion
the shape and spread in time of the corresponding coordinate
wave packets. In the popular text on scattering theory, Taylor
closely follows Wichmann but neglects to reference him [13].
However, neither Wichmann, nor Taylor, nor the conventional
scattering references that we know of make any reference
to transverse coherence. Here, we attempt to connect with
Egodapitiya et al.’s experiments throughout our presentation.
We employ a density-matrix derivation to facilitate the aver-
aging over the incident-beam statistical ensemble. The density
matrix also sets the stage for generalizing our discussion to
measurement interferometry, as advanced in the rich litera-
ture on neutron-diffraction experiments, although the cross
sections considered here involving a single detector-entrance
channel trace just the diagonal elements of the scattered-state
density matrix.

II. SCATTERING OF WAVE PACKETS

One is inclined customarily to start with the free-particle
coordinate wave packet,

ψi(r,t) =
∫

φi( p)
ei p·r

(2π )3/2
e−ip2t/2md p, (1)

to describe the incident beam as it passes through the last
collimator slit on its way to the reaction volume. Here
φi( p) = 〈 p|i〉 is a free-particle momentum wave packet and
〈r| p〉 = ei p·r/(2π )3/2 is a plane-wave momentum eigenstate.
(We adopt a system of units in which h̄ ≡ 1, unless we state ex-
plicitly otherwise.) A 75 keV proton moves at 3.8 × 106 m/s,
so that incident beams with currents in the range 1 μA to 1 nA
used by Egodapitiya et al. [3] have a mean spacing between
protons of some 0.6 mm to 6 cm. Electron beams at 13.6 eV
with similar currents have roughly half these spacings between

electrons. Thus there is generally only one incident-beam
particle at a time passing through the last collimator and hence
through the reaction volume. Egodapitiya et al. also routinely
achieve incident beams monochromatic to 1 eV at 75 keV
and therefore with sharp momentum distributions |φi( p)|2 with
widths on the order of �pi/p � √

1 eV/75 keV � 0.004.
The plane-wave contributions ei p·r to (1) will image

through the last collimator aperture as overlapping diffraction
patterns near the target molecules in the reaction volume a
distance L away. (We ignore any small fraction of particles
that might scatter microscopically off the slit edge.) Two
contributions ei p·r and ei p′ ·r are considered coherent [2] if
their overlapping patterns are not displaced by more than
the angular width ∼ λ/a of their central maxima in the
scattering plane and thus not by more than the distance
∼λL/a ≡ λ/α, where α is the angular width of the collimator
as before. This idea forms the basis of the van Cittert–Zernike
theorem.

Accordingly, one might presume that wave-packet coher-
ence could be modulated and the resulting effect observed
by changes in the angular width of the last collimator, as the
experiments of Egodapitiya et al. [3] might seem to suggest.
As we shall see, however, this conclusion is flawed in the case
of static scattering reactions considered here that conserve
energy and therefore the magnitude of the momentum. When
energy is conserved and the incident beam is mostly forward
moving, the scattering reaction effectively selects a random
plane-wave contribution ei p·r from the incident wave packet,
thereby collapsing all wave-packet coherence. The resulting
cross section becomes a fully incoherent average over the
corresponding momentum distribution |φi( p)|2 of the incident
beam.

To see how this comes about, we turn to a general descrip-
tion of wave-packet scattering. The microscopic process of
scattering of an incident-beam particle with a target molecule
is described broadly by the S matrix [7,14] according to
|f 〉 = S|i〉, where we will assume 〈 p|f 〉 = φf ( p) is the
free-particle momentum wave packet of the scattered particle.
If we work in the momentum representation, this description
is time independent and remarkably straightforward.

To generalize to a mixed state characterizing a statistical
ensemble of incident-beam wave packets, we introduce the
density operator for the microscopic scattering reaction

ρf = |f 〉〈f | = S|i〉〈i|S† = SρiS
†. (2)

The diagonal elements of the resulting density matrix define
the probabilities for detection of a momentum eigenstate | pf 〉
according to P ( pf ) = 〈 pf |ρf | pf 〉. Then

P ( p̂f ) =
∫

p2
f dpf P ( pf ) =

∫
p2

f dpf 〈 pf |SρiS
†| pf 〉 (3)

describes the likelihood of scattering into the element of solid
angle d p̂f = d	f around pf defined by the detector.

The spatial range of the microscopic scattering reaction is
typically tens of atomic units, so generally less than 1 nm.
We take A as the area of the last slit and assume it defines
roughly the cross section of the incident beam and hence of
its intersection with the reaction volume. As we have seen, the
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width of A in the scattering plane is a macroscopic dimension
generally on the order of 0.1 to 1 mm.

