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Total electron-scattering cross sections of pyrimidine
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Total electron-scattering cross sections of pyrimidine, the basic component for the nucleic bases cytosine
and thymine, were measured for electron energies from 5 eV to 1 keV using the linear transmission method.
The measured results were compared to semiempirical data obtained by means of the additivity rule and to
experimental data for benzene since it has a similar ring structure and the same number of valence electrons
as pyrimidine. Furthermore, integral elastic and inelastic electron-scattering cross sections of pyrimidine were
calculated by applying the spherical complex optical potential model. The sum of both cross sections agrees
reasonably well with the experimental total electron-scattering cross sections of pyrimidine in the energy range
from 20 eV to 1 keV. The experimental data are, however, significantly lower than the theoretical cross sections
when including the contribution of rotational excitations to the electron scattering.
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I. INTRODUCTION

It is a general consensus that DNA is the primary target
for cellular damage induced by ionizing radiation [1]. When
penetrating tissues, ionizing radiation causes cellular damage
either by a direct excitation and ionization of the DNA or
via secondary electrons that further undergo interactions with
the DNA in the lateral environment of the primary radiation
track. The secondary electrons are responsible for a significant
part of the radiation damage. Their contribution to the radiation
damage is predominant in the case of low linear energy transfer
(LET) radiations.

Since an experimental investigation of the initial physical
action of ionizing radiation at cellular levels is not yet feasible,
Monte Carlo simulations are commonly applied to specify
the initial radiation damage. For such simulations, the total
electron-scattering cross sections (TCS) of DNA constituents
play an important role. As the sum of all interaction cross
sections, they represent the upper limit for partial scattering
cross sections and can therefore be employed to check the
consistency of compiled data sets. Total electron-scattering
cross sections are also often used to put relative electron-
scattering cross sections on an absolute scale [2], and in Monte
Carlo simulations they are required to determine the mean
distance between two subsequent interaction points.

Few experiments have been carried out to determine the
TCS of molecules which serve as the models of building
blocks of DNA. Up to now, the most attention has been paid to
tetrahydrofuran (THF), which is used as the model molecule
for the deoxyribose in the backbone of the DNA. Baek et al. [2]
determined the TCS of THF for electron energies between
6 eV and 1 keV using the same experimental setup as in the
present work. Zecca et al. [3] measured the TCS of THF for low
electron energies. Możejko et al. [4] reported the experimental
TCS of THF for electron energies from 1 to 370 eV and Fuss
et al. [5] measured those in the intermediate and high energy
regions.

Regarding the TCS of nucleic bases for electron scattering,
no experimental data have been published yet. Recently, Zecca
et al. [6] measured the TCS of pyrimidine, the basic component
for the nucleic bases cytosine and thymine, for positrons in the

energy range from 0.3 to 45 eV. They calculated the TCS of
pyrimidine for electrons in the energy range between 1 eV
and 10 keV using the independent-atom screened additivity
rule [7,8].

In the present work, the TCS of pyrimidine were measured
for electron energies from 5 eV to 1 keV using a linear
transmission experiment. The experimental data are compared
to theoretical TCS which were calculated by applying the
spherical complex optical potential (SCOP) model [9]. Using
this model, the integral elastic and inelastic electron-scattering
cross sections of pyrimidine were computed for electron
energies between 10 eV and 1 keV. Furthermore, the total
ionization cross sections of pyrimidine were determined by
means of the binary encounter Bethe (BEB) model [10].

II. EXPERIMENT

The measurements were carried out using the linear
transmission device described previously [11]. It consists
of an electron gun, a scattering chamber, and an electron
energy analyzer. The electron gun, equipped with a hairpin
tungsten filament, delivered stable electron beams in the
energy range from 20 eV to 5 keV. An electrostatic lens
and two orthogonal pairs of deflection plates were used to
focus and align the electron beam, respectively. The scattering
chamber consisted of a hollow metallic cylinder mounted
in a vacuum recipient. The symmetry axis of the scattering
chamber was set perpendicular to that of the electron beam.
Two circular apertures on the cylinder shell defined the electron
beam direction. The diameter of both apertures and of the
scattering chamber amounted to 0.5 and 132 mm, respectively.
The apertures were electrically isolated from the scattering
chamber for the monitoring of the change of the incident
electron beam current.

