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Rates of convergence of the partial-wave expansion beyond the Kato cusp condition
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The rates of convergence for the partial-wave expansion with odd-power r12 terms for the ground-state energy
of the helium atom are derived. For both the second-order 1/Z expansion and the Rayleigh-Ritz variational
method, the energy increments of the partial-wave expansion converge as O(L−N−7), where N is the highest
odd-power r12 function. The derivations require assumptions of the regularities for the ground-state helium wave
function, which have not been established. Numerical results are presented for supporting the theoretical rates of
convergence.
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I. INTRODUCTION

The eigenvalue for an electronic Hamiltonian

Ĥ |ψ〉 = E|ψ〉 (1)

is typically evaluated by expressing Eq. (1) into a discrete
representation, truncating at a finite dimension, then solving
the matrix eigenvalue problem. Since the exact solutions are
not available for general systems, the knowledge of the rate of
convergence with respect to a basis is helpful.

The helium atom is a prototype of electron correlation.
Under certain assumptions of the analytical structure of the
ground-state wave function [1,2], it can be shown for a partial-
wave expansion (PWE) in terms of the Legendre polynomial,

ψ(r1,r2,θ12) =
L∑

l=0

χl(r1,r2)Pl(cos θ12), (2)

that the error of energy, E(L) − Eexact, and the
increments, E(L) − E(L − 1), converge as L−3 and
L−4, respectively [1–6]. By adding a single term containing
the interelectron distance r12, the rate of convergence can
be improved to L−8 for the energy increments [7,8]. A
similar basis-set convergence has also been observed for the
correlation energies of many-electron systems [9–16].

Very fast rates of convergence for the helium atom can
be obtained from the Hylleraas-type expansions [17–24].
The Hylleraas-type wave functions consist of basis functions
containing general odd-power r12 terms. The aim of the present
work is to analyze the rate of convergence with odd-power r12

terms beyond the linear order.
In this article we shall first discuss the rate of convergence

of the second-order energy in the 1/Z expansion, then the
Rayleigh-Ritz variational method. In addition, a preliminary
investigation of the rate of convergence for the Gaussian
geminals approaches is presented in the Supplemental Material
[25].

*cong.wang11@imperial.ac.uk

II. ANALYSIS OF RATE OF CONVERGENCE
IN THE 1/Z EXPANSION

A. Ansatz for the PWE with odd-power r12 functions

For simplicity, we first discuss the rate of convergence for
the second-order energy in the 1/Z expansion [26]. Consider a
nonrelativistic electronic Hamiltonian of a two-electron atom,

Ĥ = −1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+ 1

r12
; (3)

the 1/Z expansion is defined by introducing a scale transfor-
mation r → r/Z and choosing a partition of the Hamiltonian
as

Ĥ0 = −1

2
∇2

1 − 1

2
∇2

2 − 1

r1
− 1

r2
and Ĥ ′ = 1

r12
. (4)

The energy can then be written as

E = Z2E0 + ZE1 + E2 + Z−1E3 + · · · . (5)

The ground-state helium atom is inside the radius of
convergence [27,28]. The first- and second-order energies
are exactly solvable as −1 and 5/8, respectively [29]. The
Hylleraas functional provides an upper bound of the second-
order energy for the ground state [26]:

〈ψ̃ |Ĥ0 − E0|ψ̃〉 + 2 〈ψ̃ |Ĥ ′ − E1|�〉 � E2, (6)

where � = e−r1−r2/π is the ground-state eigenfunction of Ĥ0.
In the present study we omit the spin function. ψ̃ is a trial wave
function.

In a typical calculation, the trial wave function is optimized
to be stationary for certain parameters. The ground state of
the helium atom can be described by {r1,r2,r12} or {r1,r2,θ12}
coordinates [17,30]. Since we are interested in the angular
correlation, the following ansatz may be considered:

ψ̃ =
N∑

n=1,3,5,...

rn
12�̃n(r1,r2) + χ̃ (r1,r2,θ12), (7)

χ̃ (r1,r2,θ12) =
L∑

l=0

χ̃l(r1,r2)Pl(cos θ12). (8)

The energy of the PWE from ψ̃ , Ẽ2(L), is defined as
the infimum of the Hylleraas functional (6) for all physical
accessible trial wave functions �̃n and χ̃l . However, the
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explicit expressions of the optimized �̃n and χ̃l are difficult to
obtain. Inspired by Hill [1], we introduce a reference function
ψ (a):

ψ (a)(r1,r2,r12) :=
N∑

n=1,3,5,...

rn
12�n(r1,r2) + χ (r1,r2,θ12), (9)

χ (r1,r2,θ12) =
L∑

l=0

χl(r1,r2)Pl(cos θ12), (10)

�n(r1,r2) = 1

n!

[
N−n+1∑

m=0

(−|r1 − r2|)m
m!

∂n+mψ

∂rn+m
12

∣∣∣∣
r12=|r1−r2|

]
,

(11)

χl(r1,r2) = 2l+1

2

∫ π

0

[
ψ(r1,r2,r12) −

N∑
n=1,3,5,...

rn
12�n(r1,r2)

]

×Pl(cos θ12) sin θ12dθ12. (12)

Here ψ is the exact first-order wave function. �n is chosen
according to the series expansion of r12 around |r1 − r2|.
Since the analytic structure of the first-order wave function
is not established, we only assume the existence of the partial
derivatives in Eq. (11).

We then define the energy of the PWE from ψ (a) as

E2(L) := 〈ψ (a)|Ĥ0 − E0|ψ (a)〉 + 2〈ψ (a)|Ĥ ′ − E1|�〉. (13)

By definition, E2(L) � Ẽ2(L). Nevertheless the relaxation
from E2(L) to Ẽ2(L) is beyond the scope of the present
study. For the Rayleigh-Ritz variational calculation without
odd-power r12 function, it is known to be a higher-order
effect [1]. In Appendix A, we also discuss an alternative
definition of E2(L).

As we shall see later in Eq. (59), if we decrease the upper
limit of summation in Eq. (11), the large-L rate of convergence
of E2(L) will be slower. If we increase the upper limit of
summation in Eq. (11), the large-L rate of convergence of
E2(L) will remain the same. In this sense, the ansatz (9) is
optimal.

B. Expression of the second-order energy with PWE

The Hylleraas functional (6) includes kinetic operators
acting on r12 term, which is not convenient for analyzing the
PWE. To obtain a more transparent expression, we exchange
Ĥ0 and rn

12. Equation (13) then becomes

E2(L)

=
∑
n,m

〈
�nr

n
12

∣∣ − m(m + 1)rm−2
12 + Ûm + rm

12(Ĥ0 − E0)|�m〉

+ 2
∑
m

〈χ | − m(m + 1)rm−2
12 + Ûm + rm

12(Ĥ0 − E0)|�m〉

+ 〈χ |Ĥ0 − E0|χ〉
+ 2

∑
m

〈
�mrm

12

∣∣Ĥ ′ − E1|�〉 + 2〈χ |Ĥ ′ − E1|�〉. (14)

Here a generalized operator Ûm is introduced as[
Ĥ0 − E0,r

m
12

] = −m(m + 1)rm−2
12 + Ûm. (15)

A straightforward calculation shows Ûm = −mrm−2
12 (r1 − r2) ·

(∇1 − ∇2). The bold face indicates a vector. In our conventions
Û1 is two times the original definition [7].

As suggested by Kutzelnigg and Morgan [8], it is simpler
to analyze the rate of convergence by utilizing the first-order
equation

(Ĥ0 − E0)|ψ〉 = −(Ĥ ′ − E1)|�〉. (16)

Inserting Eq. (9) into Eq. (16) yields

〈χ |Ĥ0 − E0|χ〉 = −
∑
m

〈χ | − m(m + 1)rm−2
12 + Ûm

+ rm
12(Ĥ0 − E0)|�n〉 − 〈χ |Ĥ ′ − E1|�〉.

(17)

With the help of Eq. (17), Eq. (14) can be written as

E2(L) = A2 + G2(L), (18)

A2 :=
∑
n,m

〈
�nr

n
12

∣∣ − m(m + 1)rm−2
12 + Ûm

+ rm
12(Ĥ0 − E0)|�m〉 + 2

∑
m

〈
�mrm

12

∣∣Ĥ ′ − E1|�〉,

(19)

G2(L) :=
∑
m

〈χ | − m(m + 1)rm−2
12 + Ûm

+ rm
12(Ĥ0 − E0)|�m〉 + 〈χ |Ĥ ′ − E1|�〉. (20)

The rate of convergence of PWE is determined by G2(L).

C. A note on the rate of convergence without
odd-power r12 function

The simplest case is N = 0 in Eq. (9). It has been suggested
that at the large-L limit the ground-state wave function
approaches [3]

ψ(r1,r2,r12) → 1
2 r12�(r1,r2). (21)

The original derivation was based on the perturbative term
H ′ = 1/r12 = ∑∞

l=0 rl
</rl+1

> Pl(cos θ12) which highly peaks
at r1 = r2 when L → ∞. Here r< := min(r1,r2) and r> :=
max(r1,r2). In this region, Eq. (16) becomes

1

4
(∇1 − ∇2)2ψ = 1

r12
�. (22)

The asymptotic behavior (21) was obtained by solving
Eq. (22). Nevertheless it was assumed that the three-particle-
coalescence singularity (r1 = r2 = r12 = 0) is not effective
[31].

In Appendix B, we provide an alternative derivation for the
rate of convergence and the large-L behavior of ψ . The main
purpose of Appendix B is to make the discussion of the rate of
convergence with the odd-power r12 function more convenient.
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D. Analysis of the rate of convergence with the
odd-power r12 function

1. Effects of r< − r>,r2
12, and Û1 terms for the

large-L rate of convergence

In the following discussion, the generalized-Laplace expan-
sion [32,33],

rν
12 =

L1∑
l=0

Rνl(r1,r2) Pl(cos θ12), (23)

Rνl(r1,r2) =
L2∑
k=0

Cνlkr
l+2k
< rν−l−2k

> , (24)

Cνlk = (−ν/2)l
(1/2)l

(l − ν/2)k
(l + 3/2)k

(−1/2 − ν/2)k
k!

, (25)

will be used to convert the rν
12 term into the Legendre

polynomial, Pl(cos θ12). Here ν is an integer. L1 = ∞ or
ν/2 for an odd or even ν, respectively. L2 = �(ν + 1)/2	,
where �· · · 	 is the floor function, defined as the largest integer
no greater than its argument. xn is the Pochhammer symbol,
defined as x0 = 1 and xn := x(x + 1) · · · (x + n − 1), n � 1.

