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1Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
2Physikalisches Institut, Universität Heidelberg, Im Neuenheimerfeld 226, D-69120 Heidelberg, Germany

3Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets, St. Petersburg 198504, Russia
4Institut für Theoretische Physik, TU Dresden, Mommsenstraße 13, D-01062 Dresden, Germany

5Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
(Received 24 August 2013; published 30 September 2013)

We have performed ab initio QED calculations of the (1s)2(2s)22p3/2-(1s)2(2s)22p1/2 fine-structure splitting
along the boron isoelectronic sequence for all ions with 17 � Z � 100. This level splitting was evaluated within
the extended Furry picture and by making use of four different screening potentials in order to estimate the effects
of interelectronic correlations. The accuracy of the predicted transition energies has been improved significantly
when compared with previous computations.

DOI: 10.1103/PhysRevA.88.032518 PACS number(s): 31.30.jf, 31.10.+z

I. INTRODUCTION

Today, quantum electrodynamics (QED) is known as the
most accurate theory for calculating the level structure and
properties of atomic few-electron systems. This theory enables
one to derive rigorous formulas and to compute various
properties of atoms and ions, such as level energies, transition
probabilities, hyperfine parameters, or the g factor of bound-
state electrons in highly charged ions, just to name a few. In
practice, however, various difficulties arise and often hamper
the computations within the rigorous QED formalism. For the
middle- and high-Z systems, for example, the calculations
should be performed for all orders in αZ (with α ≈ 1/137
being the fine-structure constant), but today, yet only the two
lowest orders in α are accessible for numerical computations.

The largest difficulty in calculating many-electron systems
arises from the interelectronic interaction, and this problem
rapidly enhances as more electrons get involved in the
computations. For ions with three or more electrons, therefore,
computational techniques are usually required that help merge
the advantages of the ab initio QED theory with techniques
from relativistic atomic structure theory, such as the relativistic
configuration interaction (CI) or the multiconfigurational
Dirac-Fock (DF) methods. Although these “atomic-structure”
techniques are typically restricted to the no-virtual-pair
approximation, they allow incorporating the interelectronic
interaction within the Breit approximation to a high order or
even to all orders.

In order to explore the power and feasibility of such merged
techniques, the electric dipole forbidden 2p3/2-2p1/2 transition
in boronlike ions may serve as a very good test bed. Namely,
whereas, the fine-structure splitting between these (two)
levels is a pure relativistic effect and with no nonrelativistic
counterpart, the boronlike ions are still relatively simple and,
hence, enable one to incorporate the interelectronic interaction
with third and higher orders. Therefore, the relativistic and
QED corrections are not masked in this case by the often
dominating nonrelativistic contributions. In addition, highly
accurate measurements of the 2p3/2-2p1/2 fine-structure split-
ting have become available during recent years. For boronlike
argon, for example, this level splitting has been measured
with an unprecedented relative accuracy of 10−7 [1–3], and

the further development of a trapping technique for highly
charged ions will also likely allow extending such precision
experiments towards heavy ions [4].

In Ref. [5], we have elaborated the method for many-
electron calculations that combines the relativistic CI and ab
initio QED techniques. This approach was applied successfully
in this reference in order to compute the energy of the
2p3/2-2p1/2 forbidden transition in boronlike argon with a
four times higher accuracy than in previous computations. In
the present paper, we extend these calculations to all ions
along the boron isoelectronic sequence with nuclear charge
17 � Z � 100.

The paper is organized as follows. In the next section,
we describe the basic formalism and present the general
formulas for the calculations of level energies. In Sec. III,
we then give further details of our numerical procedure as
applied in the evaluations of the various QED and many-body
contributions. This especially includes a brief description of
an approach for calculating the one-electron self-energy (SE)
diagram, whereas, all other details about the evaluation of
the first- and second-order corrections to the free-electron
Green’s function are deferred to the Appendix below. The
numerical results of our calculations are then presented in
Sec. IV, and a brief summary is given in Sec. V. Relativistic
units (h̄ = c = m = 1) are used throughout this paper if not
stated otherwise.

II. BASIC FORMULAS

The Furry picture is traditionally used in QED calculations
to describe the properties of heavy highly charged ions. For
zeroth order, this picture treats the electrons as moving in the
Coulomb field of the nucleus only and not interacting with each
other. The wave function of each individual electron, therefore,
is the solution of the Dirac equation with the potential of the
extended nucleus Vnuc,

[−iα · ∇ + βm + Vnuc(r)]ψn(r) = εnψn(r). (1)

The interelectronic interaction and the coupling to the quan-
tized electromagnetic field is then accounted for by the
perturbation theory. Of course, such an approach works well
if the interelectronic interaction is small when compared to

032518-11050-2947/2013/88(3)/032518(12) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.032518


A. N. ARTEMYEV et al. PHYSICAL REVIEW A 88, 032518 (2013)

the binding energies of all electrons involved, whereas, its
convergence is often slow for the case of strong interelectronic
interactions.

The convergence of the perturbation series can be acceler-
ated by replacing the nuclear potential in the Dirac equation
with an effective potential that partially accounts for the
screening of the nuclear potential by the other electrons,

Vnuc(r) → Veff(r) = Vnuc(r) + Vscr(r). (2)

Then, to avoid the double counting of the screening contribu-
tions, the interaction with −Vscr(r) must be added perturba-
tively.

In this paper, we have used four different screening
potentials whose choice will be discussed below. For the
moment, let us just mention here that the calculation of the
(1s)2(2s)22p level energies is difficult in a pure Coulomb
field (or even by including a finite size of the nucleus)
because of the (quasi)degeneracy of the (1s)2(2s)22p3/2 and
(1s)2(2p1/2)22p3/2 levels. The use of some screening potential
removes this degeneracy and significantly simplifies the
derivation of the basic formulas, making both (1s)2(2s)22p

levels isolated with regard to other levels of the same
symmetry.

A. Interelectronic interaction within the QED approach

The calculations of the 2p3/2-2p1/2 transition energy can
conveniently be performed in a few separate steps. First, we
will calculate those parts that correspond to the Feynman
diagrams without any photon or electron loops, and as they
naturally arise in both, the standard QED and non-QED
approaches. These diagrams are shown in Fig. 1. The dashed
lines with triangles at the ends refer to the local potential Vscr,
that was added to the Dirac Hamiltonian, but is taken here
with the opposite sign in order to subtract it from the (total)
interaction Hamiltonian as mentioned after Eq. (2). Since
we are just interested in the 2p3/2-2p1/2 transition energy,
no diagrams occur with only core electrons as incoming
(outgoing) electron lines as they will cancel each other. For this
reason, here and throughout the paper, we will discuss only
those diagrams where one of the incoming (outgoing) electron
lines corresponds to one of the (valence) 2p electrons.

(a) (b) (c) (d)

(e) (f) (g)

FIG. 1. The interelectronic interaction diagrams. The double lines
denote the bound electrons moving in the effective potential (2),
whereas, the dashed lines with triangles denote the total screening
potential but taken with the opposite sign.