To enable the measurement of TCS below 20 eV, the
scattering chamber was electrically isolated so that a negative
dc bias voltage Uch could be applied [11]. This leads to the
reduction of the incident electron energy T0 by the amount
of eUch at the entrance aperture. In this case, the electrons
undergo collision processes in the scattering chamber at
the reduced energy T = T0 − e |Uch| and those transmitted
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without interaction regain their initial energy on the path
between the exit aperture and the electron energy analyzer.

The electron beam underwent collision processes with
gaseous pyrimidine in the scattering chamber, leading to an
attenuation of the electron current along the beam direction.
The electron beam leaving the scattering chamber entered
an electron energy analyzer which discriminated unscattered
electrons from electrons scattered inelastically in the forward
direction. The electron energy analyzer was of hemispherical
condenser design with a mean radius of 100 mm and a
deflection angle of 150◦. A channel electron multiplier,
mounted at the end of the analyzer, was used for the detection
of electrons.

The geometrical solid angle subtended by the detector
varied from 7×10−4 sr at high electron energies to 1.1×10−3 sr
below 20 eV. The energy resolution (FWHM) was adjusted by
changing the retardation voltage applied to the entrance slit
of the analyzer [12]. The relative energy resolution was better
than 0.25%. The absolute value of the energy resolution was
smaller than 0.5 eV at electron energies below 100 eV and
amounted to about 1 eV at 1 keV. The whole electron beam
path was passively shielded against the residual earth magnetic
field as well as other electromagnetic disturbances by means of
a permalloy housing. The major part of the external magnetic
field was actively compensated by three orthogonal pairs of
Helmholtz coils surrounding the scattering chamber.

The scattering chamber was connected to a gas source via
a regulating valve with an adjustable leak rate from 10−9 mbar
l/s to 10−1 mbar l/s. Before the introduction of the gas, the
scattering chamber was evacuated down to a residual pressure
lower than 10−6 mbar. The vapor of liquid pyrimidine with
a stated purity of 99.9% was used as gas source. At room
temperatures of higher than 28 ◦C, the vapor pressure of
pyrimidine was sufficiently high for the experiment.

The gas pressure in the scattering chamber was measured by
means of a capacitance manometer which had been calibrated
at the vacuum metrology section of Physikalisch-Technische
Bundesanstalt in Berlin, Germany, in order to correct for the
thermal transpiration effect [13]. The calibration was carried
out for several light gases such as N2 and CH4 in the pressure
range between 10−3 and 1 mbar. The greatest deviation
between the reading of the capacitance manometer used in
this work and the primary standard was found in the pressure
region around 10−3 mbar. In the pressure region around 1 mbar,
there was almost no difference between both values. Since the
typical gas pressure in the present experiment lay between
10−3 and 10−2 mbar, a disregard of the thermal transpiration
effect would lead to a lowering of the experimental results by
about 3%.

As the correction factor �, defined as the ratio of the
reading value pR of the capacitance manometer to the pressure
standard pN , was not known for pyrimidine, it was estimated
using the empirical equation for the thermal transpiration effect
proposed by Takaishi and Sensui [14]:

[1 − (p/pm)]/[1 − (T1/T2)1/2]

= 1/(AX2 + BX + CX1/2 + 1). (1)

T1 and p are the temperature and pressure in the chamber,
respectively, and pm is the pressure in the manometer gauge

FIG. 1. Pressure correction factor � for pyrimidine as a function
of the reading pR of the capacitance manometer. For comparison, the
experimental corrections factors (◦) of methane are shown.

held at T2 with T2 > T1. Here, the ratio pm/p corresponds
to the correction factor �. The quantity X is equal to
the product of pm and the diameter d of the connection
line between the scattering chamber and the manometer
gauge along which a temperature gradient occurs: X = pmd.
The constants A, B, and C are related to gas kinetic collision
cross sections. The correction factor for pyrimidine was
estimated using the gas kinetic collision cross sections of
benzene (C6H6) whose molecular diameter and structure is
similar to that of pyrimidine. Here, the gas kinetic collision
cross section of benzene was determined from its dynamic
viscosity value [15]. Figure 1 shows the estimated correction
factor for pyrimidine in comparison to that of methane.