To analyze the rate of convergence with the odd-power r12

terms, we shall derive three Lemmas.
Lemma 1. For a sufficiently large l, the term r< − r>

accelerates the rate of convergence by (l + a)−1, where a is
a coefficient independent of l. More specifically, if a function
can be written as rl+n

< r−l
> f (r>), where f (r>) is a function

of r> and n is a non-negative integer, the following relation
holds:

∫ ∞

0

∫ r>

0
(r< − r>) rl+n

< r−l
> f (r>) r2

<r2
>dr<dr> = [ C(l + a)−1 + O((l + a)−2)]

∫ ∞

0

∫ r>

0
rl+n
< r−l

> f (r>) r2
<r2

>dr<dr>, (26)

where C is a coefficient independent of l. We assume all integrals involving f (r>) exist.
Proof. Equation (26) can be verified by a direct calculation. After integrating over r<, we obtain∫ ∞

0

∫ r>

0
(r< − r>) rl+n

< r−l
> f (r>) r2

<r2
>dr<dr>

= − 1

(l + n + 4)(l + n + 3)

∫ ∞

0
rn+6
> f (r>)dr> = − 1

(l + a + n − a + 4)(l + a + n − a + 3)

∫ ∞

0
rn+6
> f (r>)dr>

= − 1

(l + a)2

1(
1 + n−a+4

l+a

)(
1 + n−a+3

l+a

) ∫ ∞

0
rn+6
> f (r>)dr> = −[(l + a)−2 + O((l + a)−3)]

∫ ∞

0
rn+6
> f (r>)dr>,

l > max(−a,n − 2a + 4), (27)∫ ∞

0

∫ r>

0
rl+n
< r−l

> f (r>) r2
<r2

>dr<dr> = 1

l + n + 3

∫ ∞

0
rn+5
> f (r>)dr> = [(l + a)−1 + O((l + a)−2)]

∫ ∞

0
rn+5
> f (r>)dr>,

l > max(−a,n − 2a + 3). (28)

In the third line of Eq. (27), we have used the expansion of the geometric series. The condition l > max(−a,n − 2a + 4) is
determined by the convergence radius of the geometric series. A similar procedure was used in deriving Eq. (28). By comparing
Eqs. (27) and (28), we can establish Eq. (26),∫ ∞

0

∫ r>

0 (r< − r>) rl+n
< r−l

> f (r>) r2
<r2

>dr<dr>∫ ∞
0

∫ r>

0 rl+n
< r−l

> f (r>) r2
<r2

>dr<dr>

= − (l + a)−2[1 + O((l + a)−1)]
(l + a)−1[1 + O((l + a)−1)]

∫ ∞
0 rn+6

> f (r>)dr>∫ ∞
0 rn+5

> f (r>)dr>

= −(l + a)−1[1 + O((l + a)−1)][1 − O((l + a)−1) + O((l + a)−2) + · · · ]

∫ ∞
0 rn+6

> f (r>)dr>∫ ∞
0 rn+5

> f (r>)dr>

= −[(l + a)−1 + O((l + a)−2)]

∫ ∞
0 rn+6

> f (r>)dr>∫ ∞
0 rn+5

> f (r>)dr>

, l > max(−a,n − 2a + 4), (29)

where C = − ∫ ∞
0 rn+6

> f (r>)dr>/
∫ ∞

0 rn+5
> f (r>)dr>. In the third line we used the expansion of geometric series for the term 1 +

O((l + a)−1) in the denominator. �
Lemma 2. For a sufficiently large l, the term r2

12 accelerates the rate of convergence by (l + a)−2, where a is a coefficient
independent of l. More specifically, the following relation holds:∫ ∞

0

∫ ∞

0

∫ π

0
rν+2

12 f (r1,r2)Pl(cos θ12) sin θ12r
2
1 r2

2 dθ12dr1dr2

= [ C(l + a)−2 + O((l + a)−3)]
∫ ∞

0

∫ ∞

0

∫ π

0
rν

12 f (r1,r2) Pl(cos θ12) sin θ12r
2
1 r2

2 dθ12dr1dr2. (30)
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Here ν is an odd integer. C is coefficient independent of l. f (r1,r2) is a symmetric function with respect to r1 and r2. It has the
first-order partial derivative of r< with the following bound properties:∣∣∣∣∂f (r<,r>)

∂r<

∣∣∣∣ � f̃ (r>), r< ∈ (0,r>), (31)

where f̃ (r>) is a function of r>. We assume all integrals involving f (r1,r2) and f̃ (r>) exist. The condition (31) has been proposed
by Goddard [2] to refine the proof of Hill [1]. This lemma characterizes the effect of increasing power of r12 in ansatz (9). In
addition, the values of a,C, and f are, in general, different in each lemma.

Proof. After applying the generalized-Laplace expansion for rν+2
12 and integrating over θ12, the left-hand side (LHS) of

Eq. (30) becomes

2(l + 1/2)−1
∫ ∞

0

∫ r>

0
Rν+2,l(r<,r>) f (r<,r>)r2

<r2
>dr<dr>. (32)

We expand f (r<,r>) with a Lagrange form of the remainder,

f (r<,r>) = f (r>,r>) + (r< − r>)
∂f (r<,r>)

∂r<

∣∣∣∣
r<=σ

, (33)

where σ ∈ (r<,r>). Inserting Eq. (33) into Eq. (32), we obtain

2(l + 1/2)−1
∫ ∞

0

∫ r>

0
Rν+2,l(r<,r>) f (r>,r>)r2

<r2
>dr<dr>

+ 2(l + 1/2)−1
∫ ∞

0

∫ r>

0
(r< − r>)Rν+2,l(r<,r>)

∂f (r<,r>)

∂r<

∣∣∣∣
r<=σ

r2
<r2

>dr<dr>. (34)

By the properties (31), the second term in Eq. (34) has bounds

2(l + 1/2)−1
∫ ∞

0

∫ r>

0
(−1)ν(r< − r>)Rν+2,l(r<,r>)f̃ (r>)r2

<r2
>dr<dr>

� 2(l + 1/2)−1
∫ ∞

0

∫ r>

0
(r< − r>)Rν+2,l(r<,r>)

∂f (r<,r>)

∂r<

∣∣∣∣
r<=σ

r2
<r2

>dr<dr>

� −2(l + 1/2)−1
∫ ∞

0

∫ r>

0
(−1)ν(r< − r>)Rν+2,l(r<,r>)f̃ (r>)r2

<r2
>dr<dr>. (35)

The upper and lower bounds in Eq. (35) are determined by the following properties of the Rν,l function [31, Eq. (21)]:

Rν,l(r<,r>) =
( − 1

2ν
)
l(

1
2

)
l

r l
<(r2

> − r2
<)ν+2

rl+ν+4
>

2F1

[
l + 1

2
ν + 2,

1

2
ν + 3

2
; l + 3

2
;
r2
<

r2
>

]
, (36)

where 2F1 is the hypergeometric function. Therefore (−1)νRν,l(r<,r>) � 0 for l � �ν/2	.
According to Lemma 1, the upper and lower bounds of Eq. (35) converge faster than the first term in Eq. (34). Therefore, the

leading term of the large-L convergence is the first one in Eq. (34).
The expression Rν+2,l(r<,r>) can be related to Rν,l(r<,r>) by expanding r2

12r
ν
12 in terms of the Legendre polynomial,

r2
12r

ν
12 = (r2

< + r2
> − 2r<r> cos θ12)

∞∑
l=0

(ν+1)/2∑
k=0

Cνlkr
l+2k
< rν−l−2k

> Pl(cos θ12)

=
∞∑
l=0

(ν+1)/2∑
k=0

[(
Cνlk − 2l + 2

2l + 3
Cν,l+1,k

)
rl+2k+2
< rν−l−2k

> +
(

Cνlk − 2l

2l − 1
Cν,l−1,k

)
rl+2k
< rν−l−2k+2

>

]
Pl(cos θ12). (37)

In the first and second lines we have used the generalized-Laplace expansion [32,33], Eq. (23), and the recursive relation of the
Legendre polynomial,

cos θ12Pl(cos θ12) = [lPl−1(cos θ12) + (l + 1)Pl+1(cos θ12)]/(2l + 1). (38)

Therefore Rν+2,l(r<,r>) is the expression inside the square brackets in Eq. (37),

Rν+2,l(r<,r>) =
(

Cνlk − 2l + 2

2l + 3
Cν,l+1,k

)
rl+2k+2
< rν−l−2k

> +
(

Cνlk − 2l

2l − 1
Cν,l−1,k

)
rl+2k
< rν−l−2k+2

> . (39)
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With the help of the explicit expression (25), the relation between Cνl+1k and Cνlk is

Cν,l+1,k = (l + 3/2)(l + k − ν/2)

(l + 1/2)(l + k + 3/2)
Cνlk. (40)

Inserting Eqs. (39) and (40) into the first term in Eq. (34), then integrating over r<, we obtain∫ ∞

0

∫ ∞

0

∫ π

0
rν+2

12 f (r1,r2)Pl(cos θ12) sin θ12r
2
1 r2

2 dθ12dr1dr2

= 2(l + 1/2)−1[ C ′(l + a)−3 + O((l + a)−4)]
(ν+1)/2∑

k=0

Cνlk

∫ ∞

0
rν+7
> f (r>,r>)dr>, (41)

for a sufficiently large l. Here C ′ = − ν2

4 − 5
2v − 17

4 . Similarly, the right-hand side (RHS) of Eq. (30) can be written as∫ ∞

0

∫ ∞

0

∫ π

0
rν

12f (r1,r2)Pl(cos θ12) sin θ12r
2
1 r2

2 dθ12dr1dr2

= 2(l + 1/2)−1[ (l + a)−1 + O((l + a)−2)]
(ν+1)/2∑

k=0

Cνlk

∫ ∞

0
rν+5
> f (r>,r>)dr>. (42)

By comparing Eqs. (41) and (42), we have established Eq. (30). The procedure of obtaining the coefficient C is similar with
Eq. (29). �

Lemma 3. For a sufficiently large l, the operator Û1 accelerates the rate of convergence by (l + a)−2, where a is a
coefficient independent of l. More specifically, the following relation holds:∫ ∞

0

∫ ∞

0

∫ π

0
Û1f (r1,r2)Pl(cos θ12) sin θ12r

2
1 r2

2 dθ12dr1dr2

= [ C(l + a)−2 + O((l + a)−3)]
∫ ∞

0

∫ ∞

0

∫ π

0
r−1

12 f (r1,r2) Pl(cos θ12) sin θ12r
2
1 r2

2 dθ12dr1dr2. (43)

Here f (r1,r2) is a symmetric function with respect to r1 and r2. It is assumed to be first-order differentiable. The first-order
derivatives of f (r1,r2) are not necessarily symmetric. We can define the symmetric and antisymmetric parts of the first-order
derivatives as

f
(1)
± (r1,r2) := 1

2

[
∂f (r1,r2)

∂r1
± ∂f (r1,r2)

∂r2

]
, (44)

and assume the following bound properties: ∣∣∣∣∣∂f
(1)
+ (r<,r>)

∂r<

∣∣∣∣∣ � f̃+(r>), r< ∈ (0,r>), (45)

∣∣∣∣∣∂
2f

(1)
− (r<,r>)

∂r2
<

∣∣∣∣∣ � f̃−(r>), r< ∈ (0,r>). (46)

This lemma characterizes the regularity of the operator Û1.
Proof. From Eq. (44), we have

∂f (r1,r2)

∂r1
= f

(1)
+ (r1,r2) + f

(1)
− (r1,r2), (47)

∂f (r1,r2)

∂r2
= f

(1)
+ (r1,r2) − f

(1)
− (r1,r2). (48)

Inserting Eqs. (47) and (48) into the LHS of Eq. (43), with the help of the Laplace expansion (23), and the recursive relation of
the Legendre polynomial (38), we obtain∫ ∞

