
PHYSICAL REVIEW A 88, 032510 (2013)

Analyzing effects of strong electron correlation within Kohn-Sham density-functional theory
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A density-functional-theory method for analyzing effects of strong electron correlation is presented, based on
a single Kohn-Sham determinant. It yields the population of effectively unpaired (odd) electrons and depicts
the strength of nondynamic correlation, both locally and globally. It provides also a quantitative estimate
of localized magnetic moments without invoking symmetry-breaking procedures. Preliminary tests on some
exemplary systems of strong correlation such as C2, Cr2, the NO dimer, and dissociating H2 and N2 are discussed
in comparison with available post-Hartree-Fock wave-function studies. We show that the bond in C2 is unlikely
to have diradical character in its ground state, but may have it in some excited state. The singlet ground state of
the NO dimer, however, does have a diradical character of the bonding. Quite interestingly, the bond in Cr2 has
a quad-radical nature.
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I. INTRODUCTION

Nondynamic (ND) electron correlation, also called static,
is conventionally understood as an effect where the single-
determinant Hartree-Fock (HF) reference fails to describe it
properly and multireference wave functions are generally re-
quired [1]. Compounds with polyradical character of bonding
are examples of “strongly correlated” chemical systems. Solid-
state phenomena such as metal-insulator transitions, various
magnetic phenomena, and superconductivity are examples of
strongly correlated solid-state systems [2–5]. With density-
functional theory (DFT), some of these effects have been
analyzed in terms of left-right correlation [1,6], fractional-spin,
and fractional-charge analysis [7], and using an alternative
reference state [8]. The “simplest” example of left-right
correlation is the stretched hydrogen molecule, where the two
electrons forming the bond electron pair at equilibrium become
only weakly paired and mostly localized each on a separate
atom. Molecular magnets and singlet diradicaloids are other
examples where such a weak pairing exists even at equilibrium.
At the single-determinant self-consistent field (SCF) level, the
valence electrons of a singlet system remain perfectly paired.
Left-right correlation partly decouples the bond electron pairs,
giving rise to a formation of effectively unpaired (“odd”)
electrons [9–11]. When the left-right correlation is strong,
these electrons remain mostly unpaired and localized in
the atomic regions of a molecule or solid. The formation
of polyradical states is another example of unusually high
generation of odd-electron density [11] localized on the atomic
centers. In solid-state theory, this phenomenon is known as a
narrow-band electron localization [12]. The formation of odd
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electrons is related to the nonidempotency of the correlated
first-order reduced density matrix (RDM-1) evaluated via
multideterminant wave functions, which in turn reflects the
partial decoupling of the electron bond pairs [9]. At the SCF
level [HF or Kohn-Sham (KS)], RDM-1 is idempotent and
such effects cannot be described.

In this paper, we establish the concept of effectively un-
paired (odd) electrons to describe the effects of ND correlation
and measure its strength in the framework of Kohn-Sham
(KS) DFT, without using a multideterminant approach. The
method also gives a quantitative estimate of localized magnetic
moments, which can be used in studies of magnetic materials
[4,5].

II. THEORY

The formation of effectively unpaired (odd) electrons has
been described so far in the literature only through the use
of correlated wave functions. In this paper, we propose a
method that formulates and describes this phenomenon based
on a single-determinant KS DFT approach. We start from the
existing wave-function-based formalism [9,11,13,14] related
to properties of the first-order reduced density matrix (RDM-
1). At the SCF level, RDM-1 is idempotent for the simple
reason that the occupancy of a molecular orbital (ψks

iσ ) is either
one or zero with a single-determinant trial wave function:∫

γ scf
σ (r1; r2)γ scf

σ (r2; r1)dr2 = ρσ (r1),
(1)

γ scf
σ (r1; r2) =

occ∑
i

ψks
iσ (r1)ψks

iσ (r2),

where ρσ (r1) is the electron density of spin σ at position
r1, γ scf

σ is the spin-resolved RDM-1 at the SCF level, and
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ψks
iσ are the canonical Kohn-Sham orbitals. The cross product

of nondiagonal elements, γ scf
σ (r1; r2)γ scf

σ (r2; r1), reflects a
Hartree-Fock-like exchange and can be readily expressed in
terms of a special two-electron function, i.e., the HF exchange
hole hXσσ :

γ scf
σ (r1; r2)γ scf

σ (r2; r1) = ρσ (r1)hXσσ (r1,r2),
(2)∫

hXσσ (r1,r2)dr2 = 1.