The determination of TCS σt was based on Beer’s attenua-
tion law taking into account the secondary effects:

c = c0

[
exp(−σtnF ) −

∫
n(z)dz

∫
��(z)

dσ

d�
d�

]
, (2)

where c0 and c are the electron count rate of the channel
electron multiplier without and with the gas in the scattering
chamber, respectively. The quantity nF is the number of
molecules per area crossed by the electron beam and is
given, when considering the inhomogeneity of the number
density due to the gas streaming out through the apertures, by
the integral of the number density distribution n(z) over the
electron beam trajectory:

nF =
∫

n(z)dz ≡ k1n0L0. (3)

In Eq. (3), n0 is the number density in the static case
where there is no gas flow through the apertures and L0 is the
diameter of the scattering chamber. In the static case, n0 can
be determined from the ideal gas law n0 = p/(kBT1), where
the gas temperature T1 is assumed to be equal to the room
temperature measured with a uncertainty smaller than 1 K.

The second integral on the right-hand side of Eq. (2) corrects
for the signal contribution from electrons that underwent
scattering processes but were counted due to the finite
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detection solid angle ��(z). This contribution is proportional
to the differential electron-scattering cross section dσ/d�

depending on the scattering angle and on the electron energy. In
the present work, dσ/d� was set to be equal to the differential
elastic-scattering cross section dσel/d�; in other words,
the rotational and vibrational excitations whose transition
energies are smaller than the energy resolution of the electron
energy analyzer were not taken into account in dσ/d�.
The consequence of disregarding these excitation processes
is discussed below in the comparison of the experimental
data with theoretical values. The z-dependent detector solid
angle ��(z) can be approximated by an average value, as
the distance between the center of the scattering chamber and
the detector, which was 384 mm, was much greater than the
diameter of the scattering chamber:∫

n(z)dz

∫
��(z)

dσ

d�
d� ≈ dσel

d�
��̄

∫
n(z)dz

= dσel

d�
��̄k1n0L0 ≡ �σ̄elk1n0L0. (4)

In Eq. (4), ��̄ is the detector solid angle subtended at the
position z = L0/2. In the present experimental arrangement,
�σ̄el is in the order of 1% of σt . Therefore, Eq. (2) can be
approximately rewritten as

ln

(
c

c0

)
≈ k1n0L0(σt − �σ̄el). (5)

According to Eq. (5), the TCS σt can be determined by
recording the count rate c as a function of the gas number
density n0 or the chamber pressure p, if the values of k1 and
�σ̄el are known. The correction factor k1, which accounts for
the pressure drop in the vicinity of the apertures and for the
additional beam attenuation in the effusing gas stream, was
estimated using the calculations of Nelson and Colgate [16].
The resulting value of k1 for the apertures and the scattering
chamber used in this work amounted to 0.99.

The value of �σ̄el was estimated by means of the differential
elastic electron-scattering cross sections dσel/d� calculated
using the modified independent-atom model [17]. In the
present work, the pressure in the scattering chamber varied
between the residual pressure of about 1.0 × 10−6 mbar and
a maximal pressure depending on the electron energy. The
maximal pressure value was adjusted such that the beam
attenuation ratio c/c0 did not fall below 0.6 to keep the
signal contribution arising due to multiple scattering effects
below 1%.

A considerable increase of the electron beam current was
observed when pyrimidine vapor was introduced into the
scattering chamber. This increase arises due to the chemical
reaction of the tungsten filament with the pyrimidine gas
streaming out through the entrance aperture of the scattering
chamber. In order to take into account the change of the
electron emission due to the gas exposure of the filament,
the primary electron beam current Ip was measured on the
entrance aperture of the scattering chamber. The TCS σt (T )
was then obtained by a linear fit of ln[(c/Ip)/(c0/Ip,0)] versus
n0L0, where Ip,0 is the primary beam current if no gas
is present in the scattering chamber. The slope σ0 of the
linear fit is given by Eq. (5) and equal to k1(σt − �σ̄el). The

measurement was repeated ten times for each electron energy
to reduce the uncertainties arising from statistical fluctuations.
The TCS σt of pyrimidine was then determined using the mean
value σ̄0 of the ten measurements:

σt = σ̄0/k1 + �σ̄el. (6)

The standard uncertainty u(σt ) of the experimental TCS
was calculated according to the Guide to the Expression of
Uncertainty in Measurements [18]:

u2(σt ) =
(

∂σt

∂k1
δk1

)2

+
(

∂σt

∂σ̄0
δσ̄0

)2

+
(

∂σt

∂ (�σ̄el)
δ (�σ̄el)