0

∫ ∞

0

∫ π

0
Û1f (r1,r2)Pl(cos θ12) sin θ12r

2
1 r2

2 dθ12dr1dr2

= −2(l + 1/2)−1
∫ ∞

0

∫ r>

0

[
(r< + r>)

(
rl
<

rl+1
>

− l + 1

2l + 3

rl+1
<

rl+2
>

− l

2l − 1

rl−1
<

rl
>

)
f

(1)
+ (r<,r>)

+ (r< − r>)

(
rl
<

rl+1
>

+ l + 1

2l + 3

rl+1
<

rl+2
>

+ l

2l − 1

rl−1
<

rl
>

)
f

(1)
− (r<,r>)

]
r2
<r2

>dr<dr>. (49)
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Applying the Taylor expansion for f
(1)
± (r<,r>) with Lagrange forms of the remainders,

f
(1)
+ (r<,r>) = f

(1)
+ (r>,r>) + (r< − r>)

∂f
(1)
+ (r<,r>)

∂r<

∣∣∣∣
r<=σ+

, σ+ ∈ (r<,r>), (50)

f
(1)
− (r<,r>) = f

(1)
− (r>,r>) + (r< − r>)

∂f
(1)
− (r<,r>)

∂r<

∣∣∣∣
r<=r>

+ (r< − r>)2

2

∂2f
(1)
− (r<,r>)

∂r2
<

∣∣∣∣
r<=σ−

, σ− ∈ (r<,r>), (51)

and noticing f
(1)
− (r>,r>) = 0, we obtain the leading term of Eq. (49) as

−2(l + 1/2)−1
∫ ∞

0

∫ r>

0

[
(r< + r>)

(
rl
<

rl+1
>

− l + 1

2l + 3

rl+1
<

rl+2
>

− l

2l − 1

rl−1
<

rl
>

)
f

(1)
+ (r>,r>)

+ (r< − r>)2

(
rl
<

rl+1
>

+ l + 1

2l + 3

rl+1
<

rl+2
>

+ l

2l − 1

rl−1
<

rl
>

)
∂f

(1)
− (r<,r>)

∂r<

∣∣∣∣
r<=r>

]
r2
<r2

>dr<dr>. (52)

Here we have used the bound properties (45) and (46) and Lemma 1 to isolate the leading term. Namely by observing for
l � 1

2(l + 1/2)−1
∫ ∞

0

∫ r>

0
(r< + r>)(r< − r>)

(2l − 1) [(l + 1)r< − (l + 2)r>] (r< − r>) + 2r2
>

(2l − 1)(2l + 3)

rl−1
<

rl+2
>

f̃+(r>)r2
<r2

>dr<dr>

� −2(l + 1/2)−1
∫ ∞

0

∫ r>

0
(r< + r>)(r< − r>)

(
rl
<

rl+1
>

− l + 1

2l + 3

rl+1
<

rl+2
>

− l

2l − 1

rl−1
<

rl
>

)
∂f

(1)
+ (r<,r>)

∂r<

∣∣∣∣
r<=σ+

r2
<r2

>dr<dr>

� −2(l + 1/2)−1
∫ ∞

0

∫ r>

0
(r< + r>)(r< − r>)

(2l − 1) [(l + 1)r< − (l + 2)r>] (r< − r>) + 2r2
>

(2l − 1)(2l + 3)

rl−1
<

rl+2
>

f̃+(r>)r2
<r2

>dr<dr>

(53)

and

2(l + 1/2)−1
∫ ∞

0

∫ r>

0

(r< − r>)3

2

(
rl
<

rl+1
>

+ l + 1

2l + 3

rl+1
<

rl+2
>

+ l

2l − 1

rl−1
<

rl
>

)
f̃−(r>)r2

<r2
>dr<dr>

� −2(l + 1/2)−1
∫ ∞

0

∫ r>

0

(r< − r>)3

2

(
rl
<

rl+1
>

+ l + 1

2l + 3

rl+1
<

rl+2
>

+ l

2l − 1

rl−1
<

rl
>

)
∂2f

(2)
− (r<,r>)

∂r2
<

∣∣∣∣
r<=σ−

r2
<r2

>dr<dr>

� −2(l + 1/2)−1
∫ ∞

0

∫ r>

0

(r< − r>)3

2

(
rl
<

rl+1
>

+ l + 1

2l + 3

rl+1
<

rl+2
>

+ l

2l − 1

rl−1
<

rl
>

)
f̃−(r>)r2

<r2
>dr<dr>, (54)

the upper and lower bounds in Eqs. (53) and (54) converge faster than Eq. (52).
Similar to Lemma 1, the term (r< + r>) will not affect the inverse-power law of the rate of convergence. By repeatedly

using Lemma 1, the term (r< − r>)2 will accelerate the rate of convergence by (l + a)−2. Thus Eq. (52) and the LHS of
Eq. (43) is O((l + a)−3). Similarly the integral in the RHS of Eq. (43) converges as O((l + a)−1). Therefore we have established
Eq. (43). �

2. Large-L behavior for the first-order wave
function under ansatz (9)

With the help of these lemmas, we shall now analyze the
rate of convergence in Eq. (20). The following derivations will
be based on three assumptions of the analytic structure of the
exact first-order wave function ψ : (i) ψ has continuous partial
derivatives, ∂nψ/∂rn

12, n = 0,1,2, . . . ,N + 2 and

∫ r1+r2

|r1−r2|

∣∣∣∣∣∂
N+3ψ

∂rN+3
12

∣∣∣∣∣
2

dr12 < ∞, (55)

∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2 r5
>

∫ r1+r2

|r1−r2|

∣∣∣∣∣∂
N+3ψ

∂rN+3
12

∣∣∣∣∣
2

dr12 < ∞; (56)

(ii) ψ has the mixed partial derivatives of
∂i+j+k+1ψ/∂ri+k

< ∂r
j+1
12 for i + j � N + 2, k = 0,1,2

with the following bound properties:∣∣∣∣∣ ∂i+j+k+1ψ

∂ri+k
< ∂r

j+1
12

∣∣∣∣∣ � Ã(r>), i + j = N + 2,

k = 0,1,2, r< ∈ (0,r>), (57)

where Ã(r>) is a function of r>; (iii) all integrals in the
derivation exist.

The rate of convergence may be derived from weaker or
alternative assumptions of the exact first-order wave function,
such as Eq. (62). However, investigating this possibility is
beyond the scope of the present study. It is also possible that
neither the assumptions of the first-order wave function nor
the derived rates of convergence are strictly valid. Under a
reasonable range of numerical accuracy, the derived rates of
convergence are approximately valid.
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Similar to Eq. (B14), we first apply Hill’s theorem II [1] at 2J − 1 = N + 3 with the help of assumption (i),

ψl(r1,r2) := 2l + 1

2

∫ π

0
ψ(r1,r2,r12)Pl(cos θ12) sin θ12dθ12

=
N+3∑
n=0

∂nψ

∂rn
12

∣∣∣∣
r12=|r1−r2|

ξnl(r1,r2) + ��(N+4)/2	,l(r1,r2)

=
N+3∑
n=0

n∑
m=0

1

n!

(
n

m

)
(−|r1 − r2|)mRn−m,l

∂nψ

∂rn
12

∣∣∣∣
r12=|r1−r2|

+ ��(N+4)/2	,l(r1,r2)

=
N+3∑
n=0

Rnl

n!

[
N−n+3∑

m=0

(−|r1 − r2|)m
m!

∂n+mψ

∂rn+m
12

∣∣∣∣
r12=|r1−r2|

]
+ ��(N+4)/2	,l(r1,r2), (58)

where ξ (r1,r2) and �JI (r1,r2) are defined in Eqs. (89)–(B6).
By comparing expansion (58) and ansatz (9), we identify

χl =
N+2∑

n=1,3,5,...

Rnl

n!

⎡
⎣ (−|r1 − r2|)N−n+2

(N − n + 2)!

∂N+2ψ

∂rN+2
12

∣∣∣∣∣
r12=|r1−r2|

⎤
⎦ +

N+3∑
n=1,3,5,...

Rnl

n!

⎡
⎣ (−|r1 − r2|)N−n+3

(N − n + 3)!

∂N+3ψ

∂rN+3
12

∣∣∣∣∣
r12=|r1−r2|

⎤
⎦

+��(N+4)/2	,l , l �
⌊

N + 3

2

⌋
, (59)

since N is an odd number in ansatz (9) and the terms with even power of r12 have finite PWE.
Furthermore, we can use assumption (ii) to perform a series expansion for �n and χl in analogy with Eqs. (B31), (B50), and

(B51). Namely by expanding ∂n+mψ/∂rn+m
12 in �n (11) and ∂N+2ψ/∂rN+2

12 and ∂N+3ψ/∂rN+3
12 in χl (59) for variables r< and r12

at r< = r> and r12 = 0, Eqs. (11) and (59) become

�n = 1

n!

⎡
⎢⎣N−n+2∑

m=0

(r< − r>)m

m!

∂m+nψ

∂rm
<∂rn

12

∣∣∣∣∣ r< = r>,

r12 = 0

+ (r< − r>)N−n+3

(N − n + 3)!

∂N+3ψ

∂rN−n+3
< ∂rn

12

∣∣∣∣∣ r< = σ,

r12 = τ

⎤
⎥⎦ (60)

χl = RN+2,l

(N + 2)!

⎡
⎢⎣ ∂N+2ψ

∂rN+2
12

∣∣∣∣∣ r< = r>,

r12 = 0

+ (r< − r>)
∂N+3ψ

∂r<∂rN+2
12

∣∣∣∣∣ r< = σ ′,
r12 = τ ′

⎤
⎥⎦

+ RN+3,l

(N + 3)!

⎡
⎢⎣ ∂N+3ψ

∂rN+3
12

∣∣∣∣∣ r< = r>,

r12 = 0

+ (r< − r>)
∂N+4ψ

∂r<∂rN+3
12

∣∣∣∣∣ r< = σ ′′,
r12 = τ ′′

⎤
⎥⎦ + ��(N+4)/2	,l , (61)

where σ,σ ′,σ ′′ ∈ (r<,r>) and τ,τ ′,τ ′′ ∈ (r> − r<,r> + r<).
Since Eqs. (60) and (61) only contain information at the

coalescence region, they are somehow more transparent than
ansatz (9). Equation (61) indicates that χ is O(rN+2

12 ).
In addition, assumption (ii) is mainly used to connect to the

original ansatz in the R12 approach [7], i.e., �1 = �/2. As we
shall see, both n = 1 in Eq. (60) and �1 = �/2 can suppress
the contribution of 〈χ | − m(m + 1)rm−2

12 |�m〉 + 〈χ |r−1
12 |�m〉

in Eq. (20) when m = 1. Therefore we do not have a
contribution of O(L−6), if the N � 1 geminal function is used
in ansatz (9). Numerical results [7] suggest that the O(L−6)
rate of convergence does not appear in the R12 calculations.
Therefore assumption (ii) is numerically supported for n = 1.

As we shall discuss later, a similar cancellation of O(L−6)
does not appear in n > 1 terms from ansatz (9). For n > 1, the
assumption (ii) may be weakened to∣∣∣∣∣ ∂N+i+2ψ

∂ri
<∂rN+2

12

∣∣∣∣∣ � Ã(r>), i = 1,2,3, r< ∈ (0,r>). (62)

The expressions of �n and χl will be rather complicated.
They do not necessarily coincide with Eqs. (60) and (61).
Investigating the weaker assumptions and further evaluating
the prefactors of the rates of convergence are beyond the scope
of the present study.