One recognizes energy conservation in the microscopic
scattering reactions with the introduction of the familiar on-
shell transition matrix Tf i according to Sf i = −2πiδ(Ef −
Ei)Tf i [14], so that for transitions between momentum
eigenstates 〈 pf | and |q〉

S( pf ,q) = −2πi
m

q
δ(pf − q)T ( pf ,q). (4)

Then the integral over pf in Eq. (3) becomes effortless and
one obtains for the scattering probability into d p̂f (using∫

dq|q〉〈q| = 1)

P ( p̂f ) =
∫

dq dq ′δ(q − q ′)

× (2πm)2T ( pf ,q)〈q|ρi |q ′〉T ∗( pf ,q ′). (5)

Here δ(q − q ′) ensures that the intermediate momentum
magnitudes are conserved. (The subscripts f,i on Sf i and Tf i

could include additional internal variables to generalize the
development here to an arbitrary inelastic or rearrangement
collision.)

Following Wichmann [7], we generalize now the initial state
of the incident beam 〈q|ρi |q ′〉 to an ensemble of free-particle
momentum wave packets,

〈q|ρi |q ′〉 = e−i(q−q ′)·xi φi(q; p′
i) φi(q ′; p′

i)
∗, (6)

defined by the momenta p′
i and offsets xi of the classical

straight-line trajectories of the particles in the beam as they
pass through the last collimator slit. Thus the phase e−iq·xi

displaces the centroid of the wave packet φi(q; p′
i) by xi with

respect to our z axis along the beam axis through the center of
the last collimator to the pass-through point of the packet’s
trajectory inside the slit. Here p′

i = pi + p′
i⊥ is the mean

centroid momentum of the wave packet with respect to the
beam axis, and pi ≡ pi ẑ with p′

i⊥ in the plane of the collimator
slit with pi · p′

i⊥ ≡ 0. Note we suppress an explicit shape
parameter for the packet, which Wichmann introduced and
labeled. It is already implied by the function φi .

Thus we generalize Wichmann somewhat to include off-
axis incident momenta p′

i , albeit with pi � p′
i⊥ so that p′2

i =
p2

i + p′2
i⊥ � p2

i . We require only that the source and incident-
beam optics along with the overall collimation have suffi-
ciently shaped and directed these wave-packets along the gen-
eral direction of the beam axis so that φi(q; p′

i)φi(q ′; p′
i)

∗ � 0
unless qz � q ′

z � pi > 0. This is a fairly weak constraint that
collimation is at least sufficient to ensure the wave packets are
all moving mostly forward, albeit each with its own narrow
intrinsic width (quantum dispersion) �qi � pi .

The mixed state describing the incident beam is obtained by
averaging over a statistical ensemble of incident wave packets
from Eq. (6) according to

〈q|ρi |q ′〉 =
∫

d p′
i⊥

� p⊥

∫
dxi

A 〈q|ρi |q ′〉. (7)

We assume a uniform distribution in xi of incident wave
packets normalized over the last collimator slit area A, and
a uniform distribution in p′

i⊥ of incident momenta also
normalized over the last slit with total effective spread � p⊥.

That is, we assume a uniform bundle of slightly diverging
wave-packet trajectories such that a distance L away at the
reaction volume � p′

⊥ � piα in the scattering plane, where
α � a/L is the collimator angular width.

As Wichmann points out, our averaging over the lateral
offsets xi of wave packets in the beam is equivalent to
averaging over lateral offsets of the target molecules across
the reaction volume. The procedure amounts to describing the
target as a random distribution of single scattering centers,
which is physically realistic with the low-intensity beams and
rarified gas targets of interest here.

A key advantage of the momentum representation is evident
immediately. Introducing the xi dependence from Eq. (6), the
ensemble average over xi is straightforward and gives
∫

dxi

A 〈q|ρi |q ′〉 = (2π )2

A δ(q⊥ − q ′
⊥)φi(q; p′

i)φ
∗
i (q ′; p′

i),

(8)

where the area of integration has been extended to infinity
with impunity since the macroscopic cross-sectional area A
is already large compared to any dimension characterizing
the microscopic scattering event. Here q⊥,q ′

⊥ are momentum
components perpendicular to the beam axis along z. With the
cofactor δ(q⊥ − q ′

⊥) and noting that q2 = q2
z + q2

⊥, one readily
establishes for the momentum-conserving factor from Eq. (5)
the identity

δ(q − q ′) ≡ q

|qz| {δ(qz − q ′
z) + δ(qz + q ′

z)}. (9)

However, as we noted above Eq. (7), we assume the fairly
weak collimation condition that φi(q; p′

i)φi(q ′; p′
i)

∗ � 0 un-
less qz � q ′

z � pi > 0, so that here δ(qz + q ′
z) = 0.