)2

+
(

∂σt

∂T
δT

)2

, (7)

where only the main uncertainty sources are taken into account.
The uncertainty δk1 amounted to 1 × 10−2 and the relative
value of the uncertainty δσ̄0 varied between 1% and 10%
depending on the electron energy. The uncertainty of �σ̄el

is mainly given by that of dσel/d� of pyrimidine. The
relative uncertainty δ(�σ̄el)/�σ̄el, estimated by comparing the
calculated dσel/d� with available experimental data [19,20],
amounted to 50%. The derivative ∂σt/∂T was determined
using the cubic interpolation of the experimental results and
δT was set equal to the uncertainty of the calibration of the
electron energy that has been carried out before by means of
the retarding field method [11,21].

III. THEORETICAL METHODS

In addition to the measurement, the TCS of pyrimidine
were calculated by means of the SCOP model [9]. This model
is based on the fixed-nuclei approximation and describes the
electron scattering by means of a complex potential Vopt(�r)
given by

Vopt(�r) = VR(�r) + iVabs(�r), (8)

where the real and imaginary parts of the potential account for
elastic and inelastic scattering, respectively. The real part VR(�r)
consists of the static potential Vst(�r), the exchange potential
Vex(�r), and the correlation-polarization potential Vpol(�r):

VR(�r) = Vst(�r) + Vex(�r) + Vpol(�r). (9)

The imaginary part Vabs(�r) describes the dissipation of
incoming electron waves into the inelastic channels such as
ionization and excitation.

In the SCOP model, Vopt(�r) is at first expanded around
the center of mass of the molecule using symmetry-adapted
functions [22]:

V
pμ

opt (�r) =
∑
l,h

vlh(r)Xpμ

lh (r̂), (10)

where pμ designates the particular irreducible representation
of the molecular point group in the ground state, h denotes
a specific basis at an angular momentum l for pμ, r is the
distance from the center of mass of the molecule, r̂ is the unit
vector of �r , and vlh is the corresponding expansion coefficient.
For closed-shell nonlinear molecules such as pyrimidine,
the ground-state symmetry pμ is equal to the irreducible
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representation 1A1 and the symmetry-adapted function X
A1
lh (r̂)

can be represented as a linear combination of real spherical
harmonics Slm(r̂) [23]:

X
A1
lh (r̂) =

l∑
m=0

b
A1
lhmSlm(r̂). (11)

The values of the coefficients b
A1
lhm are given by the character

table of the corresponding irreducible representation.
The main feature of the SCOP model [9] is that only the

isotropic term in the multipole expansion, i.e., the first term
with l = 0 and h = 0, is considered. In this case, the optical
potential V SCOP

opt (�r) can be written as

V SCOP
opt (�r) = v01(r)bA1

010S00(r̂) = v01(r)/
√

4π. (12)

As the following equation shows, the consideration of only
the isotropic term is equivalent to averaging Vopt(�r) over the
entire solid angle:

V̄opt(r) =
∫

Vopt(�r)d�

4π
=

√
4π

∫
Vopt(�r)S00(r̂)d�

4π

=
∫ ∑

l,h vlh(r)
∑l

m=0 b
pμ

lhmSlm(r̂)S00(r̂)d�√
4π

= v01(r)√
4π

= V SCOP
opt (�r), (13)

where use was made of the orthogonality relation of the
spherical harmonics

∫
Slm(r̂)Sl′m′(r̂)d� = δll′δmm′ . The above

averaging can be interpreted as the averaging of the interaction
potential over all molecular orientations which are randomly
distributed in the gas beam.

All four potentials given on the right-hand side of Eqs. (8)
and (9) depend on the electron density distribution ρ(�r), which
was calculated by means of the quantum chemical program
GAUSSIAN 09 [24] deploying the 6-311G∗∗ basis sets. The
static and correlation-polarization potentials Vst(�r) and Vpol(�r),
respectively, were then computed from this electron density
distribution with the help of the library SCELIB [23]. It
should be noted that the calculation of Vpol(�r) was based on
the formulations for the VCP polarization potential given in
Ref. [23]. The exchange potential Vex(�r) was obtained by the
application of the following formula which was derived from
the free electron gas model of Hara [25]:

Vex(�r) = − 2

π
kF (�r)

(
1

2
+ 1 − ζ 2

4ζ
ln

∣∣∣∣1 + ζ

1 − ζ

∣∣∣∣
)

(14)

with kF (�r) = [3π2ρ(�r)]1/3 and ζ (�r) = (k2 + 2I + k2
F )1/2/kF ,

where k is the initial momentum of the incident electron and
I is the ionization potential in atomic units.