3. Termwise large-L rates of convergence for the PWE with
odd-power r12 functions

Now we turn to analyze the rate of convergence in Eq. (20).
In the beginning of the development of the R12 method [7],
�1 was chosen as �/2 according to the large-L behavior of
the first-order wave function, Eq. (21). It leads to a highly
remarkable consequence. Namely, in Eq. (20) 〈χ | − m(m +
1)rm−2

12 |�m〉 will be canceled with 〈χ |r−1
12 |�m〉 when m = 1

[7,8]. Under our assumptions of the first-order wave function,
�1 = �/2 includes Eq. (60) when n = 1.

We can use a weaker condition (60) than �1 = �/2 to
show that the term 〈χ | − m(m + 1)rm−2

12 |�m〉 + 〈χ |r−1
12 |�m〉,

m = 1, contributes to the rate of convergence higher than the
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leading order. First we notice when n = 1 Eq. (60) becomes

�1 = 1

2

N+1∑
m=0

(r< − r>)m

m!

∂m�

∂rm
<

∣∣∣∣
r<=r>

+ O((r< − r>)N+2)

(63)

thus

〈χ | − 2r−1
12 |�1〉 + 〈χ |r−1

12 |�〉
= −16π2(l + 1/2)−1

×
∫ ∞

0

∫ r>

0
χl R−1,l (2�1 − �) r2

<r2
>dr<dr>. (64)

Equation (64) converges as O(L−2N−7) for the increments, i.e.,
E2(L) − E2(L − 1). Hereafter the rate of convergence means
the incremental rate. The O(L−2N−7) rate of convergence
can be seen from Eq. (61), that the leading term of χl is
∂N+2ψ/∂rN+2

12 RN+2,l . In analogy with Eq. (B54), 2�1 − �

is of order O((r< − r>)N+2). By Lemmas 1 and 2, we obtain
O(L−2N−7) rate of convergence for Eq. (64). By the Cauchy-
Schwartz inequality, the remainder ��(N+4)/2	 converges as
o(L−2N−7). The derivation is similar to Eq. (B42).

Therefore, in Eq. (20), 〈χ | − m(m + 1)rm−2
12 |�m〉 will be

canceled by �1 = �/2 [7] or suppressed to O(L−2N−7), for
m = 1. For m � 3, by repeatedly using Lemma 2, we see that
its increment converges as O(L−N−m−4). The contribution
from the remainder ��(N+4)/2	 converges as o(L−N−m−4).
The rate of convergence for

∑
m〈χ | − m(m + 1)rm−2

12 |�m〉
is determined by the slowest converged component, m = 3.
Therefore it converges as O(L−N−7).

〈χ |Ûm|�m〉 converges as O(L−N−m−6) according to Lem-
mas 2 and 3. The contribution from the remainder ��(N +
4)/2	 converges as o(L−N−m−6). Here the minimum value
of m with nonzero contribution is 1. Therefore the rate of
convergence is O(L−N−7).

〈χ |rm
12(Ĥ0 − E0)|�m〉 either disappears by �1 = �/2 or is

suppressed to O(L−3N−8) by Eq. (61), for m = 1. For m �
3, it converges as O(L−N−m−6). The remainder ��(N+4)/2	
converges as o(L−N−m−6). Since the slowest component is
determined by m = 3, it converges as O(L−N−9).

〈χ |Ĥ ′|�〉 is canceled by �1 = �/2 or suppressed to
O(L−2N−7) by Eq. (61). The last term, −〈χ |E1|�〉, only
contributes to the s-type increment of the PWE. Therefore
the total rate of convergence of Eq. (20) is O(L−N−7). The fast
convergence of ansatz (9) is intuitive. Since all odd-power r12

functions have infinite PWE, unitizing such terms will yield a
compact representation of the ground state.

III. NUMERICAL RESULTS FOR THE 1/Z EXPANSION

Here we present some numerical results for the second-
order 1/Z-expansion energy under the ansatz (7). Our wave
function is a modification of the basis F in Schwartz’s article
[20],

ψ̃ =
∑
λμνξ

aλμνξ s
λ(t/s)μ(u/s)ν(ln s)ξ e−αs

+
∑
λμξl

bλμξls
λ(t/s)μ(ln s)ξ e−αsPl(cos θ12); (65)

here the coordinates s := r1 + r2,t := r2 − r1, and u := r12.
The indices λ, μ, ν, and ξ are non-negative integers. The
order of basis function is defined by 0 � λ + μ + ν � ω. In
each order, ξ = 0,1. Since we shall variationally optimize the
wave function and energy, the superscript ∼ is used according
to the notations in Eqs. (7) and (8). The wave function (65)
corresponds to

�̃ν =
∑
λμξ

aλμνξ sλ−μ−ν tμ (ln s)ξ e−αs, (66)

χ̃l =
∑
λμξ

bλμξl s
λ−μ tμ (ln s)ξ e−αs, (67)

in the ansatz (7). We fix �̃1 = �/2 = e−s/2π according to
the cusp condition, Eq. (21) [8]. Similar relations to Eq. (21)
for the higher-order derivatives at two-particle-coalescence
points have been obtained [34,35]. It is highly interesting
to investigate the computational approaches employing such
conditions [34,35]. Nevertheless this possibility is beyond the
scope of the present study. We use Eq. (66) to represent them.

Besides describing the three-particle-coalescence singular-
ity [36–39] from the logarithmic function in Eqs. (65)–(67), a
practical reason to adopt this basis is that setting α = 1 will
give fairly good variational energies. We simply would like to
avoid the optimization for the exponents.

The numerical results are presented in Table I and Fig. 1.
Detailed data are given in the Supplemental Material [25]. The
L−8, L−10, and L−12 rates of convergence are observed.

In addition, we notice that at higher accuracies the radial sat-
uration becomes increasingly difficult. Since it is insufficient
to conclude the asymptotic behavior from numerical study, we
stop the calculation slightly beyond the finite nuclear effect.
The finite nuclei correction of the 4He ground state is about
5.7 × 10−9 a.u. [40]. It is possible that the present rates of
convergence break down at higher accuracies due to certain
nondifferentiability of the exact first-order wave function.

IV. ANALYSIS OF RATE OF CONVERGENCE IN THE
RAYLEIGH-RITZ VARIATIONAL CALCULATIONS

A. Ansatz for the PWE with odd-power r12 functions

Similar with the 1/Z expansion, we consider the following
ansatz:

ψ̃(r1,r2,r12) = �̃0(r1,r2) +
N∑

n=1,3,5,...

rn
12�̃n(r1,r2)

+ χ̃ (r1,r2,θ12), (68)

χ̃ (r1,r2,θ12) :=
L∑

l=0

χ̃l(r1,r2)Pl(cos θ12). (69)

The general scheme of evaluating the rate of convergence
for a Rayleigh-Ritz variational calculation was established [1].
We first briefly restate the formulation of Hill [1]. Consider a
trial vector |ψ̃〉 in a variational calculation, |ψ̃〉 = ∑N

i=1 ci |φi〉,
where ci and |φi〉 are the linear parameter and basis vector,
respectively. ci is optimized to yield a stationary energy. Define
G

(N)
ij as the inverse of the Gram matrix

∑N
k=1〈φi |φk〉G(N)

kj =∑N
k=1 G

(N)
ik 〈φk|φj 〉 = δij . Let P̂N be a projection operator for
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TABLE I. Rates of convergence of the PWE increments for the second-order-1/Z expansion energy of the ground-state helium atom.
ω = 30 is used. The atomic units are adopted.

|Ẽ2(L) − Ẽ2(L − 1)|
L r12�̃1 + χ̃ r12�̃1 + r3

12�̃3 + χ̃ r12�̃1 + r3
12�̃3 + r5

12�̃5 + χ̃

0a 1.179 ×10−1 1.543 ×10−1 1.570 ×10−1

1 3.921 ×10−2 3.346 ×10−3 6.370 ×10−4

2 4.821 ×10−4 1.260 ×10−5 1.049 ×10−6

3 3.444 ×10−5 4.555 ×10−7 2.840 ×10−8

4 4.858 ×10−6 4.255 ×10−8 2.640 ×10−9

5 1.012 ×10−6 6.841 ×10−9 4.592 ×10−10

6 2.726 ×10−7 1.561 ×10−9 1.133 ×10−10

7 8.830 ×10−8 4.621 ×10−10 3.614 ×10−11

8 3.285 ×10−8 1.338 ×10−10

9 1.361 ×10−8

10 6.155 ×10−9

11 2.989 ×10−9

�Eb 3.729 ×10−9 1.575 ×10−10 2.793 ×10−11

aThe energy of |Ẽ2(L)|, L = 0.
bTotal energy at the largest L subtracts a reference value, −0.157 666 429 469 150 941 056 6 a.u., obtained from a 3092-term expansion of the
basis-F wave function with ω = 25. The digits are expected to be converged by comparing with ω = 24.

the trial vector, P̂N := ∑N
i=1

∑N
j=1 G

(N)
ij |φi〉〈φj |. To analyze

the rate of convergence, the exact eigenvector |ψ〉 is de-
composed into the reference vectors |ψ (a)〉 and |ψ (b)〉, which
belong to the vectors in a finite dimensional space and the
outside remainder. |ψ (a)〉 is in the range of P̂N , namely
P̂N |ψ (a)〉 = |ψ (a)〉. By introducing the projection operators
P̂ (a) := |ψ (a)〉〈ψ (a)|ψ (a)〉−1〈ψ (a)|, P̂

(a)
⊥ := P̂N − P̂ (a), and a

generalized inverse Â, such that [P̂ (a)
⊥ Ĥ P̂

(a)
⊥ − ẼP̂

(a)
⊥ ]Â =

Â[P̂ (a)
⊥ Ĥ P̂

(a)
⊥ − ẼP̂

(a)
⊥ ] = P̂

(a)
⊥ , the error of energy can be

written as

Ẽ − E = 〈ψ (b)|Ĥ |ψ (b)〉 + R1 + R2 + R3, (70)

R1 := [〈ψ (a)|ψ (a)〉−1 − 1]〈ψ (b)|Ĥ |ψ (b)〉, (71)

R2 := −E〈ψ (a)|ψ (a)〉−1〈ψ (b)|ψ (b)〉, (72)

10-12
10-9
10-6
10-3
100

1 2 5 10

|E~ 2(
L)

-E~ 2(
L-

1)
|

L

n=1

n=1,3

n=1,3,5

0.88 (L+0.56)-8

0.25 (L+0.74)-10

13.0 (L+2.42)-12

FIG. 1. |Ẽ2(L) − Ẽ2(L − 1)| vs L plot for the second-order 1/Z

energy. The lines are obtained by numerical fittings from L � N+3
2

points. n indicates the odd-power r12 functions used in the ansatz (7).
Atomic units are used in the figure.