The notion of the exchange-correlation hole hXC, on the other
hand, is related to the quantum-mechanical conditional pair
probability Pσσ (r1,r2) of finding a given electron at position
r2 when another electron is at position r1 (please note that the
functions hXσσ and hXCσσ are considered positively defined in
this work for convenience, and energy expressions using them
must include the required negative sign explicitly):

Pσσ (r1,r2) = ρσ (r2) − hXCσσ (r1,r2). (3)

The important properties of these two-electron functions are
summarized in the Appendix.

When RDM-1 includes electron correlation, it becomes
nonidempotent,

Dσ (r1) ≡ ρσ (r1) −
∫

γσ (r1; r2)γσ (r2; r1)dr2 � 0. (4)

The function Dσ (r1) measures the deviation from idempotency
of the correlated RDM-1 and represents the density of odd
electrons of spin σ at point r1 [9,14]. It is positively defined
since the orbital occupancies with a correlated wave function
are all between 0 and 1. This also shows that electron corre-
lation tends to reduce the value of the RDM-1 cross product
globally. From this perspective, the formation of effectively
unpaired (odd) electrons in singlet systems is exclusively a
correlation-based phenomenon with a subtle quantum origin.
Summing Dσ (r1) over the spin components gives the total
density of odd electrons, and integrating the latter over space
gives the mean total number of odd electrons N̄u:

Du(r) = 2
∑

σ

Dσ (r), N̄u =
∫

Du(r)dr. (5)

The appearance of a factor of 2 in Eq. (5) above is required for
reasons discussed in Ref. [14]. We proceed further with the
observation that the correlated RDM-1 cross product reflects
an effective exchange, also known as cumulant exchange [10].
The KS exact-exchange hole is itself artificially too
delocalized. However, the total exchange-correlation
interaction in a finite system with strong left-right correlation
is normally fairly localized, i.e., largely confined within a
region of roughly atomic size [15]. The effective exchange
described with the correlated RDM-1 cross product should be
fairly localized as well. With this in mind, and following an
analogy with the SCF formula given by Eq. (2), we explore
the following ansatz for the sake of evaluating the number of
odd electrons in closed-shell systems:

γσ (r1; r2)γσ (r2; r1) ≈ ρσ (r1)h̄eff
Xσσ (r1,r2),

(6)∫
h̄eff

Xσσ (r1,r2)dr2 � 1,

where h̄eff
Xσσ (r1,r2) is a certain effective exchange hole yet to be

determined. Note that in this representation, RDM-1 becomes
nonidempotent only if the normalization of the effective hole is
less than 1. To find a suitable expression of this form that would
lead to accurate estimates of the odd-electron density, we
resort to some ideas of Becke’s B05 DFT model. This model
describes ND left-right correlation effects in terms of certain
real-space properties of the exchange-correlation hole [6]. The
extra delocalization of the exchange hole alone is compensated
in the B05 model by suitable real-space corrections, resulting
in the following exchange-correlation ND hole for α spin:

h̄XCαα(r1,r2) = h̄aux
Xαα(r1,r2) + fc(r1) h̄aux

Xββ(r1,r2). (7)

Its β counterpart, h̄XCββ , can be obtained by simply switching
α to β and β to α. We note that the same rule applies to all
spin-specific quantities in the rest of this work. The function
h̄aux

Xσσ (r1; r2) is a model DFT exchange hole of Becke-Roussel
(BR) form [16]. The original BR hole is localized within a
region of roughly atomic size and has the same curvature as the
exact-exchange hole at the reference point. In the B05 model,
this BR hole is used with a relaxed (effective) normalization,
such that the potential from the relaxed BR hole equals that of
the exact-exchange hole. This results in values of the relaxed
normalization less than or equal to 1 [compare with Eq. (6)]:∫

h̄aux
Xσσ (r1; r2)dr2 = N eff

Xσ (r1) � 1. (8)

The form of N eff
Xσ (r) is quite complicated, but it is possible

to represent it in closed analytic form [17,18]. The smaller
the relaxed normalization N eff

Xα(r), the more delocalized
the corresponding exact-exchange hole about the reference
electron at r [6]. The α-α exchange hole is further deepened
by a fraction of the β-β exchange hole, fc(r1) h̄aux

Xββ(r1,r2),
which gives rise to ND correlation. The local correlation
factor fc in Eq. (7) governs this deepening and hence
the strength of ND correlation at each point, and is given
as [6]

fc(r) = min[fα(r),fβ(r),1],

0 � fc(r) � 1, (9)

fα(r) = 1 − N eff
Xα(r)

N eff
Xβ (r)

.