The absorption potential that is dependent on the electron
energy T was determined using the quasifree-scattering model
described in detail by Staszeweska et al. [26,27]. In this model,
Vabs(�r) is given by

Vabs(�r) = −ρ(�r)
√

2(T − V se)

(
4π

10k3
F T

)
H

× (
k2 − k2

F − 2�
)
(A1 + A2 + A3), (15)

FIG. 2. Spherically averaged potentials for 100-eV electrons used
for the calculation of electron-scattering cross sections by means of
the SCOP model [9]: (—) V̄st, (····) V̄ex, (- - -) V̄pol, and (–·–·–) V̄abs.

where V se(�r) = Vst(�r) + Vex(�r), H (x) is the Heaviside step
function, such that H (x) = 1 for x � 0 and H (x) = 0 for
x < 0, and � is the mean excitation energy. The terms A1, A2,
and A3 are defined as

A1 = 5k3
F

2�
, A2 = k3

F

[
5
(
k2 − k2

F

) + 2k2
F

]
(
k2 − k2

F

) ,

(16)

A3 = H
(
2k2

F + 2� − k2
)2

(
2k2

F + 2� − k2
)5/2

(
k2 − k2

F

) .

Jain and Baluja [9] calculated the mean excitation energy �

for a variety of molecules and found that the value of � is very
close to the ionization potential in the most cases. Therefore,
� was set equal to the ionization potential I of pyrimidine.
Figure 2 depicts the spherically averaged potentials V̄st(r),
V̄ex(r), V̄pol(r), and V̄abs(r) as functions of the distance from
the center of mass of the molecule.

As V̄opt(r) is spherically symmetric, the wave function of
the scattered electrons can be determined by solving radial
Schrödinger equations in combination with the partial wave
expansion method:

[
d2

dr2
+ k2 − l(l + 1)

r2
− 2V̄opt(r)

]
ϕl(r) = 0, (17)

where k is the momentum of the incident electron and ϕl is the
partial wave for the angular momentum quantum number l.

Equation (17) was solved by applying the variable phase
approach [28], which transforms the complex second-order
differential equation into two coupled nonlinear first-order
differential equations. In this approach, the real part εl(kr) and
the imaginary part ηl(kr) of the phase shift can be obtained
from the following system of coupled differential equations:

ε′
l = −1

k
[V̄R(X2 − Y 2) − 2V̄absXY ],

(18)

η′
l = −1

k
[V̄abs(X

2 − Y 2) + 2V̄RXY ]
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with

X = cosh ηl(η̂l sin εl − ĵl cos εl),
(19)

Y = sinh ηl(η̂l cos εl + ĵl sin εl),

where the phase shift fulfills the boundary conditions εl(0) = 0
and ηl(0) = 0. The functions ĵl(kr) and η̂l(kr) are the Riccati-
Bessel functions. It should be noted that Eqs. (18) and (19)
deviate from those found in literature [9,22,29–32] which, in
contrast to our Eqs. (18) and (19), are inconsistent with the
original formulas given in Ref. [28].

The phase shifts εl(kr) and ηl(kr) for r → ∞ are related
to the S matrix Sl via

Sl(k) = exp[−2ηl] exp[2iεl]. (20)

The integral elastic σel, absorption σabs, and total σt cross
sections can be calculated from the S matrix Sl(k) by means
of the following equations:

σel(k) = π

k2

lmax∑
l=0

(2l + 1)|1 − Sl(k)|2,

σabs(k) = π

k2

lmax∑
l=0

(2l + 1)[1 − |Sl(k)|2], (21)

σt (k) = 2π

k2

lmax∑
l=0

(2l + 1) [1 − Re Sl(k)].

The values of Sl(k) were obtained from the asymptotic values
of εl(kr) and ηl(kr) via Eq. (20), where εl(k) and ηl(k)
were determined by the numerical integration of Eq. (18)
over r using the fourth-order Runge-Kutta method [33]. The
integration was carried out until the relative change of the
absolute value of the phase shift was smaller than 1.0 × 10−5.