R3 := −〈ψ (a)|ψ (a)〉−1〈ψ (b)|(Ĥ−E)P̂ (a)
⊥ ÂP̂

(a)
⊥ (Ĥ−E)|ψ (b)〉,

(73)

where Ẽ and E are the variational and exact eigenvalues,
respectively. The exact wave function belongs to C∞ class (any
order differentiable) everywhere except for the coalescence
points [41]. At these coalescence points, the existence of the
first-order partial derivative with r1, r2, and r12 was proved
[37,41–43]. We assume the existence of the partial derivatives
in Eq. (76) for n � 2.

Similar with the 1/Z expansion, we choose the reference
functions ψ (a) and ψ (b) as

ψ (a)(r1,r2,r12) := �0(r1,r2) +
N∑

n=1,3,5,...

rn
12�n(r1,r2)

+
L∑

l=0

χl(r1,r2)Pl(cos θ12), (74)

ψ (b)(r1,r2,r12) :=
∞∑

l=L+1

χl(r1,r2)Pl(cos θ12), (75)

�n(r1,r2) := 1

n!

[
N−n+1∑

m=0

(−|r1−r2|)m
m!

∂n+mψ

∂rn+m
12

∣∣∣∣
r12 = |r1 − r2|

]
,

(76)

χl(r1,r2) := 2l + 1

2

∫ π

0

[
ψ(r1,r2,r12) − �0(r1,r2)

−
N∑

n=1,3,5,...

rn
12�n(r1,r2)

]
Pl(cos θ12) sin θ12dθ12.

(77)

Here ψ is the exact ground-state helium wave function. The
difference between the trial and reference functions is related to
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P̂
(a)
⊥ . As discussed in the 1/Z expansion, we only focus on the

rate of convergence from the reference functions. By choos-
ing φ = ψ̃ = ψ (a), we have P̂N = P̂ (a), P̂

(a)
⊥ = 0, |ψ̃ (a)〉 :=

P̂ (a)|ψ̃〉 = |ψ (a)〉, and |ψ̃ (a)
⊥ 〉 := P̂

(a)
⊥ |ψ̃〉 = 0. Therefore the

partition equations (3.15) and (3.16) in Ref. [1],

P̂ (a)Ĥ P̂ (a)|ψ̃ (a)〉 + P̂ (a)Ĥ P̂
(a)
⊥ |ψ̃ (a)

⊥ 〉 = ẼP̂ (a)|ψ̃ (a)〉, (78)

P̂
(a)
⊥ Ĥ P̂ (a)|ψ̃ (a)〉 + P̂

(a)
⊥ Ĥ P̂

(a)
⊥ |ψ̃ (a)

⊥ 〉 = ẼP̂
(a)
⊥ |ψ̃ (a)

⊥ 〉 (79)

become

P̂ (a)Ĥ P̂ (a)|ψ̃〉 = ẼP̂ (a)|ψ̃〉, (80)

0 = 0, (81)

respectively. By a similar manipulation as in Ref. [1], the
expressions of error of energy are the same as Eqs. (70)–(73),
except R3 = 0.

B. Termwise rates of convergence for the PWE
with odd-power r12 functions

With the help of the quantity

φl(r1,r2) := 2l + 1

2

∫ π

0
r−1

12

[
ψ(r1,r2,r12) − �0(r1,r2)

−
∑

n

rn
12�n(r1,r2)

]
Pl(cos θ12) sin θ12dθ12,

(82)

the term 〈ψ (b)|Ĥ |ψ (b)〉 in Eq. (70) can be written as

〈ψ (b)|Ĥ |ψ (b)〉 = W1 + W2 + W3 + E〈ψ (b)|ψ (b)〉, (83)

W1 = −8π2
∞∑

l=L+1

2

2l + 1

×
∫ ∞

0

∫ ∞

0
χl(r1,r2)∗φl(r1,r2)r2

1 r2
2 dr1dr2, (84)

W2 = 16π2
∞∑

l1=L+1

∞∑
l2=L+1

∞∑
l3=0

(
l1 l2 l3
0 0 0

)2

×
∫ ∞

0

∫ ∞

0

rl3
<

r
l3+1
>

χl1 (r1,r2)∗ χl2 (r1,r2) r2
1 r2

2 dr1dr2,

(85)

W3 = −〈ψ (b)|Ĥ
∣∣∣∣�0 +

∑
n

rn
12�n

〉
. (86)

Here W1 and W2 have the same forms as in Hill’s work [1],
except the definitions of χl and φl . W3 is a new term arising
from the explicitly correlated functions. (:::) is a Wigner 3-j
symbol. Since the expressions of the variational calculation
are similar to the perturbative approach, we briefly state the
results of the rates of convergence.

Similar to the 1/Z expansion, if all necessary analytic con-
ditions hold, χ is O(rN+2

12 ). To obtain the rate of convergence
from the contribution of φl , we shall apply the Theorem 3 of
Hill [1]. Let ∂jf (r1,r2,r12)/∂r

j

12 be a continuous function of

r12 for r12 ∈ [|r1 − r2|,r1 + r2],0 � j � 2J , and

∫ r1+r2

|r1−r2|

∣∣∣∣∣∂
2J+1f

∂r2J+1
12

∣∣∣∣∣
2

dr12 < ∞, (87)

∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2 r4J−1
>

∫ r1+r2

|r1−r2|

∣∣∣∣∣∂
2J+1f

∂r2J+1
12

∣∣∣∣∣
2

dr12 < ∞;

(88)

the following expansion around r12 = |r1 − r2| holds:

f (r1,r2,r12) =
∑

l

bl(r1,r2)Pl(cos θ12), (89)

bl(r1,r2) =
2J∑
j=0

∂jf

∂r
j

12

∣∣∣∣
r12=|r1−r2|

ηjl(r1,r2) + �̃J l(r1,r2), (90)

ηjl(r1,r2) = 2l + 1

2

∫ π

0

(r ′
12 − |r1 − r2|)j

r ′
12 j !

×Pl(cos θ ′
12) sin θ ′

12dθ ′
12, (91)

lim
l→∞

l4J

∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2|�̃J l(r1,r2)|2 = 0. (92)

In Eq. (92), r ′
12 := (r2

1 + r2
2 − 2r1r2 cos θ ′

12)1/2 varies by θ ′
12.

�̃JI (r1,r2) is the remainder.
We require 2J + 1 = N + 3 for Hill’s theorems 3 [1] and

apply Lemma 2 of the present work. The incremental rate of
convergence for W1 and W2 are O(L−2N−6) and O(L−2N−7),
respectively.

W3 has a similar structure with Eq. (20). It can be seen as
the following:

W3 = −〈ψ (b)|Ĥ |�0〉 −
∑

n

〈ψ (b)|[Ĥ ,rn
12

] + rn
12Ĥ |�n〉

= −〈ψ (b)|Ĥ0|�0〉 − 〈ψ (b)|r−1
12 |�0〉

−
∑

n

〈ψ (b)| − n(n + 1)rn−2
12 + Ûn + rn

12Ĥ |�n〉. (93)

Here −〈ψ (b)|r−1
12 |�0〉 + 〈ψ (b)| − n(n + 1)rn−2

12 |�n〉 will be
canceled by

�1 = �0/2 (94)

or suppressed to O(L−2N−7) according to Eq. (60). In the
1/Z expansion �0 = � = e−r1−r2/π . Here we do not have
the explicit form of �0. When n � 1 odd-power r12 functions
are introduced in the reference function (74), the incremental
rate of convergence is O(L−N−7).

By similar analysis, we obtain the incremental rate
of convergence for other terms δ1 := 〈ψ (b)|T̂ |ψ (b)〉, δ2 :=
〈ψ (b)|ψ (b)〉, R1 = O(δ1δ

1/2
2 ), and R2 = O(δ2) as O(L−N−7),

O(L−2N−8), O(L−2N−7), and O(L−2N−8), respectively. The
quantities δ1 and δ2 are introduced in Eqs. (3.26) and (3.27),
respectively in Ref. [1]. Therefore the incremental rate of
convergence of the Rayleigh-Ritz variation under the ansatz
(69) is O(L−N−7), n = 1,3,5, . . . ,N .

032511-10



RATES OF CONVERGENCE OF THE PARTIAL-WAVE . . . PHYSICAL REVIEW A 88, 032511 (2013)

TABLE II. Comparison between the numerical results and the Hill’s formulas (96) and (97). The atomic units are adopted.

L Numerical resulta Eq. (96) Numerical resultb Eq. (97)c

5 1.1886 ×10−4 1.2694 ×10−4 8.7373 ×10−5 8.7373 ×10−5

10 1.9037 ×10−5 1.9364 ×10−5 6.3491 ×10−6 6.3494 ×10−6

20 2.7083 ×10−6 2.7200 ×10−6 4.2881 ×10−7 4.2883 ×10−7

50 1.8763 ×10−7 1.8776 ×10−7 1.1507 ×10−8 1.1507 ×10−8

100 2.4087 ×10−8 2.4092 ×10−8 7.3062 ×10−10 7.3062 ×10−10

200 3.0515 ×10−9 3.0516 ×10−9 4.6026 ×10−11 4.6026 ×10−11

300 9.0820 ×10−10 9.0822 ×10−10 9.1155 ×10−12 9.1155 ×10−12

aObtained by Eq. (101) subtracting the reference value [21].
bObtained by |Ẽ(L) − Ẽ(L − 1)|.
cIn absolute value.

V. NUMERICAL RESULTS FOR THE RAYLEIGH-RITZ
VARIATIONAL CALCULATIONS

A. On the rate of convergence without odd-power r12 function

The Rayleigh-Ritz variation provided the best result for
a given basis. It has some particularly important aspects for
careful examination. For the simplest case, namely without
odd-power r12 function, the theoretical rate of convergence
was given as [1,2]

ψ̃(r1,r2,θ12) =
L∑

l=0

χ̃l(r1,r2)Pl(cos θ12), (95)

�E := 〈ψ̃ |Ĥ |ψ̃〉
〈ψ̃ |ψ̃〉 − Eexact

= C1(L + 1)−3 + C2L
−4 + O(L−5), (96)

Ẽ(L) − Ẽ(L − 1) = −3C1(L + 1/2)−4

− 4C2(L + 1/2)−5 + O(L−6), (97)

C1 = 2π2
∫ ∞

0
|ψ(r,r,0)|2r5dr,

C2 = 12π

5

∫ ∞

0
|ψ(r,r,0)|2r6dr, (98)

where ψ denotes the exact ground-state wave function. The
derivation of Eqs. (96)–(98) relies on several assumptions
of the analytic structure of the helium atom. For example,
∂jψ(r1,r2,r12)/∂r

j

12 up to j = 5 is continuous. On the other
hand, the helium wave function presents a logarithmic behavior
at the three-particle-coalescence point [36,38,39,44,45]. It
raises the question of whether such a singularity will affect
the rate of convergence.

The most accurate PWE was obtained using a spline basis
[46]. Up to L = 80, the error in energy was about 7.8 × 10−8

a.u. The agreement with other numerical studies [47–51] and
Hill’s formulas was excellent. Here we use an inverse scheme
to reach higher accuracy. Namely, we first perform an explicitly
correlated calculation, then do a PWE on top of this wave
function.