Then with δ(qz − q ′
z)δ(q⊥ − q ′

⊥) = δ(q − q ′), the double
integral over q and q ′ in Eq. (5) collapses, and we obtain for
the scattering probability averaged over xi , setting aside the
average over p′

i⊥ for the moment,

P ( p̂f )A =
∫

dq
q

|qz|σ ( pf ,q)|φi(q; p′
i)|2. (10)

Here σ ( pf ,q) ≡ (2π )4m2|T ( pf ,q)|2 is the microscopic cross
section [14] for ideal scattering between the (plane-wave) mo-
mentum eigenstates 〈 pf | and |q〉. Again following Wichmann,
we note that P ( p̂f )A d p̂f is the effective cross-sectional
area that the exit channel defined by d p̂f presents to the
incident beam, so that σ ( pf , p′

i) = P ( p̂f )A is the effective
differential cross section for microscopic scattering averaged
over wave-packet displacements xi in the incident beam.

Equation (10) is a key result [and equivalent to Eq. (21)
in Wichmann [7] and Eq. (3.22) in Taylor [13]]. It demon-
strates that the effective cross section σ ( pf , p′

i) = P ( p̂f )A
depends only on the square of the incident-beam momentum
distribution |φi(q; p′

i)|2 and thus is independent of any wave-
packet coherence. Changes in the collimator distance L

will not alter this conclusion. Therefore, experiments with
even weakly collimated beams incident on stationary targets
cannot distinguish coherent wave-packet structure (cf. also [8],
and [11], Sec. III). This conclusion is readily generalized to
inelastic and exchange reactions.
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As long as we are not scattering in the vicinity of a
resonance, we may assume further, as is usually done, that
the microscopic cross section σ ( pf ,q) varies little over
the short interval �qi � pi near q � p′

i where φi(q; p′
i) is

nonvanishing. Then, σ ( pf , p′
i) can be safely removed from

the integral over q in Eq. (10). Invoking the normalization of
the incident wave packets

∫
dq|φi(q; p′

i)|2 = 1, we then obtain

σ ( pf , p′
i) = p′

i

pi

σ ( pf , p′
i) (11)

fully independent of the shape and coherence of the incident
wave packets. In the strong collimation limit p′

i → pi , one
obtains the result widely adopted in analyzing scattering
experiments. Namely, the measured cross section from a well
collimated beam of incident particles, albeit averaged over
a statistical ensemble, remains a good representation of
the ideal microscopic cross section between momentum
eigenstates [10].

Finally, restoring the ensemble average over the p′
i⊥ in the

incident beam, we have in the case of weak collimation

σ ( pf , pi) �
∫

d p′
i⊥

� p⊥

p′
i

pi

σ ( pf , p′
i). (12)

We will use this result in the next section to analyze the data
in Fig. 1.

III. EFFECTIVE CROSS SECTIONS

We return now to a comparison of the data in Fig. 1 with
the beam-averaged cross section in Eq. (12). Let σ ( pf , pi) =
σ (θf ) be the microscopic cross section expressed in terms of
a proton scattering angle θf relative to the incident-beam z

axis. A poorly collimated projectile proton incident somewhat
off axis along p′

i = pi + p′
i⊥ can be thought of as simply

shifting this scattering cross section according to σ ( pf , pi) →
σ ( pf , p′

i) = σ (θf + θ ′
i ), where θ ′

i is the angle of incidence
relative to the incident-beam axis. Because we assume the
collimation is nevertheless good enough so that p′2

i = p2
i +

p′2
i⊥ � p2

i , we take d p′
i⊥ � p′

idθ ′
i and � p′

⊥ � piα, where α �
a/L is the angular width of the last collimator slit. Thus, in
Eq. (12), we take

∫
d p′

i⊥
� p⊥

p′
i

pi

�
∫

dθ ′
i

α

p′2
i

p2
i

∼
∫

dθ ′
i

α
, (13)

so that

σ (θf ) �
∫ α/2

−α/2

dθ ′
i

α
σ (θf + θ ′

i ). (14)

Figure 1 compares this collimator-averaged cross section
with the data of Egodapitiya et al. [3] for two angular widths
α. At L = 50 cm with a = 0.15 mm, we have α = 0.3 mrad
and the beam-averaged cross section σ (θf ) is virtually indistin-
guishable from the theoretical cross section σ (θf ) calculated
by Chowdhury, Schulz, and Madison [5], the L → ∞ limit.
At L = 6.5 cm, we have α = 2.3 mrad so that the integration
range in Eq. (14) now covers the entire plot range and the
interference dip around 0.8 mrad washes out completely. We
conclude it is the weakened beam collimation at L = 6.5 cm
and the consequent bundle of off-axis incident-wave-packet

trajectories that averages out the two-center interference in the
molecular scattering.