As mentioned above, the SCOP model [9] takes into account
only the isotropic l = 0 term in the multipole expansion of
V̄opt(r). The disregard of the anisotropic terms with l � 1,
however, can lead to a considerable underestimate of electron-
scattering cross sections in the case of molecules with high
dipole moments like pyrimidine since such molecules can
be rotationally excited during the interaction with incident
electrons.

Following the approach used by Jain [34], the contribution
of rotational excitations to the electron-scattering cross section
was calculated using the formula of Collins and Norcross [35]
and incoherently added to the integral cross sections obtained
using Eq. (21). According to the formula of Collins and
Norcross [35], which is based on the first Born approximation
for a rotating dipole, the integral cross section for rotational
excitation is given by

σrot(j → j ′) = 8π

3k2
D2

m

j ′

2j + 1
ln

k + k′

|k − k′| (22)

with

2k′2 = 2k2 − (Ej ′τ ′ − Ejτ ), (23)

where Dm is the molecular dipole moment and Ejτ is the
energy of the rotational state (jτ ). The energy levels of the
rotational states of pyrimidine, which is an asymmetric top
molecule, were calculated by means of the computational

FIG. 3. (Color online) Present experimental results for pyrimi-
dine (◦) in comparison to TCS of benzene measured by (�) Możejko
et al. [37], (�) Sueoka [38], and (♦) Makochekanwa et al. [42].

method described in Ref. [36]. Assuming that the dipole
transition to the first rotational state (00→10), whose excitation
energy amounts to E10 − E00 = 4.0 × 10−2 meV, is the major
transition, the electron-scattering cross section σrot due to
rotational excitation was calculated using Eqs. (22) and (23)
and added to σt calculated using Eq. (21).

IV. RESULTS AND DISCUSSION

The results of the present measurements are shown in
Fig. 3 and listed in Table I. Apart from the weak shoulderlike

TABLE I. Total electron-scattering cross section σt of pyrimidine.

T (eV) σt (10−16 cm2)

5 64.61 ± 6.56
6 58.96 ± 2.91
8 66.42 ± 6.59
10 64.42 ± 3.36
12 61.03 ± 5.75
14 54.28 ± 4.52
16 51.02 ± 4.33
18 50.60 ± 1.39
20 49.69 ± 3.62
23 46.92 ± 3.81
25 47.04 ± 2.13
30 40.26 ± 1.65
40 37.71 ± 1.52
50 36.55 ± 2.20
60 30.80 ± 2.65
80 29.09 ± 1.52
100 28.32 ± 1.49
150 20.39 ± 1.99
200 18.73 ± 0.68
300 14.82 ± 0.98
400 12.76 ± 0.43
600 9.78 ± 0.63
800 8.13 ± 0.70
1000 6.94 ± 0.39
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FIG. 4. (Color online) Experimental (◦) TCS of pyrimidine in
comparison to the semiempirical values (♦) obtained using the
additivity rule [41]: (�) TCS of C2H2 [39]; (�) TCS of N2 [40].

structure at energies around 10 eV, the TCS of pyrimidine
decreases with increasing electron energy. Since there are no
experimental data for the TCS of pyrimidine measured by
other groups, the present results are compared to the TCS of
benzene. The TCS of both molecules are expected to agree
approximately at the intermediate and high electron energies
because they are isoelectronic and have a similar structure. It is
evident from Fig. 3 that the present results are well reproduced
by the benzene data of Możejko et al. [37], even at low electron
energies, while those of Sueoka [38] are noticeably lower than
the TCS of pyrimidine at electron energies below 50 eV. It
should be noted that the disagreement between both data at
low electron energies is more realistic as the relatively high
dipole moment of pyrimidine, which is one order of magnitude
greater than that of benzene, leads to a strong elevation of the
TCS in the low-energy region.

In addition to the TCS of benzene, the present results
are in Fig. 4 compared to the semiempirical values which
were obtained using the TCS of C2H2 [39], N2 [40], and
the additivity rule [41]. As can be seen from Fig. 4, the
experimental and semiempirical values agree within the
experimental uncertainties over the whole energy range, even
at electron energies lower than 20 eV. The good agreement
in the low-energy range is not expected since the electron
scattering caused by the rotational excitation due to the high
dipole moment is not taken into account in the semiempirical
values. Furthermore, the additivity rule [41] is generally only
valid at intermediate and high electron energies.