Our basis for the explicitly correlated calculation is a small
modification of the basis F in Schwartz’s article [20],

ψ̃ =
Mn∑
i=1

ciφi, (99)

φ = sλ(t/s)μ(u/s)ν(lns)ξ e−αs . (100)

Since the bound-state eigenfunction of a nonrelativistic
Coulombic Hamiltonian is bounded [41], we have removed
the term ln s e−αs which diverges at the origin. Nevertheless
the effects of excluding ln se−αs and even s ln se−α according
to the differentiability of the exact wave function [37] are not
significant in our calculations.

Other types of basis functions which contain ln(s + u)
or ln u [22,23,52] also lead to very high accuracy. Such
wave functions include different singularities at the truncated
expansion. However, the evaluations of integrals are more
complicated. Since the basis function (100) is complete at
the untruncated limit [30], our variational calculation with
wave function (100) may cover the effects of other logarithmic
singularities.

We choose order ω = 14 and Mn = 743 in Eq. (100). The
error in the energy with respect to the reference value [37] is
1.50 × 10−16 a.u. We then use this wave function to compute
the coefficients C1 and C2 defined in Eq. (98). The values
are C1 ≈ 0.024 741 908 and C2 ≈ 0.007 747 274 7. The digits
are expected to become converged by comparing ω = 13 and
ω = 14 calculations. The PWE is made on top of this optimized
wave function. The energy is evaluated as

E(L) =
∑L

l,l′=0〈χ̃lPl|T̂ + V̂en + V̂ee|Pl′ χ̃l′ 〉∑L
l,l′=0〈χ̃lPl|Pl′ χ̃l′ 〉

=
∑L

l=0
2

2l+1 〈χ̃l|T̂ + V̂en|χ̃l〉 + 2
∑L

l,l′=0

∑l+l′
l′′=|l−l′ |

(
l l′ l′′
0 0 0

)2

〈χ̃l|rl′′
</rl′′+1

> |χ̃l′ 〉∑L
l=0

2
2l+1 〈χ̃l|χ̃l〉

. (101)
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TABLE III. Rate of convergence of the PWE increments for the Rayleigh-Ritz variational energy of the ground-state helium atom. ω = 20
is used. The atomic units are adopted.

|Ẽ(L) − Ẽ(L − 1)|
L �̃0 + r12�̃1 + χ̃ �̃0 + r12�̃1 + r3

12�̃3 + χ̃ �̃0 + r12�̃1 + r3
12�̃3 + r5

12�̃5 + χ̃

0a 2.903 498 2.903 702 2.903 720
1 2.216 ×10−4 2.200 ×10−5 4.488 ×10−6

2 4.119 ×10−6 1.056 ×10−7 7.465 ×10−9

3 3.031 ×10−7 2.676 ×10−9 7.658 ×10−11

4 4.265 ×10−8 1.589 ×10−10 2.100 ×10−12

5 8.860 ×10−9 1.612 ×10−11 1.101 ×10−13

6 2.399 ×10−9 2.360 ×10−12 1.021 ×10−14

7 7.807 ×10−10 4.499 ×10−13 1.054 ×10−15

8 2.959 ×10−10 1.101 ×10−13

9 1.246 ×10−10

�Eb 1.299 ×10−10 4.516 ×10−14 1.954 ×10−16

aThe energy of |Ẽ(L)|, L = 0.
bTotal energy at the largest L subtracts the reference value [21].

A comparison between the numerical PWEs and the Hill’s
formulas is presented in Table II, where the agreement is
excellent. Since at this level of accuracy the logarithm term
typically affects the rate of convergence in the explicitly
correlated approaches [20–22], this result may imply that such
singularity does not affect the rate of convergence of PWE (95).

In addition, we also performed a numerical calculation
for the 1/Z expansion up to L = 10 000 in the Supplemental
Material [25]. The results fully agree with Schwartz’s
formula [3–5].

B. Rate of convergence with odd-power r12 functions

The “inverse scheme” used to verify the L−4 rate of
convergence is not that effective for the case with odd-power
r12 functions. Because the radial wave function �̃n needed to
be saturated first, the basis F , Eq. (100), is constructed in a dif-
ferent sequence, i.e., organized by parameter ω. Therefore, we
use a wave function similar to that used in the 1/Z expansion,

ψ̃ =
∑
λμνξ

aλμνξ s
λ(t/s)μ(u/s)ν(ln s)ξ e−αs

+
∑
λμξl

bλμξls
λ(t/s)μ(ln s)ξ e−αsPl(cos θ12). (102)

Here �̃ν = ∑
λμξ aλμνξ sλ−μ−ν tμ (ln s)ξ e−αs and χ̃l =∑

λμξ bλμξl s
λ−μ tμ (ln s)ξ e−αs correspond to the ansatz (69).

We fix �̃1 = �̃0/2 according to Eq. (94). �̃0

is a general two-electron function, represented by∑
λμξ aλμ0ξ sλ−μ tμ (ln s)ξ e−αs . Our choice is similar to the

XSP ansatz [53].
In the coupled-cluster formulation, the XSP ansatz is [53,

Eq. 18]

|�XSP〉 = {eR̃}eT |0〉,
where |0〉 and |�XSP〉 are the reference and the coupled-cluster
state vectors, respectively. The operators T and R̃ correspond
to the conventional and the explicitly correlated excitations,
respectively. The XSP ansatz contains a geminal function
acting on a general reference state, than a Hartree-Fock state.

The detailed definitions can be found in Ref. [53]. We have
removed the terms that diverge at the origin.

The numerical results are presented in Table III and Fig. 2.
Detailed data are given in the Supplemental Material [25]. The
L−8, L−10, and L−12 rates of convergence are observed. We
notice in the original CI-R12 approach, no simple inverse-
power law for the rate of convergence was found [7]. That
result [7] may be due to the limited incorporation of the cusp
condition by its ansatz, namely r12e

−α(r1+r2).

VI. SUMMARY

In the present study, we analyzed the rate of convergence of
the PWE for the ground state of the helium atom with the pres-
ence of the odd-power r12 functions, rn

12. Under certain assump-
tions of the analytic structure for the helium wave function,
the rate of convergence is L−N−7 for both the second-order
1/Z expansion and the Rayleigh-Ritz variational approach. N

10-15
10-12
10-9
10-6
10-3
100

1 2 5 10

|E~ (L
)-

E~ (L
-1

)|

L

n=1

n=1,3

n=1,3,5

0.0084 (L+0.59)-8

0.00019 (L+0.063)-10

0.0000094 (L-0.42)-12

FIG. 2. |Ẽ(L) − Ẽ(L − 1)| vs L plot for the Rayleigh-Ritz
variational energy. The lines are obtained by numerical fittings.
L � N+3

2 points are used for the fittings. n indicates the odd-power
r12 functions used in the ansatz (69). Atomic units are used in the
figure.
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is the highest power of the odd-power r12 functions. We also
verified the theoretical results by numerical calculations.
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APPENDIX A: ABOUT THE ALTERNATIVE
DEFINITION OF E2(L)

Since the second-order perturbative energy is given by

E2 = 〈�|Ĥ ′ − E1|ψ〉, (A1)

the partial-wave energy may be defined as

Ě2(L) := 〈�|Ĥ ′ − E1|ψ (a)〉. (A2)

If there is no odd-power r12 term in ψ (a), Eq. (A2) is essentially
the same as the definition in Schwartz’s work [4]. We shall
show Ě2(L) = E2(L) if N = 0 in ansatz (9). When N � 1,
Ě2(L) �= E2(L).

Define ψ (b) as the remainder of ψ (a),

ψ (b) := ψ − ψ (a) (A3)

=
∞∑

l=L+1

χlPl(cos θ12). (A4)

Here Eq. (A4) comes from the definition of χl , (12). We left
multiply 〈ψ (a)| on the first-order perturbative equation (16)
then transpose it to obtain

〈ψ (a)|Ĥ0 − E0|ψ (a)〉
= −〈ψ (a)|Ĥ0 − E0|ψ (b)〉 − 〈�|Ĥ ′ − E1|ψ (a)〉. (A5)

Inserting Eq. (A5) into Eq. (13) yields

E2(L) = −〈ψ (b)|Ĥ0 − E0|ψ (a)〉 + 〈�|Ĥ ′ − E1|ψ (a)〉. (A6)

Obviously, E2(L) = Ě2(L) if and only if 〈ψ (b)|Ĥ0 −
E0|ψ (a)〉 = 0. This condition is valid for N = 0 in ψ (a), and
generally not true for N � 1. Since the Hylleraas functional
(6) provides an upper bound of the second-order energy, we
choose E2(L) in our discussion.

APPENDIX B: AN ALTERNATIVE DERIVATION FOR THE
FIRST-ORDER WAVE FUNCTION AND PWE ENERGIES

WITHOUT r12 TERMS

1. Derivation for the O(L−4) rate of convergence

a. Assumptions for the regularities of the first-order wave function

We first notice that Theorem 2 from Hill [1] (also see
Lemma 6.12 from Goddard [2]) can expand a function
into a Legendre series with a controllable remainder. Let
∂jf (r1,r2,r12)/∂r

j

12 be a continuous function of r12 for r12 ∈

[|r1 − r2|,r1 + r2],0 � j � 2J − 1, and∫ r1+r2

|r1−r2|

∣∣∣∣∂2Jf

∂r2J
12

∣∣∣∣
2

dr12 < ∞, (B1)

∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2 r4J−1
>

∫ r1+r2

|r1−r2|

∣∣∣∣∂2Jf

∂r2J
12

∣∣∣∣
2

dr12 < ∞; (B2)

the following expansion around r12 = |r1 − r2| holds:

f (r1,r2,r12) =
∑

l

bl(r1,r2)Pl(cos θ12), (B3)

bl(r1,r2) =
2J−1∑
j=0

∂jf

∂r
j

12

∣∣∣∣
r12=|r1−r2|

ξjl(r1,r2) + �Jl(r1,r2), (B4)

ξjl(r1,r2) = 2l + 1

2

∫ π

0

(r ′
12 − |r1 − r2|)j

j !

×Pl(cos θ ′
12) sin θ ′

12dθ ′
12, (B5)

lim
l→∞

l4J

∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2|�Jl(r1,r2)|2 = 0. (B6)

In Eq. (B5) r ′
12 := (r2

1 + r2
2 − 2r1r2 cos θ ′

12)1/2 varies by θ ′
12.

�JI (r1,r2) is the remainder.
Notice in the original paper [1], a normalized Legen-

dre polynomial, �l(θ12) := (l + 1/2)1/2Pl(cos θ12), was used.
Here we adopt the conventional Legendre polynomial,
Pl(cos θ12). As a result, our ξjl(r1,r2) is (l + 1/2)1/2 times
Hill’s definition [1, Eq. 4.36]. In the region r1 = r2, the expan-
sion (B3) coincides with the generalized-Laplace expansion
(23), i.e., ξjl(r1,r2)|r1=r2 = Rjl/j !.