Based on the above analysis, we propose the following
formula of the correlated RDM-1 cross product by substituting,
in Eq. (6), h̄eff

Xσσ (r1,r2) with h̄aux
Xσσ (r1,r2) for the sake of

evaluating the odd-electron density in closed-shell systems:

γσ (r1; r2) γσ (r2; r1) = ρσ (r1)h̄aux
Xσσ (r1,r2). (10)

Using this expression in Eqs. (4) and (5), the density of odd
electrons (5) becomes

Dσ (r) = ρσ (r)
[
1 − N eff

Xσ (r)
]
. (11)

In the Appendix, we present an alternative derivation that
has a more general validity than Eq. (10) and can be used in
open-shell cases as well.

Equation (11) has a clear physical meaning: the smaller
N eff

Xσ (r), the stronger the ND correlation at r, the larger the
odd-electron density Dσ (r). One should note that the ansatz
given by Eq. (10) is not limited to the B05 model specifically,
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as long as an appropriate alternative form of h̄eff
Xσσ can be

defined. The final formulas for the spin-summed odd-electron
density and the total mean number of odd electrons read
(see the Appendix)

Du(r) = 4 a
op
nd

∑
σ

ρσ (r)
[
1 − N eff

Xσ (r)
]
,

(12)
N̄u =

∫
Du(r)dr.

Here, a
op
nd = 0.526 is the SCF-optimized linear coefficient

multiplying the opposite-spin B05 ND energy term [18].
Properties of atoms in molecules are often used in qual-

itative chemical analysis of reactivity and bonding. It is
hence instructive to decompose the total mean number of odd
electrons into atomic contributions. By partitioning in real
space the mean total number of odd electrons N̄u as a sum of
atomic contributions, we obtain the atomic population of odd
electrons [Fr (A)] as

Fr (A) =
∫

�A

Du(r)dr, (13)

where �A is a subregion assigned to atom A in the system.
To define these atomic regions in a simple way, we use the
partitioning of the grid space into atomic subgroups within
Becke’s grid-integration scheme [19]. All calculations are
done with a development version of the Q-CHEM program [20],
using the G3LARGE basis set [21]. For the quadrature, we used
an unpruned grid composed of 192 radial and 434 angular
points per atomic region. The exact-exchange energy density
required for the evaluation of N eff

Xσ is calculated with the
resolution-of-identity (RI) technique described in Ref. [18].
Since the present method does not require symmetry breaking,
singlet states are calculated in a restricted Kohn-Sham (RKS)
manner, even at large bond stretches. In this way, we avoid the
destructive effects that the spin contamination has on Fr (A).

III. RESULTS AND DISCUSSION

To validate the present method, we first compare the calcu-
lated odd-electron atomic population and total mean number of
odd electrons N̄u [Eq. (13)] with literature results, as shown in
Table I. The literature results for the odd-electron populations
listed in the last column of Table I are from the configuration-
interaction singles-and-doubles (CISD) wave-function method
with geometries optimized at the CISD/6-31G** level [13]. As
explained in the preceding section, our method requires only a
single-determinant SCF solution. The calculations were done
at two sets of geometries, optimized at the CISD/6-31G** level
(Table I, columns 4 and 5) and experimental level (Table I,
column 3). At the CISD geometries, we first calculated the
odd-electron populations using HF SCF molecular orbitals
as an input (Table I, column 4) and then using converged
RI-B05 orbitals (Table I, column 5). Converged RI-B05 SCF
orbitals were used at the experimental geometries as well
(Table I, column 3). Our results are, on average, in qualitative
agreement with CISD results, with mean absolute percental
deviation (MAPD) between 22.3% (Table I, column 3) and
24.0% (Table I, column 4). Note that the difference in the
odd-electron population on the H atoms is, in most cases,

TABLE I. Comparison of calculated population of odd electrons
in this work with literature data.