Figure 5 shows the elastic and inelastic electron-scattering
cross sections calculated using the theoretical method de-
scribed above for electron energies between the first ionization
potential of pyrimidine located at about 10 eV [6] and 1 keV.
However, it should be noted that the present theoretical cross
sections below 20 eV are questionable because of the limited
validity of the SCOP model in the low-energy region [22].
The inelastic-scattering cross sections are compared to the
total ionization cross sections that were computed using the
BEB model [10]. The model uses the binding energy Bi , the
average electron kinetic energy Ui , and the electron occupation

FIG. 5. Electron-scattering cross sections σ of pyrimidine cal-
culated using the SCOP model [9]: (—) elastic-scattering cross
section, (- - -) inelastic-scattering cross section, (–·–·–) ionization
cross section, and (····) electron-scattering cross section arising due
to rotational excitations.

number Ni to calculate the partial ionization cross sections σi

of the ith molecular orbital:

σi(ti) = 4πa2
0Ni(R/Bi)2

ti + ui + 1

×
[

ln ti

2

(
1 − 1

t2
i

)
+ 1 − 1

ti
− ln ti

ti + 1

]
, (24)

where ti = T/Bi , ui = Ui/Bi , a0 is the Bohr radius, and R

is the Rydberg energy. The total ionization cross section σion

is then obtained by summing up the partial ionization cross
sections of the molecular orbitals:

σion(T ) =
No∑
i=1

σi(ti), (25)

where No is the number of the occupied molecular orbitals.
The values of the binding energy Bi and of the average electron
kinetic energy Ui were determined by means of the quantum
chemical code GAUSSIAN 09 [24] deploying the 6-311G∗∗
set.

Apart from the shoulderlike structure of the elastic-
scattering cross section at electron energies around 20 eV,
the three cross sections depicted in Fig. 5 show usual energy
dependence. The inelastic scattering and ionization cross
sections rise up to a maximal value located around 80 eV
and then decrease monotonically with increasing energy. As
can be seen from Fig. 5, the difference between the inelastic
scattering and total ionization cross section, corresponding to
the excitation cross section, decreases with increasing electron
energy, in accordance with the fact that inelastic scattering at
high electron energies occurs predominantly due to ionization
processes.

Figure 6(a) shows the present experimental results in
comparison to the theoretical TCS of pyrimidine obtained by
summing the elastic- and inelastic-scattering cross sections
depicted in Fig. 5. The solid and dashed lines represent
the theoretical values with and without the contribution of
rotational excitations to the electron scattering, respectively.
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(a)

(b)

FIG. 6. (Color online) (a) Present experimental TCS (◦) of
pyrimidine in comparison to the theoretical values (—) obtained
using the SCOP model [9]: (- - -) theoretical values without the
contribution of rotational excitations to the electron scattering, (–·–·–)
semiempirical data of Zecca et al. [6] without rotational excitations,
and (····) semiempirical data of Zecca et al. [6] including rotational
excitations. (b) Theoretical TCS (—) of benzene calculated by means
of the SCOP model [9] in comparison to experimental data: (�)
Możejko et al. [37], (�) Sueoka [38], and (♦) Makochekanwa
et al. [42].

Despite the limited validity of the SCOP model below 20 eV
[22], the theoretical values including the contribution of
rotational excitations are shown for electron energies down
to 4 eV for the sake of completeness in comparing with the
available experimental data. Since the predominant part of
electron scattering by pyrimidine below 20 eV arises due to
rotational excitations, it is to be expected that the qualitative
feature of the energy dependence in the low-energy range is not
interfered by the inaccuracy of the SCOP model. Additionally,
the present experimental values are compared to the data of
Zecca et al. [6] who employed the independent-atom screened
additivity rule [7,8] and also the Born approximation in
determining the rotational excitation cross sections.