We then make three assumptions to derive the L−4 rate
of convergence: (i) the exact first-order wave function has
continuous partial derivatives, ∂nψ/∂rn

12, n = 0,1,2, and∫ r1+r2

|r1−r2|

∣∣∣∣∂3ψ

∂r3
12

∣∣∣∣
2

dr12 < ∞, (B7)

∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2 r5
>

∫ r1+r2

|r1−r2|

∣∣∣∣∂3ψ

∂r3
12

∣∣∣∣
2

dr12 < ∞; (B8)

(ii) the exact first-order wave function has mixed partial
derivatives ∂i+j+k+1ψ/∂ri+k

< ∂r
j+1
12 with the following bound

properties:∣∣∣∣∣ ∂i+j+k+1ψ

∂ri+k
< ∂r

j+1
12

∣∣∣∣∣ � Ã(r>),

(B9)
i + j = 1, k = 0,1,2, r< ∈ (0,r>),

where Ã(r>) is a function of r>; (iii) all integrals in the
derivation exist. Assumption (i) corresponds to J = 3/2 in
Eqs. (B1)–(B6). In assumption (ii), i + j is the order of the
Taylor expansion which corresponds to the remainders in
Eq. (28). k = 1,2 corresponds to the first- and second-order
differentiations in operators Û1l and Ĥ0 in Eqs. (B20) and
(B24), respectively. The requirement of the differentiability
of r< may be too strong. We can define the first-order wave
function multiplies r2

<r2
> in the volume element, i.e., ψr2

<r2
> as

ψ in the assumption (ii). It will have extra differentiabilities.
In addition, bound properties similar to Eq. (B9) have been
proposed by Goddard [2] to refine the derivation of Hill [1].
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Let the exact first-order wave function ψ be the function
f in the theorem above, with the help of the low-order
expressions of ξjl [1, Eqs. 5.88–5.90],

ξ0l = δl0, (B10)

ξ1l = −(r> − r<)δl0 + R1l , (B11)

ξ2l = r<r>(δl0 − δl1) − (r> − r<)ξ1l ; (B12)

we have

ψl := 2l + 1

2

∫ π

0
ψ(r1,r2,r12) Pl(cos θ12) sin θ12dθ12 (B13)

=
[

∂ψ

∂r12
− |r1 − r2|∂

2ψ

∂r2
12

]∣∣∣∣
r12=|r1−r2|

R1l + �3/2,l ,

l � 2. (B14)

b. Termwise rates of convergence for the PWE

As shown in Appendix A, we can either start from the
Hylleraas functional (13) or the expression of the second-
order energy (A2) to analyze the rate of convergence. For
convenience we use a similar procedure to that by Kutzelnigg
and Morgan [8]. A few details which have been derived in their
work [8] will be omitted. Namely we start from the partial-
wave increment of the Hylleraas functional, E2(l),

E2(L) =
L∑

l=0

E2(l), (B15)

E2(l) := 〈ψlPl|Ĥ0 − E0|ψlPl〉 + 2〈ψlPl|Ĥ ′ − E1|�〉.
(B16)

Rewrite Eq. (B14) as

ψl = �1R1l + χl, (B17)

�1 =
[

∂ψ

∂r12
− |r1 − r2|∂

2ψ

∂r2
12

]∣∣∣∣
r12=|r1−r2|

, (B18)

χl = �3/2,l . (B19)

Notice the commutation relation (15) also holds for each PWE
increment,

[Ĥ0 − E0,Rml ] = −m(m + 1)Rm−2,l + Ûml ; (B20)

here Ûml := 2l+1
2

∫ π

0 ÛmPl(cos θ12) sin θ12dθ12. By combining
Eqs. (B16)–(B20) and integrating out the angular variables,
we obtain similar expressions with Eqs. (18)–(20),

E2(l) = B(l) + D(l) + F (l) + B�(l)

+D�(l) + F�(l), l � 2, (B21)

B(l) := 8π2(l + 1/2)−1[−2〈�1R1l|R−1l�1〉
+ 2〈�1R1l|R−1l�〉], (B22)

D(l) := 8π2(l + 1/2)−1〈�1R1l|Û1l|�1〉, (B23)

F (l) := 8π2(l + 1/2)−1〈�1R1l|R1l(Ĥ0 − E0)|�1〉, (B24)

B�(l) := 8π2(l + 1/2)−1[−2〈�3/2,l |R−1l�1〉
+ 2〈�3/2,l |R−1l�〉], (B25)

D�(l) := 8π2(l + 1/2)−1〈�3/2,l |Û1l|�1〉, (B26)

F�(l) := 8π2(l + 1/2)−1〈�3/2,l |R1l(Ĥ0 − E0)|�1〉. (B27)

The factor 8π2 comes from integrating over other angular
variables. We first focus on the term B(l). By assumption (ii),
we expand ∂ψ(r<,r>,r12)/∂r12 around r< = r> and r12 = 0
with the Lagrange remainders,

∂ψ

∂r12

∣∣∣∣
r12=r>−r<

= ∂ψ

∂r12

∣∣∣∣ r< = r>,

r12 = 0

+ (r< − r>)
∂2ψ

∂r<∂r12

∣∣∣∣ r< = σ,

r12 = τ

+ (r> − r<)
∂2ψ

∂r2
12

∣∣∣∣ r< = σ,

r12 = τ

= 1

2
�(r>,r>) + (r< − r>)

∂2ψ

∂r<∂r12

∣∣∣∣ r< = σ,

r12 = τ

+ (r> − r<)
∂2ψ

∂r2
12

∣∣∣∣ r< = σ,

r12 = τ

; (B28)

Eq. (B18) then becomes

�1 = �10 + �11, (B29)

�10 := 1

2
�(r>,r>), (B30)

�11 := (r< − r>)

⎡
⎣ ∂2ψ

∂r<∂r12

∣∣∣∣ r< = σ,

r12 = τ

− ∂2ψ

∂r2
12

∣∣∣∣ r< = σ,

r12 = τ

+ ∂2ψ

∂r2
12

∣∣∣∣
r12=r>−r<

]
, (B31)

with σ ∈ (0,r>) and τ ∈ (r> − r<,r> + r<). Here we have
used the cusp condition for the first-order wave function [8],

∂ψ

∂r12

∣∣∣∣ r1 = r2 �= 0,

r12 = 0

= 1

2
�

∣∣∣∣ r1 = r2 �= 0,

r12 = 0

. (B32)

The cusp condition (B32) may not hold at the three-particle
coalescence [28]. Nevertheless, a single point does not affect
the values of integrals which are used for evaluating the
electronic energy.

Inserting Eq. (B29) into Eq. (B22), we obtain

B(l) = B1(l) + B2(l) + B3(l), (B33)

B1(l) := 8π2(l + 1/2)−1[−2〈�10R1l|R−1l�10〉
+ 2〈�10R1l|R−1l�〉], (B34)

B2(l) := 8π2(l + 1/2)−1[−2〈�11R1l|R−1l�10〉
− 2〈�10R1l|R−1l�11〉 + 2〈�11R1l|R−1l�〉],

(B35)

B3(l) := 8π2(l + 1/2)−1[−2〈�11R1l|R−1l�11〉]. (B36)
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For B1(l) we then have

B1(l) = − 32π2

2l + 1

∫ ∞

0

∫ r>

0
R1lR−1l

[
1

2
�(r>,r>)�(r>,r>) − �(r>,r>)�(r<,r>)

]
r2
<r2

>dr<dr>

= 16π2

2l + 1

∫ ∞

0

∫ r>

0
R1lR−1l�(r>,r>)�(r>,r>)r2

<r2
>dr<dr>

+
∞∑

n=1

32π2

2l + 1

∫ ∞

0

∫ r>

0

(r< − r>)n

n!
R1lR−1l�(r>,r>)

∂n�(r<,r>)

∂rn
<

∣∣∣∣
r<=r>

r2
<r2

>dr<dr>. (B37)

In the second and third lines we used the Taylor expansion for �(r<,r>). As derived in Kutzelnigg and Morgan [8], the second
line provides the origin of the −45/256(L + 1/2)−4 rate of convergence. Hereafter the rate of convergence means the incremental
rate, E2(L) − E2(L − 1). There is no term at O(L−5).

For B2(l) we have

B2(l) =
∞∑

n=1

64π2

2l + 1

∫ ∞

0

∫ r>

0

(r< − r>)n+1

n!
R1lR−1l

⎡
⎣ ∂2ψ

∂r<∂r12

∣∣∣∣ r< = σ,

r12 = τ

− ∂2ψ

∂r2
12

∣∣∣∣ r< = σ,

r12 = τ

+ ∂2ψ

∂r2
12

∣∣∣∣
r12=r>−r<

⎤
⎦ ∂n�(r<,r>)

∂rn
<

∣∣∣∣
r<=r>

× r2
<r2

>dr<dr>. (B38)

The first two terms in the square brackets of Eq. (B38) come from the Lagrange-type remainder. Therefore, we do not have
explicit information to evaluate the rate of convergence. Nevertheless, we can use the bound properties (B9) to compute the rate
of convergence for the upper and lower bounds. For the n = 1 term in Eq. (B38), the upper and lower bounds are

−192π2

2l + 1

∫ ∞

0

∫ r>

0
(r< − r>)2R1lR−1l Ã(r>)r2

<r2
>dr<dr>

� 64π2

2l + 1

∫ ∞

0

∫ r>

0
(r< − r>)2R1lR−1l

⎡
⎣ ∂2ψ

∂r<∂r12

∣∣∣∣ r< = σ,

r12 = τ

− ∂2ψ

∂r2
12

∣∣∣∣ r< = σ,

r12 = τ

+ ∂2ψ

∂r2
12

∣∣∣∣
r12=r>−r<

⎤
⎦ ∂�

∂r<

∣∣∣∣
r<=r>

r2
<r2

>dr<dr>

� 192π2

2l + 1

∫ ∞

0

∫ r>

0
(r< − r>)2R1lR−1l Ã(r>)r2

<r2
>dr<dr>. (B39)

Here we have used |∂�/∂r<| = | − e−r<−r>/π | < 1. The upper and lower bounds in Eq. (B39) are determined by [2]

R1l(r<,r>)R−1l(r<,r>) = r2l
< r−2l−2

>

(
r2
<

2l + 3
− r2

>

2l + 1

)
� 0, (B40)

By Lemma 1 in the present work, we see the upper and lower bounds of Eqs. (B39) converge as O(L−6). Again using Lemma 1,
the upper and lower bounds of the terms n > 1 in Eq. (B38) converge in higher order than O(L−6).

Similarly, the upper and lower bounds of B3(l) converge as O(L−6).
D(l) and F (l) include the first- and second-order differentiation operators, Û1l and Ĥ0, respectively. These operators acting

on (r< − r>) in �11 will let �11 and �10 give the same order of the rate of convergence. By the presence of the Lagrange-type
remainder in �11, we could only use assumption (ii) to obtain the rate of convergence of the upper and lower bounds. The first-
and second-order differentiation operators require k = 1,2 in assumption (ii). By assumption (ii), Lemmas 2 and 3, the upper
and lower bounds of D(l) and F (l) converge as O(L−6).

The rate of convergence from the remainder �3/2,l , namely B�(l), D�(l), and F�(l) can be estimated by the Cauchy-Schwartz
inequality. Similar with the treatment of B2(l), we have

B�(l) = 32π2

2l + 1

∫ ∞

0

∫ r>

0
�3/2,lR−1l�(r>,r>)r2

<r2
>dr<dr>

− 64π2

2l + 1

∫ ∞

0

∫ r>

0
�3/2,lR−1l(r< − r>)

⎡
⎣ ∂2ψ

∂r<∂r12

∣∣∣∣ r< = σ,

r12 = τ

− ∂2ψ

∂r2
12

∣∣∣∣ r< = σ,

r12 = τ

+ ∂2ψ

∂r2
12

∣∣∣∣
r12=r>−r<

⎤
⎦ r2

<r2
>dr<dr>

+
∞∑

n=1

64π2

2l + 1

∫ ∞

0

∫ r>

0
�3/2,lR−1l

(r< − r>)n

n!