The formulas for calculating diagrams (a)–(d) in Fig. 1
can be found in our previous papers on the two-photon
exchange corrections to the energy levels of lithiumlike ions;
see, e.g., Ref. [6] for further details. Since boronlike ions have
a (1s)2(2s)2 core, analog expressions as for the 1s core orbitals
for lithiumlike ions must also be included for the 2s orbitals
here. For the contribution of diagrams (e)–(g) in Fig. 1, one
can easily obtain the following formulas:

�E(e) = Vvv, (3)

�E(f ) =
∑
n�=v

|Vvn|2
εv − εn

, (4)

�E(g) = 2
∑

c=1s,2s;μc

⎡
⎣∑

n�=v

∑
P

(−1)P
IPcPvcn(εPc − εc)Vnv

εv − εn

+
∑
n�=c

∑
P

(−1)P
IPcPvnv(εPv − εv)Vnc

εc − εn

⎤
⎦

−
∑
n=c

(Vvv − Vnn)I ′
vnnv(εv − εn). (5)

For the sake of brevity, here we introduced the following nota-
tions: Vab = 〈a| − Vscr|b〉, Iabcd (ω) = 〈ab|I (ω)|cd〉, I (ω) =
e2αμανDμν(ω), and I ′

abcd (ω) = 〈ab| ∂
∂ω

I (ω)|cd〉, where D de-
notes the photon propagator, P denotes the permutation opera-
tor, and (−1)P denotes the sign of the permutation. In all these
expressions, c refers to the wave functions of the (one-electron)
core states (1s or 2s), whereas, v denotes the valence (2p)
states, and n runs over all possible solutions of the one-electron
Dirac equation with the given effective potential Eq. (2).

B. QED corrections

Apart from the diagrams in Fig. 1 for the interelectronic
interaction, one has to evaluate the diagrams that arise only
within a rigorous QED approach. Figure 2 displays all
QED diagrams that are presently available for numerical
computations. Note that the set of second-order diagrams
is not yet complete since it omits the one-electron two-loop
diagrams; the contribution of these diagrams will be discussed
below in Sec. II D.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i ) (j)

FIG. 2. First- and second-order QED diagrams (without the
one-electron two-loop diagrams) for systems with a single valence
electron. The notation is the same as in Fig. 1.
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The first-order diagrams are shown in Figs. 2(a) and 2(f).
These diagrams are known as one-loop self-energy (SE) and
vacuum-polarization (VP) diagrams. For H-like ions, the SE
diagram was calculated first by Mohr [7,8], whereas, the VP
diagram was calculated by Soff and Mohr [9] and by Manakov
et al. [10]. Formally, the expressions for these two diagrams
look rather simple if we introduce the SE operator 
(ε) and
the VP potential UVP as follows:

〈a|
(ε)|b〉 = i

2π

∫ ∞

−∞
dω

∑
n

〈an|e2αμανDμν(ω)|nb〉
ε − ω − εn(1 − i0)

, (6)

UVP(x) = α

2πi

∫
dr′ 1

|r′ − r|
∫ ∞

−∞
dω Tr[G(ω; r,r′)], (7)

where G(ω; r,r′) is the bound-electron Green’s function and
Dμν is the photon propagator.

With these operators at hand, the formulas for the en-
ergy contributions of the electron’s self-energy and vacuum

polarization can simply be written in the form

�ESE = 〈v|
(εv)|v〉, (8)

�EVP = 〈v|UVP|v〉. (9)

However, both the SE and the VP contributions are divergent;
they become finite only after renormalization. The procedure
of the renormalization is well known and has been described
elsewhere; see Refs. [7,9,11–13] for details.

All the other diagrams in Fig. 2 represent the so-called
screened QED corrections. These diagrams can conveniently
be split into some irreducible part in which the energy of the
intermediate state differs from the energy of the initial (final)
state and some reducible part to cover the remaining contribu-
tions. This decomposition and the formulas for diagrams (b),
(d), (g), and (i) in Fig. 2 can be found, for example, in our
previous paper [14]. The derivation of the formulas for the
diagrams (c), (e), (h), and (j) yields (see, e.g., Ref. [15]),

�E(c) = i

2π

∫ −∞

−∞
dω

∑
n1,n2

Vn1n2Ivn2n1v(ω)

[εv − ω − εn1 (1 − i0)][εv − ω − εn2 (1 − i0)]
, (10)

�E(e) = 2〈v|
(εv)|ξv〉 + Vvv〈v|
′(εv)|v〉, (11)

�E(h) = 1

2πi

∫ −∞

−∞
dω

∑
n1,n2

Vn1n2Ivn2vn1 (0)

[εv − ω − εn1 (1 − i0)](εv − ω − εn2 (1 − i0)]
, (12)

�E(j ) = 2〈v|UVP|ξv〉. (13)

Here, we have introduced the correction to the wave function
of the valence electron,

|ξv〉 =
∑
n�=v

Vvn|n〉
εv − εn

, (14)

owing to the screening potential. Further details of the
numerical evaluation of these diagrams will be discussed in
the next section.

C. Third and higher orders of the interelectronic interaction

In the previous subsections, we explained how the expres-
sions of the first- and second-order QED diagrams can be
found for systems with a single valence electron. As pointed
out before, however, third- and higher-order contributions from
the electron-electron interaction also are important and need
to be evaluated at least within the Breit approximation. In
the third step of the present computations, we have evaluated
these contributions by means of the relativistic configuration-
interaction Dirac-Fock-Sturm (CI-DFS) method [16]. The
following procedure has been employed in order to extract
the desired contributions from the CI-DFS data. We represent
the Hamiltonian of the CI-DFS calculations in the form

H = H0 + λHint, (15)

where H0 is the sum of the one-electron Dirac Hamiltonians
with the effective potential (2) and Hint accounts for the

interaction of the electrons with each other and with −Vscr.
Moreover, here, λ is an arbitrary parameter so that H coincides
with the exact Hamiltonian for λ = 1. In this representation,
the energy E becomes a function of the parameter λ, and one
can use the expansion of E in powers of λ,

E = E(0) + λE(1) + λ2E(2) + E(�3)(λ). (16)

In this expression, E(�3)(λ) = O(λ3) denotes all terms of the
third and higher orders in λ. It can be seen that the coefficient
E(1) corresponds to the contribution of diagrams (a) and (e) in
Fig. 1 and the coefficient E(2) corresponds to diagrams (b), (d),
(f), and (g). In the Coulomb gauge, which is generally used
to derive the Dirac-Coulomb-Breit Hamiltonian, diagram (c)
contributes only beyond the Breit approximation.

In some more detail, the coefficients E(0), E(1), and E(2)

can be extracted numerically from the CI-DFS calculations as
follows:

E(0) = lim
λ→0

E, (17)

E(1) = lim
λ→0

E − E(0)

λ
, (18)

E(2) = lim
λ→0

E − E(0) − λE(1)

λ2
. (19)

Thereafter, the coefficient E(�3) is calculated and for λ = 1
represents the contribution of the interelectronic interaction
in third and higher orders within the Breit approximation. In
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addition, in order to estimate the accuracy of this (numerical)
procedure, we have calculated the diagrams (a), (b), and
(d)–(g) by using our code for the QED calculations described
in Sec. II A but within the (low-frequency) Breit approximation
only, i.e., by neglecting the frequency-dependent part of
the photon propagator in the Coulomb gauge as well as
all contributions from the negative energy continuum. The
obtained results have been compared with the coefficients E(1)

and E(2) as extracted from the CI-DFS calculations, and very
good agreement was found between these numbers from two
different codes and for all four screening potentials.