If the contribution of rotational excitations is included,
the experimental data are generally lower than the present
theoretical TCS, while they are qualitatively well reproduced
by the results of Zecca et al. [6] for electron energies down to
10 eV. The greatest deviation between the present experimental
and theoretical data was found at electron energies around
30 eV where the theoretical values are about 50% higher
than the experimental results. Above 30 eV, the deviation
between both data decreases with increasing energy to vanish
at high electron energies. It is also evident from Fig. 6(a)
that the present theoretical TCS without the contribution
of the rotational excitation reproduce the experimental data
qualitatively well in the energy range between 20 eV and 1 keV,
suggesting that the contribution of rotational excitations to the
TCS of pyrimidine may either be overestimated in the present
calculation or not resolved in the measurement, which would
lead to a lowering of the experimental TCS. The latter can
be caused by the finite angular and energy resolution of the
electron energy analyzer that are not sufficient to discriminate
against the electrons scattered due to rotational excitations.

In order to investigate the influence of rotational excitations
on the deviation between the experimental and theoretical val-
ues, TCS of benzene, which has no permanent dipole moment
because of its symmetry and therefore vanishing rotational
excitation cross sections for electrons, were calculated using
the SCOP model and compared to the experimental data
measured by the Gdańsk group [37]. The experimental data
of the Gdańsk group were chosen for the comparison because
their experimental setup, consisting of a linear transmission
apparatus and an electron-energy analyzing device with an
angular resolution of 0.7 msr is similar to that used in this
work.

It is evident from Fig. 6(b) that the experimental TCS of
benzene by Możejko et al. [37] are reproduced by the present
theoretical data almost within the experimental uncertainties
over the entire energy range, apart from the energy region
around 25 eV, where both data deviate up to 15% from
each other. A good agreement could also be found between
the present theoretical values and the experimental results of
Makochekanwa et al. [42]. However, the data of Sueoka [38]
deviate significantly from the present theoretical values for
electron energies up to 200 eV.

The good agreement of the theoretical TCS of benzene
with the measured results of the Gdańsk group [37] whose
experimental setup was similar to that of this work supports
the assumption that the discrepancy between the present
theoretical and experimental data for pyrimidine may mainly
arise due to insufficient resolving power of the present appa-
ratus with respect to the electron-scattering processes caused
by rotational excitations. Indeed, the angular distribution of
these processes is sharply peaked in the forward direction.
According to the estimate carried out using the formula for the
differential cross section given in Ref. [35], the part of electrons
scattered due to rotational excitations within the detection solid
angle of the present experiment makes up about 60%–70% of
the total rotational excitation cross section at electron energies
around 30 eV. Apart from rotational excitations, nonresolved
vibrational transitions and the counting of electrons scattered
at metallic surfaces such as slits and apertures which can
result in an effective detection solid angle being larger than
the geometrically defined one can lead to a decrease of the
measured TCS.

V. CONCLUSION

Total electron-scattering cross sections of pyrimidine were
measured for electron energies from 5 eV to 1 keV by means
of a linear transmission device. The results of this work
agree surprisingly well with the semiempirical values obtained
using the additivity rule [41] and with the experimental
TCS of the isoelectronic molecule benzene determined by
Mozejko et al. [37] over the whole measured energy range.
The good agreement, particularly at low electron energies,
is remarkable since one expects the relatively high perma-
nent dipole moment of pyrimidine to strongly increase its
TCS with decreasing electron energy when compared to
the case of the TCS of benzene and of the semiempirical
values.

The present experimental data are rather well reproduced
by the theoretical values of Zecca et al. [6] that were obtained
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using the independent-atom screened additivity rule [7,8]
including the contribution of rotational excitations to the
electron scattering. On the other hand, the theoretical TCS of
pyrimidine calculated with the SCOP model [9] that employs
the molecular electron density distribution and is therefore
expected to be more accurate than the IAM-SCAR model [7,8]
deviate significantly from the experimental data at low electron
energies if rotational excitations are taken into account.

The similar energy dependence observed between the
present TCS of pyrimidine and the TCS of benzene [37],
particularly at low electron energies, the qualitatively good
agreement between the experimental data and theoretical re-
sults for pyrimidine when disregarding rotational excitations,
and the good reproduction of the experimental TCS by the

theoretical results in the case of benzene suggest that the
electrons scattered due to rotational excitations may be incom-
pletely filtered out in the present measurement. For the precise
measurement of the TCS of molecules with high permanent
dipole moments, an experimental setup with a high angular
and energy resolving power or an accurate determination of
�σ̄el including rotational excitations is therefore envisaged.
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