∂n�(r<,r>)

∂rn
<

∣∣∣∣
r<=r>

r2
<r2

>dr<dr>. (B41)
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By the Cauchy-Schwartz inequality, the first line of Eq. (B41) has the following bounds:

32π2

2l + 1

∣∣∣∣
∫ ∞

0

∫ r>

0
�3/2,lR−1l�(r>,r>)r2

<r2
>dr<dr>

∣∣∣∣
� 32π2

2l + 1

[∫ ∞

0

∫ r>

0
�2

3/2,lr
2
<r2

>dr<dr>

]1/2 [∫ ∞

0

∫ r>

0
R2

−1l�(r>,r>)2

]1/2

= o(L−5). (B42)

The upper and lower bounds of other terms in Eq. (B41) converge as o(L−6). By a similar procedure, the upper and lower bounds
of D�(l) and F�(l) converge as o(L−7).

2. Derivation for the O(L−6) rate of convergence

a. Assumptions for the regularities of the first-order wave function

To obtain an explicit expression of O(L−6), instead of
estimating from the upper and lower bounds, we shall assume
that (i) the exact first-order wave function has continuous
partial derivatives with respect to r12, ∂nψ/∂rn

12, n = 0,1,2,3,
and ∫ r1+r2

|r1−r2|

∣∣∣∣∂4ψ

∂r4
12

∣∣∣∣
2

dr12 < ∞, (B43)

∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2 r5
>

∫ r1+r2

|r1−r2|

∣∣∣∣∂4ψ

∂r4
12

∣∣∣∣
2

dr12 < ∞; (B44)

(ii) the exact first-order wave function has mixed partial
derivatives ∂i+j+k+1ψ/∂ri+k

< ∂r
j+1
12 for i + j � 3,k = 0,1,2

with bound properties,∣∣∣∣∣ ∂i+j+k+1ψ

∂ri+k
< ∂r

j+1
12

∣∣∣∣∣ � Ã(r>),

i + j = 3, k = 0,1,2, r< ∈ (0,r>), (B45)

where Ã(r>) is a function of r>; (iii) all integrals in the
derivation exist.

By assumption (i), we extend expansion (B14) into J = 2,

ψl =
[

∂ψ

∂r12
− |r1 − r2|∂

2ψ

∂r2
12

+ |r1 − r2|2
2

∂3ψ

∂r3
12

]∣∣∣∣
r12=|r1−r2|

R1l

+ 1

3!

∂3ψ

∂r3
12

∣∣∣∣
r12=|r1−r2|

R3l + �2,l , l � 2.

(B46)

In principle there are different choices of �1 and χl as
Eq. (B19); we use the following partition for convenience
purpose:

ψl = �1R1l + χl, (B47)

�1 =
[

∂ψ

∂r12
− |r1 − r2|∂

2ψ

∂r2
12

+ |r1 − r2|2
2

∂3ψ

∂r3
12

]∣∣∣∣
r12=|r1−r2|

R1l ,

(B48)

χl = 1

3!

∂3ψ

∂r3
12

∣∣∣∣
r12=|r1−r2|

R3l + �2,l . (B49)

By assumption (ii), we perform Taylor expansion for ∂ψ/∂r12,
∂2ψ/∂r2

12, and ∂3ψ/∂r3
12 in Eq. (B48) around r< = r> and

r12 = 0. After a similar procedure as Eq. (B28), we obtain

�1 = ∂ψ

∂r12

∣∣∣∣ r< = r>,

r12 = 0

+ (r< − r>)
∂2ψ

∂r<∂r12

∣∣∣∣ r< = r>,

r12 = 0

+ (r< − r>)2

2

∂3ψ

∂r2
<∂r12

∣∣∣∣ r< = r>,

r12 = 0

+ O((r< − r>)3). (B50)

Here O((r< − r>)3) contains the Lagrange-type remainders. We notice that the crossing terms, such as −|r1 − r2|∂2ψ/∂r2
12,

disappear. The absence of the crossing terms holds in general. We can consider the following expansion for a sufficient regular
function:

ψ(r<,r>,r12) =
M∑

m=0

(r< − r>)m

m!

∂mψ

∂rm
<

∣∣∣∣
r<=r>

+ O((r< − r>)M+1)

=
M∑

m=0

(r< − r>)m

m!

∞∑
l=0

⎡
⎣ N∑

n=0

Rnl

n!

∂m+nψ

∂rm
<∂rn

12

∣∣∣∣ r< = r>,

r12 = 0

+ ��(N+1)/2	,l

⎤
⎦ Pl(cos θ12) + O((r< − r>)M+1). (B51)

The expansion for r12 is around r1 = r2 in the second line of Eq. (B51). The crossing terms then disappear.
We can then use the cusp condition (B32) to replace Eq. (B50) as

�1 = 1

2

[
�|r<=r>

+ (r< − r>)
∂�

∂r<

∣∣∣∣
r<=r>

+ (r< − r>)2

2

∂2�

∂r2
<

∣∣∣∣
r<=r>

+ O((r< − r>)3)

]
. (B52)
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Equation (B52) resembles the large-L behavior (21). The replacement of derivatives is tricky. At least we may demonstrate
the legitimacy under integration. Without loss of generality, we consider∫ ∞

0

∫ r>

0
R−1lR−1l

∂2

∂r2
<

[
∂ψ

∂r12

∂ψ

∂r12

]∣∣∣∣ r< = r>,

r12 = 0

r2
<r2

>dr<dr>

=
∫ ∞

0

∫ ∞

r<

R−1lR−1l

∂2

∂r2
<

[
∂ψ

∂r12

∂ψ

∂r12

]∣∣∣∣ r< = r>,

r12 = 0

r2
<r2

>dr<dr> = 1

2l − 1

∫ ∞

0
r3
<

∂2

∂r2
<

[
∂ψ

∂r12

∂ψ

∂r12

]∣∣∣∣ r< = r>,

r12 = 0

dr<

= 3 · 2

2l − 1

∫ ∞

0
r<

[
∂ψ

∂r12

∂ψ

∂r12

]∣∣∣∣ r< = r>,

r12 = 0

dr< = 3

2(2l − 1)

∫ ∞

0
r<�(r<,r<)�(r<,r<)dr<

=
∫ ∞

0

∫ r>

0
R−1lR−1lr

2
<r2

>

∂2

∂r2
<

[
�(r<,r>)

2

�(r<,r>)

2

]∣∣∣∣
r<=r>

dr<dr>; (B53)

in the third line we have performed integration by parts. Since we can always group the same order of Taylor expansion of
∂ψ/∂r12 and ∂ψ/∂r12 in Eq. (B21) together, ∂m+1ψ/∂rm

<∂r12 can be replaced by 1
2∂m�/∂rm

< .

b. Termwise rates of convergence for the PWE

Inserting Eqs. (B49) and (B52) into Eq. (B36), we can obtain the explicit expression of O(L−6). The procedure is similar to
that by Kutzelnigg and Morgan [8], except for the term 〈�1|R1lR1l(Ĥ0 − E0)|�1〉. Kutzelnigg and Morgan [8] used the result [3]
�1(r<,r>) = �(r<,r>)/2 = e−r1−r2/(2π ) and (Ĥ0 − E0)e−r1−r2/(2π ) = 0. Since we only have the expression of � in Eq. (B52),
we cannot perform this kind of derivation. Nevertheless as we can see

(Ĥ0 − E0)
1

2

[
�(r>,r>) + (r< − r>)

∂�

∂r<

∣∣∣∣
r<=r>

+ (r< − r>)2

2

∂2�

∂r2
<

∣∣∣∣
r<=r>

+ O((r< − r>)3)

]

= 1

2
(Ĥ0 − E0)

[
�(r<,r>) −

∞∑
n=3

(r< − r>)n

n!

∂n�

∂rn
<

∣∣∣∣
r<=r>

+ O((r< − r>)3)

]

= 1

2
(Ĥ0 − E0)

[
−

∞∑
n=3

(r< − r>)n

n!

∂n�

∂rn
<

∣∣∣∣
r<=r>

+ O((r< − r>)3)

]
. (B54)

In the third line, we used the fact that �(r<,r>) is the eigenfunction of Ĥ0. Since the Hamiltonian Ĥ0 = −∇2
1/2 − ∇2

2/2 −
1/r1 − 1/r2, the rate of convergence of 〈�1|R1lR1l(Ĥ0 − E0)|�1〉 is proportional to 〈�1|(r< − r>)R1lR1l|�1〉. By Lemma 1
of the present work, its upper and lower bounds converge at O(L−7). Since the O((r< − r>)3) term in Eq. (B50) contains the
Lagrange-type remainders, we only have the results of the upper and lower bounds.

The remaining issue is that, while the previous studies stated the large-L behavior of the first-order wave function is [3,7,8],

ψ → 1

2
r12�(r<,r>) = r12

e−r<−r>

2π
, L → ∞, (B55)

we have only obtained the expressions of �(r<,r>) and a few derivatives at r< = r> in Eq. (B50). We may extend our assumptions
of the analytic structure of the first-order wave function. Equation (B50) will approach Eq. (B55).

APPENDIX C: EVALUATION OF THE MAIN INTEGRAL IN THE NUMERICAL CALCULATIONS

In the numerical calculations, we frequently confront a main integral:

I (n1,n2,n3,n4,n5,α) :=
∫ ∞

0

∫ r>

0
sn1 tn2rn3

< rn4
> (lns)n5 e−αsdr< dr>. (C1)

It can be evaluated as follows:

I =
∫ ∞

0

∫ π/2

0
2ρn1+n2+n3+n4+1(1 + sin2 φ)n1 cos2n2+1φ sin2n4+1φ [ln((1 + sin2 φ)ρ)]n5 e−α(1+sin2 φ)ρdφ dρ

r< → ρ sin2 φ, r> − r< → ρ cos2 φ

= ∂ n5

∂vn5
[α−ν�(ν)]|ν=n1+n2+n3+n4+2

∫ 1

0
(1 + sin2 φ)−n2−n3−n4−2 cos2n2φ sin2n4φ d sin2 φ

= ∂ n5

∂vn5
[α−ν�(ν)]|ν=n1+n2+n3+n4+2B(n2 + 1,n3 + 1) 2F1(n2 + n3 + n4 + 2,n3 + 1; n2 + n3 + n4; −1), (C2)
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where B(. . . , . . . ) is the β function. Here we have restricted t � 0 as proposed by Hylleraas [54]. Therefore r1 = r< and r2 = r>.
Alternatively we can restrict n2 to be an even number according to the symmetry of the helium ground state (we are indebted
to a referee for pointing out this prescription). In the first line of Eq. (C2), the coordinate transformation from Frolov and
Smith [55,56] was adopted. In the second and third lines, we have used the integral formula related to nth derivatives of the �

function [57, Eq. 4.358.5] and the integral representation of the hypergeometric function [58, Eq. 15.3.1], respectively.
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