D. Two-loop one-electron diagrams and recoil contributions

To complete the rigorous QED treatment of the 2p3/2-2p1/2

transition energy in second order in α, one has to also evaluate
the two-loop one-electron diagrams. The full treatment of these
diagrams is a very demanding task, which has not been solved
yet in all orders in αZ, even for the simplest case of H-like
ions in their ground states. Recent progress in this treatment has
been achieved by Yerokhin and co-workers who evaluated the
complete set of two-loop self-energy diagrams for 2p states
of hydrogenlike ions [17] and performed the evaluation of
the rest of the two-loop diagrams [18] using the so-called
free-loop approximation if the complete calculations were
impossible. To incorporate the contribution of one-electron
two-loop diagrams into our calculations for nuclear charges
Z � 60, we interpolated the data obtained in Refs. [17,18].
For lower values of Z, the evaluation of the complete set of
diagrams has not yet been performed. Therefore, we estimated
this contribution by using the analytical αZ expansion as
reported in Ref. [19].

The calculation of the nuclear recoil corrections has been
performed for all orders in αZ using the same approach as in
our recent paper [2] in which the isotope shift of the forbidden
transition energies of boron- and berylliumlike argon has been
investigated.

III. NUMERICAL EVALUATION

Having derived the basic formulas, we are now prepared
to describe the details of the numerical computation of the
2p3/2-2p1/2 transition energy.

A. Choice of the screening potential

As mentioned above, the evaluation of the 2p3/2-2p1/2

transition energy becomes quite complicated if one starts from
the Hamiltonian of the noninteracting electrons. There are two
reasons for this difficulty. On one hand, the 2s and 2p1/2 one-
electron states are degenerate in a pure Coulomb field of the
nucleus and, thus, the levels of the five-electron configurations
(1s)2(2s)22p3/2 and (1s)2(2p1/2)22p3/2 are degenerate in the
lowest order. This requires formulating the perturbation theory
for some degenerate level space and significantly complicates
the derivation of the formulas. On the other hand, the
interelectronic interaction in boronlike ions is generally not
small for low- and middle-Z ions when compared to the
electron-nucleus one. This fact slows down the convergence
of the perturbation expansion with initially noninteracting
electrons. In order to accelerate this convergence, one may start

from some effective potential that partially incorporates the
screening effects into the unperturbed Hamiltonian. The better
this potential approximates the interelectronic interaction in
the bound-state density, the faster the perturbation series is
expected to converge.

There are different ways to choose the effective potential
for the ground state of an atom or ion. In the present paper, we
have employed four different screening potentials.

Our first choice of the potential is sometimes called the core-
Hartree potential VCH, which is obtained as a self-consistent
solution of the Dirac equation with the potential,

V (r) = Vnuc(r) + α
∑

n=1s,2s

∫
dr′ |ψn(r′)|2

|r − r′| . (20)

This potential includes the interaction of the electrons with
the nucleus as well as the averaged Coulomb interaction of an
electron with the core electrons.

Another potential is generated directly from the wave
functions of the (1s)2(2s)22p states obtained within the
Dirac-Fock approximation. We will call this potential the
local Dirac-Fock potential VLDF; it reproduces the energies
and wave functions of the 2p states at the DF level or better.
The potential VLDF is then constructed by inversion of the
radial Dirac equation with the radial wave functions obtained
in the DF computations [20].

Two other potentials were obtained by using density-
functional-theory techniques. The Perdew-Zunger potential
VPZ has been widely used in molecular and cluster compu-
tations and has been described in Ref. [21]. In the well-known
Slater potential VSl, finally, the exchange interaction of the
electrons is expressed in terms of the one-electron (radial)
density [22],

ρt (r) = 4πr2ρ(r), (21)∫
ρ(r)d3r =

∫ ∞

0
ρt (r)dr = N, (22)

where N is the total number of the electrons. With these
definitions, one can represent the Slater potential in the simple
form

VSl(r) = Vnuc(r) + α

∫ ∞

0

ρt (r ′)
max(r,r ′)

dr ′

− xα

α

r

(
81

32π2
rρt (r)

)1/3

. (23)

In fact, this equation gives rise to a whole set of potentials
which just differ in the value of the constant xα . Following
Slater’s original paper [22], we chose xα = 1. Note that ρt in
Eq. (21) denotes the total one-electron density including the
charge densities of the core and valence electrons. This is in
contrast to the core-Hartree potential that only includes the
density of the core electrons. Because of this difference, the
Slater potential decreases for large radii r → ∞ as −α Z−N

r

and with N = 5 for the boronlike ions. Since we are interested
in the behavior of the valence 2p electron in the screened field
of the nucleus, we added the self-interaction or (so-called)
Latter correction to this potential [23] in order to obtain the
correct asymptotic form −α Z−N+1

r
.

032518-4



AB INITIO CALCULATIONS OF THE 2p3/2- . . . PHYSICAL REVIEW A 88, 032518 (2013)

B. Self-energy computations

Once the screening potentials are selected and the asso-
ciated one-electron spectra are evaluated, we can carry out
all further computations within the extended Furry picture
following analog lines as in our previous calculations of
helium- and lithiumlike ions. The analytical expressions for
these computations are derived in Sec. II, and the numerical
treatment of most contributions is very similar to those in our
previous papers; cf. Refs. [6,14] and references therein.

One of the building blocks for any successful QED calcula-
tion within the extended Furry picture is the Green’s function
of an electron moving in the field of the screened nuclear poten-
tial. As pointed out above, this screened potential removes the
degeneracy between the 2s and the 2p (one-electron) states and
improves the convergence of the perturbation series. However,
whereas, this Green’s function is well known analytically
for a pure Coulomb field (of a pointlike nucleus) and for a
homogeneously charged spherical shell field, such analytical
solutions are not available for an arbitrary external (screening)
potential. Therefore, in order to evaluate the Green’s function
for such a potential, one has either to find them numerically,
solving a corresponding system of differential equations, or to
apply a spectral decomposition,

G(ω) =
∑

n

|n〉〈n|
ω − εn(1 − i0)

, (24)

where the summation runs over the complete Dirac spectrum.
We have applied both approaches in this paper. For the VP
diagram in Fig. 2(f), for example, the Green’s function G(ω)
has been calculated numerically, whereas, a spectral decompo-
sition within a B-spline basis set [24,25] was used to evaluate
the SE diagram in Fig. 2(a). The main reason for this (slightly)
different numerical treatment of the VP and SE contributions
was the availability of the codes already tested in similar
calculations but without using some screening potentials.

For a wide range of nuclear charges 17 � Z � 90, the one-
electron self-energy diagram in Fig. 2(a) is the leading QED
contribution to the 2p3/2-2p1/2 transition energy. For boronlike
ions, however, we could not follow the standard numerical
procedure as applied in Ref. [25] and shown in the upper line
of Fig. 3. In this figure, the lines with the crosses at the ends
denote the interaction with the effective potential Veff (2), i.e.,
the sum of the nuclear and screening potentials. The standard
(upper) expansion in Fig. 3 gives rise to zero- and first-order
terms �ESE

0 + �ESE
1 , that are both divergent. These two terms

should be renormalized together with the mass-counter term
and should be calculated within the momentum representation
(see Ref. [26] for details). The remaining higher-order term
�ESE

�2 is convergent and usually is calculated in the coordinate
space by using a partial-wave decomposition for the electron
propagators.