IV. DISCUSSION

It is natural to debate the size and coherences of supposed
wave packets of particles in the incident beam. Such debates,
however, will remain unresolved when extracting cross sec-
tions from the results of familiar static (energy-conserving)
experiments with steady beam currents. One can consider each
particle to be emitted as (i) a wave packet with an energy
spread equal to the energy spread of the beam ensemble or
(ii) a free-particle plane wave with an energy that varies from
one plane wave to the next. Both of these rather disparate beam
profiles lead to the same ensemble-averaged cross sections.
In the end, all that one can say is that a static scattering
reaction selects effectively a random (plane-wave) momentum
eigenstate of the incident beam, and the usual theoretical cross
sections between momentum eigenstates of the incident and
target particles will account for experimental results.

If the collimation is weak, the cross section must be
further averaged incoherently over off-axis incident-beam
directions. These off-axis contributions to the beam ensemble
can be regarded as incoherent—while defining a transverse
coherence. Each individual scattering distribution produced
by a particular incident direction combines incoherently with
the other distributions, and each distribution is slightly shifted
in scattering angle by the angle of incidence θ ′

i . Overall,
observable interference effects will be diminished to some
degree depending on the degree to which the beam is
uncollimated. The transverse coherence gives a rule of thumb
for estimating the degree to which an interference effect is
washed out.

In the ionization experiment of Egodapitiya et al. [3],
p + H2 → p + H+

2 + e, the ionized electron was not detected,
although the ionization energy was fixed by selecting a fixed
proton energy loss of 30 eV where a pronounced molecular
interference effect is observed. (The cross section shown
in Fig. 1 is therefore integrated over outgoing electron
directions.) One could in principle, however, detect all of
the reaction fragments in coincidence with multihit imaging
(COLTRIMS) and thus invoke overall momentum conservation
for the reaction pi + P i = pf + Pf + pe with pe the ionized
electron momentum and Pf the recoil-ion H+

2 momentum.
Here we take P i = 0 since the experiment involved cold H2

target molecules with vanishing initial effective momentum.
One could then postselect the coincidence data to filter those
events with vanishing total momenta perpendicular to the
beam axis and therefore with p′

i⊥ = pf ⊥ + P ′
f ⊥ + p′

e⊥ ≡ 0,
i.e., with p′

i ≡ pi ẑ = pi . Such constrained data sorting would
avoid the averaging introduced in Eq. (12), and it is difficult
to imagine the result to have much dependence on collimator
angular width α � a/L.

This idea simplifies considerably in the case of the recent
electron-capture experiments of Sharma et al., p + H2 →
H + H+

2 [6]. Using the same 75 eV protons as in their
ionization experiment, they established a two-center molec-
ular interference effect in the capture cross section at the
large collimator distance L = 50 cm, which again washes
out at the shorter distance L = 6.5 cm. For this two-body
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scattering reaction, momentum conservation with P i = 0
gives simply pi = pf + Pf . Since these are also energetic
collisions compared to the capture threshold, not only do the
scattering angles remain extremely small but also the initial
proton and final hydrogen-atom wave numbers are essentially
equal, �pi/pi � 1/3200. Thus momentum conservation and
collision kinematics dictate that Pf is essentially orthogonal
to pi (and pf as well) with magnitude Pf � piθf . That is,
the component of recoil momentum along pi (or pf ) remains
extremely small, viz. Pf · p̂i � P 2

f /2pi � Pf .
The upshot is, given an off-axis ensemble of incident

protons along p′
i , there corresponds a mirror ensemble of recoil

ions with each recoil P ′
f perpendicular to the corresponding

incident p′
i , requiring the capture cross section σ ( pf ,P ′

f , p′
i)

to be averaged incoherently over the cone of p′
i defined by

the collimator, analogous to the average in Eq. (12). The
two-particle angular distribution defined by P ( p̂f , P̂

′
f ) =

σ ( pf ,P ′
f , p′

i)/A suggests that one could extract a beam-
profile distribution P ( p̂′

i) ≡ σ ( pf , p′
i − pf , p′

i)/A and thus
provide a strong check on the effects of collimation on the

beam. Alternatively, as we suggested above for an ideal ion-
ization experiment, one might postselect on the recoil ions with
say P ′

f ≡ Pf x̂ perpendicular to the beam axis and therefore
with p′

i ≡ pi ẑ = pi and thus extract σ ( pf ,Pf x̂,pi ẑ). Again,
such data sorting would avoid the averaging introduced in
Eq. (12).
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