Making use of this decomposition (in the upper line of
Fig. 3) for the SE evaluation for the 2p electron, we found that
the partial-wave expansion of the higher-order term �ESE

�2
converges very slowly for all middle-Z elements. This made
it impossible to apply the B-spline method for generating a
spectral representation of the Green’s function because of
the very rapid increase in the number of B splines for high
angular quantum numbers κ . For such high values of κ , one

SE SE SE

SE SE SE SE

FIG. 3. Decomposition of the one-electron self-energy diagram
into various contributions. Whereas, the upper line represents the
traditional decomposition by means of a zero-, first-, and higher-
order term �ESE

0 + �ESE
1 + �ESE

�2, the lower line is used in the
present paper. It gives rise to a second-order term �ESE

2 , which is
calculated by using the analytical representation of the free-electron
Green’s function and a higher-order term �ESE

�3. This decomposition
ensures an improved convergence and, thus, makes the second-order
SE computation feasible for many-electron ions; see Sec. III B for
further details. The dashed lines with crosses at the ends denote the
sum of the nuclear and screening potentials.

needs to use an enormously large number of B splines in order
to obtain an adequate representation of the Green’s function.
Moreover, the numerical evaluation of the radial components
of the Green’s function also becomes very ineffective for large
angular momentum quantum numbers.

For these reasons, we had to modify the traditional
decomposition of the SE diagram in Fig. 3. An alternative
scheme is shown in the lower line of this figure in which the
slowly convergent part of �ESE

�2, that involves two external
potentials, is separated and is calculated in coordinate space
by using the analytical representation for the free-electron
propagator. The details of this decomposition are presented
in the Appendix. For the modified higher-order term �ESE

�3, a
fast convergence with the number of partial waves was found,
and this (remaining) term was calculated by means of the
B-spline method.

To demonstrate the capability of this revised decomposition,
the SE diagram has been calculated for the 2p1/2 and 2p3/2

states of hydrogenlike argon with a pointlike nucleus. In
Tables I and II, we display the partial-wave contributions
to the one-electron self-energy of hydrogenlike argon. In
particular, we show how the second-order term �ESE

2 in Fig. 3
(Table I) and the higher-order term �ESE

�3 (Table II) converge
as functions of κ , the angular momentum quantum number of
the partial waves. As seen from these tables, �ESE

2 converges
much slower than the modified higher-order term �ESE

�3.
Apparently, even 100 partial waves (−50 � κ � 50) are not
yet sufficient to achieve good accuracy for the second-order
term �ESE

2 alone, whereas, just about 10 partial waves are
enough if the cancellation of the second- and higher-order
contributions is taken into account as this is performed by the
modified term �ESE

�3. In Table III, we also present the zero- and
first-order terms �ESE

0 + �ESE
1 , calculated in the momentum

representation. The sum of these four terms gives rise to the
total self-energy �ESE, which can be compared to the values
by Mohr [27], and nicely demonstrates the accuracy of the
present approach.
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TABLE I. Partial-wave contributions to the second-order term
�ESE

2 as displayed in the lower line of Fig. 3 for hydrogenlike argon.

Values are given in units of α

π

(αZ)4

8 mc2.

|κ| 2p1/2 2p3/2 2p1/2-2p3/2

1 48.6150 2.2870 46.32799
2 3.7808 47.1729 −43.39209
3 1.2057 3.1191 −1.91341
4 0.5769 0.9464 −0.36951
5 0.3304 0.4493 −0.11888
6 0.2095 0.2588 −0.04935
7 0.1419 0.1658 −0.02389
8 0.1008 0.1137 −0.01283
9 0.0742 0.0816 −0.00743
10 0.0562 0.0607 −0.00457
11 · · · 20 0.2021 0.2117 −0.00954
21 · · · 30 0.0409 0.0416 −0.00071
31 · · · 40 0.0138 0.0140 −0.00015
41 · · · 50 0.0061 0.0061 −0.00005
>50 0.0075(20) 0.0075(20) −0.00001
Total 55.3617(20) 54.9361(20) 0.42558

C. Vacuum-polarization computations

Figure 2(f) shows the one-electron vacuum-polarization
diagram as it appears in the lowest order in α. For electrons
in an effective potential, it is convenient to consider this
diagram together with diagram (h) from the same figure. Both
diagrams can be computed in the traditional approach [9] by
a decomposition of the vacuum loop electron propagator in
powers of the external potential. In this expansion, the first
nonvanishing (also called the Uehling) term contains either
one interaction with the full effective potential [diagram (f)]
or with its screening part only but then with the opposite sign
[diagram (h)]. Since the sum of these two potentials is just
equal to the electron-nucleus interaction, the two diagrams (f)
and (h) in Fig. 2 give rise within the Uehling approximation to
the total contribution,

�EUe
(f )+(h) = 〈v|UUe|v〉. (25)

TABLE II. The same as in Table I but for the higher-order term
�ESE

�3 in Fig. 3.

|κ| 2p1/2 2p3/2 2p1/2-2p3/2

1 59.2891 0.5039 58.78517
2 0.3770 58.3431 −57.96609
3 0.0552 0.3133 −0.25805
4 0.0172 0.0420 −0.02482
5 0.0073 0.0127 −0.00535
6 0.0037 0.0054 −0.00169
7 0.0021 0.0027 −0.00066
8 0.0013 0.0016 −0.00030
9 0.0008 0.0009 −0.00015
10 0.0005 0.0006 −0.00008
>10 0.0015(3) 0.0017(3) −0.00015(3)
Total 59.7557(3) 59.2279(3) 0.52782(3)

TABLE III. Individual contributions to the one-electron self-
energy in hydrogenlike argon. All values are shown in units of
α

π

(αZ)4

8 mc2.

2p1/2 2p3/2 2p1/2-2p3/2

�ESE
0 −547.0716 −543.5282 −3.54333

�ESE
1 431.8547 429.5031 2.35160

�ESE
2 55.3617(20) 54.9361(20) 0.42558

�ESE
�3 59.7557(3) 59.2279(3) 0.52782(3)

�ESE −0.0995(20) 0.1389(20) −0.23831(3)
Ref. [27] −0.09751 0.14082 −0.23833

In this expression, the Uehling potential needs to be calculated
just for the nuclear charge density ρn(r),

UUe(r) = −8

3
α2Z

∫ ∞

0
dr ′r ′ρn(r ′)

×
∫ ∞

1
dt

(
1 + 1

2t2

) √
t2 − 1

t2

× exp (−2|r − r ′|t) − exp [−2(r + r ′)t]
4rt

. (26)

The calculation of the remaining part of the VP diagrams
(f) and (h) in Fig. 2, also known as the Wichmann-Kroll
contribution, has been performed following our previous paper
[28]. This is achieved by the partial-wave decomposition
of the electron propagator and the subsequent evaluation
of the difference between the diagram as a whole and the
first nonvanishing (Uehling) term in coordinate space. These
computations require the evaluation of the bound-electron
Green’s function, which was performed by using the numerical
solution of the corresponding differential equations.

D. Screened QED diagrams

The screened QED contributions to the transition energy
are defined by the diagrams displayed in Fig. 2 [diagrams
(b)–(e) for the screened self-energy and diagrams (g), (i),
and (j) for the screened vacuum polarization]. Let us recall
here that diagram (h) has already been considered together
with diagram (f) in Sec. III C. The evaluation of the screened
vacuum-polarization diagrams (i) and (j) is relatively simple
owing to the fact that these diagrams contain the local vacuum-
polarization potential. Once this potential has been generated,
the evaluation of these two diagrams can be performed in
the same way as diagrams (f) and (g) in Fig. 1, replacing
the screening potential hereby with the vacuum-polarization
potential. Moreover, the calculation of diagram (g) in Fig. 2
can be performed in the same way as the one-photon exchange
diagram (a) in Fig. 1 by replacing the photon propagator
I (ω) with the modified photon propagator (within the Uehling
approximation),

I
(g)
VP (ω; r,r′) = α

α1μα
μ

2

|r − r′|
2α

3π

∫ ∞

1
dt

(
1 + 1

2t2

) √
t2 − 1

t2

× exp (−
√

4t2 − ω2|r − r′|). (27)

Here, the Uehling approximation is just enough to compute
diagram (g) since the remaining Wichmann-Kroll contribution
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is known to be negligible (on the order of 10−3 eV for
lithiumlike uranium), cf. our previous paper [29].

The computation of the screened SE diagrams in Fig. 2
can be conveniently split into the calculations of the vertex
and wave-function correction terms. The irreducible part of
diagrams (d) and (e), for which the energy of the intermediate

state is not equal to the energy of the initial (final) state, can
easily be expressed in terms of a wave-function correction
to diagram (a) and can be calculated with formulas found in
Ref. [30].

For the vertex diagrams (b) and (c) in Fig. 2, the following
formulas were derived by Yerokhin and co-workers [30]:

�Ever =
∑

c=1s,2s

∑
μv

∑
P

(−1)P
∑
n1n2

i

2π

∫ ∞

−∞
dω

[
In1Pvn2v(εv − εP v)IPcn2n1c(ω)

[εPc − ω − εn1 (1 − i0)][εc − ω − εn2 (1 − i0)]

+ In1Pccn2 (εP c − εc)IPvn2n1v(ω)

[εPv − ω − εn1 (1 − i0)][εv − ω − εn2 (1 − i0)]

]
+

∑
n1n2

i

2π

Vn1n2Ivn2n1v(ω)

[εPv − ω − εn1 (1 − i0)][εv − ω − εn2 (1 − i0)]
, (28)

where P is the permutation operator and (−1)P is the sign associated with this permutation.
Formula (28) is just a formal expression. It contains both ultraviolet and infrared divergences. The traditional way to calculate

such vertex diagrams is to isolate the ultraviolet-divergent part of the free-electron propagator and to calculate it in momentum
representation once the renormalization has been performed. The remaining part of the diagrams can then be calculated by
summing the partial-wave differences between the total expression and the related expression with the bound-electron propagators
replaced by the free-electron ones. In this summation, only a few infrared-divergent terms with poles of second order at ω = 0
appear, and these terms should be calculated together with the infrared-divergent terms of diagrams (d) and (e) in Fig. 2. Since
these divergences cancel each other, the sum of the remaining terms converges and describes the physical part of the corresponding
self-energy diagrams; see Ref. [30] for further details.

To accelerate the computations, i.e., the convergence of the sum over the partial waves, the following procedure has been
applied. Since Eq. (28) contains a double summation over n1 and n2, the CPU time can be reduced considerably if we can rewrite
it in a form where the two summations are carried out independent of each other. For example, let us consider the direct part of
the first term in Eq. (28). To remove the double summation over n1 and n2, we may rewrite this term as follows:

∑
n1n2

In1vn2v(0)Icn2n1c(ω)

[εc − ω − εn1 (1 − i0)][εc − ω − εn2 (1 − i0)]
=

∑
n1=n2

In1vn1v(0)Icn1n1c(ω)

[εc − ω − εn1 (1 − i0)]2

+
∑

n1 �=n2

1

εn1 − εn2

[
In1vn2v(0)Icn2n1c(ω)

εc − ω − εn1 (1 − i0)
− In1vn2v(0)Icn2n1c(ω)

εc − ω − εn2 (1 − i0)

]
,

(29)
where the first term now contains only a single summation over n1. If, in addition, we introduce the energy-independent effective
wave functions,

|ñ1〉 =
∑

n2 �=n1

1

εn1 − εn2

In1vn2v(0)|n2〉, (30)

|ñ2〉 =
∑

n1 �=n2

1

εn1 − εn2

In1vn2v(0)|n1〉, (31)

we get ∑
n1n2

In1vn2v(0)Icn2n1c(ω)

[εc − ω − εn1 (1 − i0)][εc − ω − εn2 (1 − i0)]
=

∑
n1

In1vn1v(0)Icn1n1c(ω)

[εc − ω − εn1 (1 − i0)]2
+

∑
n1

Icñ1n1c(ω)

εc − ω − εn1 (1 − i0)

−
∑
n2

Icn2ñ2c(ω)

εc − ω − εn2 (1 − i0)
. (32)

Apart from the clearly reduced CPU time, this algorithm
enables one to calculate the integral over the energy much more
accurately and with less points for the numerical integration.
The latter advantage arises from the form of the integrand for
small values of the differences εc − εn1,n2 , which possesses
only one pole, instead of two poles in the initial function. A
very similar approach can also be utilized for all other terms
in Eq. (28).

IV. RESULTS AND DISCUSSION

Table IV displays the contributions of the individual
interelectronic and QED terms to the 2p3/2-2p1/2 transition
energy for four selected boronlike ions. These contributions
are calculated for the four different screening potentials
from Sec. III A. For each ion, the first line (EDirac) displays
the difference between the one-electron energies of the 2p

electrons as obtained from the Dirac equation with the effective
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TABLE IV. Individual contributions to the 2p3/2-2p1/2 transition
energy in boronlike ions. Results (in eV) are shown for four selected
ions and four screening potentials as described in Sec. III A. See text
for details.

Ion VCH VDF VPZ VSl

Cl12+ EDirac 2.3276 2.4226 2.3805 2.5460

E1
Breit −0.1011 −0.2099 −0.1560 −0.3531

E2
Breit −0.1410 −0.1188 −0.1082 −0.0952

E
�3
Breit 0.0686 0.0603 0.0378 0.0563

E1
QED 0.0052 0.0053 0.0053 0.0057

E2
QED 0.0003 −0.0000 0.0001 −0.0004

E2l
QED −0.0000 −0.0000 −0.0000 −0.0000

Erec −0.0001 −0.0001 −0.0001 −0.0001

Etotal 2.1595 2.1593 2.1594 2.1592

Xe49+ EDirac 366.7933 371.5016 369.3500 377.1085

E1
Breit −5.7788 −10.7097 −8.4134 −16.6264

E2
Breit −4.8274 −4.3985 −3.8829 −3.9515

E
�3
Breit 1.6745 1.4625 0.8049 1.3186

E1
QED 0.6084 0.6149 0.6102 0.6217

E2
QED 0.0276 0.0219 0.0216 0.0163

E2l
QED −0.0010 −0.0010 −0.0010 −0.0010

Erec −0.0036 −0.0036 −0.0037 −0.0038

Etotal 358.4930 358.4880 358.4857 358.4825

U87+ EDirac 4139.3664 4175.4560 4162.5556 4218.0356

E1
Breit −47.1482 −84.4977 −71.2385 −128.9683

E2
Breit −10.1432 −8.7456 −7.9234 −6.7762

E
�3
Breit 3.4183 3.2194 2.0756 3.0783

E1
QED 1.8786 1.8614 1.7259 1.7504

E2
QED 0.3739 0.3960 0.4014 0.4536

E2l
QED −0.0234 −0.0234 −0.0234 −0.0234

Erec −0.0383 −0.0388 −0.0389 −0.0396

Etotal 4087.6841 4087.6273 4087.5342 4087.5104

Fm95+ EDirac 6290.0872 6343.1819 6326.1677 6406.1094

E1
Breit −69.1618 −124.0741 −106.7144 −189.8123

E2
Breit −11.7332 −9.8482 −8.7854 −7.0436

E
�3
Breit 4.2250 4.0547 2.7093 3.9716

E1
QED 0.3517 0.3225 0.0946 −0.1205

E2
QED 0.6906 0.7501 0.7603 0.8932

E2l
QED −0.0423 −0.0423 −0.0423 −0.0423

Erec −0.0651 −0.0660 −0.0662 −0.0672

Etotal 6214.3521 6214.2787 6214.1236 6213.8883

potential (2). The next two lines then list the contributions of
the first- and second-order interelectronic interaction terms as
calculated in the Breit approximation. In this approximation,
we: (i) evaluate the photon propagator in the Coulomb gauge,
neglect (ii) the contribution of the negative energy continuum,
as well as (iii) the energy dependence of the photon propagator,
apart from its contribution to diagram (a) in Fig. 1. Whereas,
the first-order contributions refer to diagrams (a) and (e)
in this figure, the second-order terms include diagrams (b),
(d), (f), and (g), respectively. As mentioned above, diagram
(c) does not contribute if evaluated in the Coulomb gauge

within the Breit approximation. The next line E
�3
Breit then

gives the contribution of the interelectronic interaction of
the third and higher orders as outlined in Sec. II C. Besides
the interelectronic interaction contributions, we also display
the QED contributions in the various orders. As described
above, the first order includes diagrams (a) and (f) from Fig. 2,
whereas, the second order incorporates diagrams (b)–(e) and
(g)–(j) in the same figure as well as the QED contributions of
diagrams (b)–(d), (f), and (g) in Fig. 1. In line 7, we present
estimates of the two-loop one-electron diagrams, and in line
8, we present the recoil correction. Finally, the total value of
the transition energy is given in the last line.

As seen from this table, the overall transition energy con-
verges very nicely to the value, which is almost independent of
the particular screening potential used in the Dirac equation for
representing the one-electron spectrum. For the case of boron-
like fermium, the first-order QED contribution is smaller than
the second-order QED term. This is due to a significant cancel-
lation of the first-order VP and SE terms for this nuclear charge,
similar as for the hydrogenlike ions for which the sum of the
SE and VP terms for the 2p3/2-2p1/2 transition is two orders
of magnitude smaller than the individual terms themselves.

Table V displays the energies of the 2p3/2-2p1/2 electric
dipole forbidden transition for all boronlike ions with 17 �
Z � 100. These energies are the averages of the values as
obtained for the four screening potentials. Within the rigorous
treatment where the electron-electron interaction and QED
corrections are taken for all orders, the transition energy should
be fully independent of the particular screening potential. The
discrepancy between the averaged value Etheo and the predic-
tions, obtained for different potentials, can, therefore, provide
an estimate of the neglected QED contributions. Alternatively,
the uncertainty due to uncalculated QED contributions of the
third- and higher-order terms can be conservatively estimated
as the double ratio of the second-order QED contribution
to the corresponding contribution obtained within the Breit
approximation E2

QED/E2
Breit, multiplied with E

�3
Breit. The maxi-

mal value of both estimates is quadratically summed with the
uncertainties of the other contributions, and the obtained value
is taken as the theoretical uncertainty in Tables V and VI.

In Table VI, finally, we compare our theoretical 2p3/2-2p1/2

transition energies with the previous calculations by Safronova
and co-workers [31] and with available experimental data.
Overall good agreement is found for almost all elements with
the computations of Ref. [31] in which the QED contributions
have been estimated semiempirically, whereas, in some cases,
there exist deviations with regard to experiment. This might
not be surprising since, apart from the experiments with
boronlike argon [1–3], all other energies were obtained more
than 20 years ago from astrophysical data or TOKAMAK plasma
observations. We hope that the present computations will
renew interest in the accurate measurements of the 2p3/2-2p1/2

dipole-forbidden transitions based on new experimental tech-
niques; see Ref. [4] for a recent review on this topic.

V. SUMMARY

To summarize, we have performed accurate calculations of
the 2p3/2-2p1/2 transition energies for all boronlike ions with
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TABLE V. Theoretical energies (in eV) for the 2p3/2-2p1/2 forbidden transition in boronlike ions with 17 � Z � 100.

Ion Etheo Ion Etheo Ion Etheo Ion Etheo

Cl12+ 2.1593(4) Sr33+ 77.3249(72) Pr54+ 529.577(27) Hg75+ 2097.13(13)
Ar13+ 2.8091(4) Y34+ 86.5888(78) Nd55+ 570.473(28) Tl76+ 2222.42(14)
K14+ 3.5976(5) Zr35+ 96.6835(84) Pm56+ 613.845(29) Pb77+ 2354.01(16)
Ca15+ 4.5411(5) Nb36+ 107.6608(91) Sm57+ 659.810(30) Bi78+ 2492.20(17)
Sc16+ 5.6602(8) Mo37+ 119.5750(98) Eu58+ 708.494(31) P79+ 2637.29(19)
Ti17+ 6.9756(11) Tc38+ 132.483(10) Gd59+ 760.018(33) At80+ 2789.59(21)
V18+ 8.5100(15) Ru39+ 146.442(11) Tb60+ 814.520(36) Rn81+ 2949.38(23)
Cr19+ 10.2867(19) Rh40+ 161.513(12) Dy61+ 872.125(38) Fr82+ 3117.14(25)
Mn20+ 12.3308(23) Pd41+ 177.761(12) Ho62+ 932.985(41) Ra83+ 3293.13(28)
Fe21+ 14.6686(27) Ag42+ 195.249(13) Er63+ 997.246(45) Ac84+ 3477.77(31)
Co22+ 17.3278(27) Cd43+ 214.047(14) Tm64+ 1065.062(48) Th85+ 3671.44(34)
Ni23+ 20.3379(27) In44+ 234.223(14) Yb65+ 1136.590(52) Pa86+ 3874.64(37)
Cu24+ 23.7300(28) Sn45+ 255.855(15) Lu66+ 1212.001(55) U87+ 4087.59(41)
Zn25+ 27.5364(30) Sb46+ 279.016(16) Hf67+ 1291.485(59) Np88+ 4311.16(46)
Ga26+ 31.7914(35) Te47+ 303.787(17) Ta68+ 1375.193(63) Pu89+ 4545.62(50)
Ge27+ 36.5304(41) I48+ 330.248(18) W69+ 1463.342(69) Am90+ 4791.48(56)
As28+ 41.7899(46) Xe49+ 358.487(19) Re70+ 1556.128(76) Cm91+ 5049.54(63)
Se29+ 47.6094(51) Cs50+ 388.593(21) Os71+ 1653.742(84) Bk92+ 5320.16(70)
Br30+ 54.0292(56) Ba51+ 420.656(22) Ir72+ 1756.424(94) Cf93+ 5604.00(79)
Kr31+ 61.0920(62) La52+ 454.774(24) Pt73+ 1864.39(10) Es94+ 5901.77(89)
Rb32+ 68.8419(67) Ce53+ 491.047(25) Au74+ 1977.87(12) Fm95+ 6214.2(1.0)

17 � Z � 100. A computational scheme has been worked
out to rigorously evaluate the QED contributions for many-
electron ions. Good agreement with previous computations
and accurate measurements is found. This paper clearly
improves the available database for boronlike ions.
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APPENDIX: EVALUATION OF THE FIRST- AND
SECOND-ORDER CORRECTIONS TO THE
FREE-ELECTRON GREEN’S FUNCTION

In this Appendix, we present the numerical procedure for
calculating the first- and second-order corrections for the
free-electron Green’s function owing to the interaction of the
electron with an external potential. The free-electron Green’s
function can be written in the following form:

G(ω; x,y) =
∑
κ,m

[
G11

κ (ω; x,y)�κm(x̂)�†
κm(ŷ) −iG12

κ (ω; x,y)�κ m(x̂) �
†
−κm(ŷ)

iG21
κ (ω; x,y)�−κm(x̂)�†

κm(ŷ) G22
κ (ω; x,y)�−κm(x̂)�†

−κm(ŷ)

]
, (A1)

where �κ m are spherical spinors and Gik are the radial Green’s
function components. These components can be expressed
in terms of the spherical Bessel functions and the spherical
Hankel functions of the first kind. For x > y, these radial
components can be written as [8]

G11
κ = (ω + 1)cj|κ+1/2|−1/2(icy)h(1)

|κ+1/2|−1/2(icx),

G12
κ = c2 κ

|κ|j|κ+1/2|−1/2(icy)h(1)
|κ−1/2|−1/2(icx),

G21
κ = c2 κ

|κ|j|κ−1/2|−1/2(icy)h(1)
|κ+1/2|−1/2(icx), (A2)

G22
κ = (ω − 1)c j|κ−1/2|−1/2(icy)h(1)

|κ−1/2|−1/2(icx),

c =
√

1 − ω2.

For the case of x < y, the radial components can be obtained
from the relation Gik(ω; x,y) = Gki(ω; y,x). We suppose x >

y throughout this Appendix. Our goal here is to evaluate the
first- and the second-order corrections to this Green’s function
owing to the interaction of the electron with an external
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TABLE VI. Comparison of our theoretical 2p3/2-2p1/2 transition
energies with previous calculations from Ref. [31] and experiment
for selected elements along the boron isoelectronic sequence. All
energies are given in eV, and estimated uncertainties are shown in
parentheses.

Ion Etheo Ref. [31] Experiment Reference

Cl12+ 2.1593(4) 2.1604 2.1583(25) [32]
Ar13+ 2.8091(4) 2.8107 2.8090279(6) [1]
K14+ 3.5976(5) 3.5983 3.5963(31) [32]
Ca15+ 4.5411(5) 4.5417 4.5397(37) [32]
Sc16+ 5.6602(8) 5.6603 5.6583(4) [33]
Ti17+ 6.9756(11) 6.9754 6.9732(4) [34]
V18+ 8.5100(15) 8.5089 8.5061(50) [32]
Cr19+ 10.2867(19) 10.285 10.2815(17) [34]
Mn20+ 12.3308(23) 12.327 12.3100(12) [32]
Fe21+ 14.6686(27) 14.663 14.6640(35) [34]
Co22+ 17.3278(27) 17.321
Ni23+ 20.3379(27) 20.330 20.3286(68) [34]
Cu24+ 23.7300(28) 23.720 23.7154(93) [34]
Zn25+ 27.5364(30) 27.525
Ge27+ 36.5304(41) 36.513
Kr31+ 61.0920(62) 61.061
Zr35+ 96.6835(84) 96.632
Mo37+ 119.5750(98) 119.511
Ag42+ 195.249(13) 195.145
Sn45+ 255.855(15) 255.722
Xe49+ 358.487(19) 358.303
Nd55+ 570.473(28) 570.197
Eu58+ 708.494(31) 708.168
Yb65+ 1136.590(52) 1136.117
W69+ 1463.342(69) 1462.762
Au74+ 1977.87(12) 1977.134
Hg75+ 2097.13(13) 2096.356
Bi78+ 2492.20(17) 2491.339
Th85+ 3671.44(34) 3670.227
U87+ 4087.59(41) 4086.394
Fm95+ 6214.2(1.0) 6212.580

potential. Let us start with the first-order correction,

G(1)(ω; x,y) =
∫

dz G(ω; x,z)V (z)G(ω; z,y) (A3)

for which the angular integration can readily be performed due
to the orthonormality of the spherical spinors. For the radial
integration, in contrast, it is convenient to introduce a new
shorthand notation,

Aik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ω + 1)c, i = 1, k = 1,

c2 κ
|κ| , i = 1, k = 2,

c2 κ
|κ| , i = 2, k = 1,

(ω − 1)c, i = 2, k = 2.

(A4)

Moreover, instead of specifying the order of the spherical
Bessel and Hankel functions explicitly, we will simply use
the notation jik and hik where the particular order of these
functions can be obtained from Eq. (A2). With these notations,

we get

G(1)ik
κ =

2∑
m=1

AimAmk

(
him(icx),hkm(icy)

×
∫ y

0
z2dz jim(icz)jkm(icz)V (z)

+him(icx)jmk(icy)
∫ x

y

z2dz jim(icz)hmk(icz)V (z)

+ jmi(icx)jmk(icy)

×
∫ ∞

x

z2dz hmi(icz)hmk(icz)V (z)

)
. (A5)

As seen from this expression, the summands in Eq. (A5)
have the same form. Namely, a prefactor which does not
depend on the coordinates x and y is multiplied with the sum
of three terms. Each of these terms is a product of two Bessel
or Hankel functions and an integral over the product of two
Bessel or Hankel functions and the external potential. We note
here that each term just contains two Bessel and two Hankel
functions that guarantee the correct behavior at long and short
distances.

In practice, we are interested in the values of G(1)
κ at given

points {xi} and {yi} as defined by the integration mesh over x

and y. If one can precalculate and can store these functions at
the mesh, the components of G(1) are calculated rather quickly.
Moreover, because every term in Eq. (A5) is a product of two
functions, one depending on x and the other on y, there is
no need to store the functions on a two-dimensional grid. A
one-dimensional grid is just enough in this case.

As an example, let us consider one term in Eq. (A5),

T = him(icx)jmk(icy)
∫ x

y

z2dz jim(icz)hmk(icz)V (z). (A6)

First of all, let us rewrite it in the form

T = him(icx)jmk(icy)

(∫ x

0
z2dz jim(icz)hmk(icz)V (z)

−
∫ y

0
z2dz jim(icz)hmk(icz)V (z)

)
. (A7)

Now, it is clear that, for a quick calculation of this
term at a given energy, the following functions should
be stored on a one-dimensional grid: (i) the functions
jmk(icx), (ii) the functions hmk(icx), and (iii) the values
of the integral

∫ x

0 z2dz jim(icz)hmk(icz)V (z) as a function
of the upper integration limit x. In addition, for the eval-
uation of the other terms in Eq. (A5), one needs the
values of the integrals

∫ x

0 z2dz jim(icz)jmk(icz)V (z) and∫ ∞
x

z2dz him(icz)hmk(icz)V (z) as functions of the upper
(lower) integration limit. Once these functions are stored on the
grid, the calculation of G(1)

κ is very fast at any given point (x,y).
Owing to the fast oscillation of the Green’s function com-

ponents for large real values of ω, the integration contour for
evaluating the self-energy correction by means of formula (6)
usually is rotated in order to be parallel to the imaginary axis.
In our calculations, we, therefore, transform the expression (6)
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into the form

〈a|
(ε)|b〉 = i

2π

∫ ∞

−∞
dω

×
∑

n

〈an|e2αμανDμν(ε − ω)|nb〉
ω − εn(1 − i0)

, (A8)

and then rotate the contour directly upon the imaginary axis.
This rotation has the advantage that the complex phase of the
Bessel and Hankel functions jik and hik remains constant and
is equal to Nπ/2 with N being an integer. This particular
property allows a much faster calculation. Moreover, for
an imaginary energy, the absolute values of the Bessel and
Hankel functions either grow or vanish exponentially as the
radial variable is increased and behave like rl and r−1−l

for r → 0, correspondingly. This behavior of the Bessel
and Hankel functions makes it impossible to directly store
their values and/or integrals at the radial mesh, whereas, the
logarithms of these functions can still be kept in memory
at sufficiently small and large values of r . Instead of the
direct evaluation of three terms in Eq. (A5), we, therefore,
evaluate and store their logarithms. For the Bessel and
Hankel functions, the logarithms can be computed directly,
whereas, the formulas for the numerical integration need to be
rewritten in order to evaluate the logarithms of the integrals in
Eq. (A5).

Typically, the formula,

I =
N∑

i=1

wif (xi) (A9)

is used for numerical integration over a given grid. Here, I is
the (numerical) value of the integral, f is the integrand, N is
the number of knots, and wi and xi represent the integration
weights and knots, respectively. The particular values of the
weights and knots depend on the quadrature formula used
for the integration. In the present paper, we have applied the
Gauss-Legendre quadrature with eight knots. If we are now
interested in the value of ln I (instead of I ), we can use the

well-known addition theorem for logarithms,

ln(B + C) = ln B + ln[1 + exp(ln C − ln B)], (A10)

in order to evaluate the logarithm of the sum of two almost
arbitrary large (or small) values with high accuracy. Using
Eq. (A10), we can rewrite formula (A9) as

I = SN, (A11)

with

Sk =
k∑

i=1

wif (xi), (A12)

and to calculate the value SN recursively. To this end, we first
compute the value of ln S1 and then use Eq. (A10) in the form

ln(Sk+1) = ln(Sk) + ln (1 + exp{ln(wk+1)

+ ln[f (xk+1)] − ln(Sk)}) (A13)

to obtain SN . Since the logarithms of the spherical Bessel and
Hankel functions behave quite smoothly for all arguments,
from very short to long distances, we can interpolate the values
ln[f (xk)] in Eq. (A13) from the already stored logarithms. For
the computation of (the radial components of) G(1), finally,
Eq. (A5) is applied for each value of ω by using the logarithms
calculated before.

Once the first-order correction G(1) is obtained, the second-
order correction to the free-electron Green’s function can be
calculated as an (two-dimensional) integral with regard to the
two radial variables,

G(2)(ω; x,y) =
∫

dz1

∫
dz2G(ω; x,z1)V (z1)

×G(ω; z1,z2)V (z2)G(ω; z2,y). (A14)

The procedure for calculating this second-order correction is
essentially the same as before. In addition to the logarithms
of the Bessel and Hankel functions and the one-dimensional
integrals at the given radial mesh, we now need to store
the logarithms of some two-dimensional radial integrals. The
evaluation of the G(2) contributions is then performed by using
the formula,

G(2)ik =
2∑

m,n=1

AimAmnAnk

(
him(icx)hkn(icy)

∫ y

0
dz1z

2
1V (z1)jim(icz1)hmn(icz1)

∫ z1

0
dz2z

2
2V (z2)jkn(icz2)jmn(icz2)

+him(icx)hkn(icy)
∫ y

0
dz1z

2
1V (z1)jim(icz1)jnm(icz1)

∫ y

z1

dz2z
2
2V (z2)hnm(icz2)jkn(icz2)

+him(icx)jnk(icy)
∫ y

0
dz1z

2
1V (z1)jim(icz1)jnm(icz1)

∫ ∞

y

dz2z
2
2V (z2)hnm(icz2)hnk(icz2)

+him(icx)hkn(icy)
∫ x

y

dz1z
2
1V (z1)jim(icz1)hmn(icz1)

∫ y

0
dz2z

2
2V (z2)jkn(icz2)jmn(icz2)

+him(icx)jnk(icy)
∫ x

y

dz1z
2
1V (z1)jim(icz1)hmn(icz1)

∫ z1

y

dz2z
2
2V (z2)jmn(icz2)hnk(icz2)

+him(icx)jnk(icy)
∫ x

y

dz1z
2
1V (z1)jim(icz1)jnm(icz1)

∫ ∞

z1

dz2z
2
2V (z2)hnm(icz2)hnk(icz2)

+ jmi(icx)hkn(icy)
∫ ∞

x

dz1z
2
1V (z1)hmi(icz1)hmn(icz1)

∫ y

0
dz2z

2
2V (z2)jmn(icz2)jkn(icz2)
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+ jmi(icx)jnk(icy)
∫ ∞

x

dz1z
2
1V (z1)hmi(icz1)hmn(icz1)

∫ z1

y

dz2z
2
2V (z2)jmn(icz2)hnk(icz2)

+ jmi(icx)jnk(icy)
∫ ∞

x

dz1z
2
1V (z1)hmi(icz1)jnm(icz1)

∫ ∞

z1

dz2z
2
2V (z2)hnm(icz2)hnk(icz2)

)
. (A15)

At first glance, this formula looks quite complicated. However,
if we take into account that the logarithms of the Bessel and
Hankel functions as well as of all required one-dimensional
integrals are already stored, one can interpolate these values
and, therefore, the storage of the two-dimensional radial
integrals is fast and just takes a few seconds for each energy.

The computational procedure outlined above has been
tested for the G(2) contributions by comparing the obtained
values with direct computation by formula (A14). The same
procedure can be used with minor modifications in order to
evaluate the other second-order diagrams in α for which the
analytical solution for the Green’s function is known.
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