System Atom Fr (A)a Fr (A)b Fr (A)c Fr (A)d

H2 H 0.049(0.055) 0.049 0.049 0.060
N2 N 0.414(0.423) 0.406 0.423 0.346
H2O O 0.295(0.346) 0.282 0.296 0.325

H 0.053(0.052) 0.055 0.053 0.033

NH3 N 0.248(0.282) 0.233 0.249 0.309
H 0.065(0.066) 0.065 0.065 0.044

CH4 C 0.182(0.178) 0.176 0.181 0.219
H 0.063(0.063) 0.063 0.063 0.060

C2H4 C 0.244(0.249) 0.237 0.246 0.257
C 0.244(0.249) 0.237 0.246 0.257
H 0.076(0.076) 0.075 0.076 0.055

MAPD (%) 22.3% 24.0% 22.4%

aResults of the present model using 6-31G** (6-311+G** bases in
parentheses) at experimental geometries with converged RI-B05 RKS
calculations.
bResults with RI-B05 used in a post-CISD perturbative fashion, using
6-31G** at CISD-optimized geometries.
cResults with converged RI-B05 RKS using 6-31G** at CISD-
optimized geometries.
dCISD/6-31G** results of Ref. [13]. Fr (A) is the atomic population
of odd electrons, denoted in Ref. [13] as u�A

.

somewhat larger and this is the dominant contribution to
the MAPD between the two methods. This could, in part,
be due to the different way the atomic regions are defined.
In Ref. [13], Bader’s topological-atom partitioning is used,
while we use the partitioning of the grid points into atomic
subgroups as mentioned above. It is seen from the data in
Table I that changes in input densities and geometries, such
as the ones studied here, do not alter the results significantly
since the electronic structures are not altered appreciably by
those changes. We note that accurate estimates of odd-electron
atomic populations are still scarce in the literature. The CISD
method does not include most of the ND correlation in
strongly correlated systems, for which our method aims. Still,
it includes a large portion of the correlation effect for the stable
molecules listed in Table I. The comparative analysis indicates
that our method yields qualitatively reasonable results for such
systems, in spite of the fact that it uses no information from
correlated wave functions.

Next we consider the trend of Fr (A) and N̄u upon bond
stretching. H2 is the “simplest” example of a single covalent

TABLE II. RI-B05/G3LARGE SCF RKS results for the population
of odd electrons in H2 at several R(H-H) distances (Å).

R(H-H) 0.741 1.5 2.5 3.5 4.5 6.0 10.0

Fr (H)-perta 0.050 0.140 0.356 0.538 0.658 0.766 0.882
Fr (H)b 0.056 0.171 0.417 0.592 0.705 0.803 0.902
N̄u

b 0.112 0.242 0.834 1.184 1.410 1.606 1.804

aPost-HF perturbative result with RI-B05.
bConverged RKS RI-B05 results using a preceding HF solution as
initial guess.
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TABLE III. RI-B05/G3LARGE SCF RKS results for the odd-
electron atomic population in N2 at different R(N-N) distances (Å).

R(N-N) 1.098 1.80 2.5 3.0 5.0 7.0 8.0

Fr (N)-pert 0.355 1.044 1.559 1.792 2.239 2.417 2.471
Fr (N) 0.411 1.027 1.544 1.779 2.236 2.418 2.469
N̄u 0.822 2.054 3.088 3.558 4.472 4.836 4.938
%TAE[T4 + T5]a 0.51

aFrom Ref. [22].

bond, where N̄u should be near zero at equilibrium and increase
to about 2 at the dissociation limit since Fr (H) attains 1 in that
limit. The results in Table II largely reflect this trend. Note
that we have calculated Fr (A) and N̄u using two different SCF
KS solutions. The first row of Table II shows results with
RI-B05 obtained in a post-SCF manner [Fr (H)-pert] starting
from a converged HF solution, similar to the way the results in
column 4 of Table I were obtained. The second row contains
the converged RI-B05 DFT results for Fr (H) using the HF
solution as an initial guess. Both sets of values show a similar
trend.

Table III lists the RI-B05/G3LARGE results for the dis-
sociation of the N2 molecule. Fr (N) increases reasonably
upon bond stretching. At equilibrium [R(N-N) = 1.098 Å],
N2 displays a certain degree of strong ND correlation with
N̄u ≈ 0.82. This value is not far from the multireference
configuration interaction (MRCI) estimate of Staroverov and
Davidson of about 0.7 [11]. Martin’s %TAE[T4 + T5] index of
estimating the strength of the ND correlation from another
many-electron perspective [22] is about 0.51. Our method
somewhat underestimates Fr (N) in the dissociation limit. This
could be due to the way the atomic regions are defined here
and/or the use of the B05 fitting parameters that were optimized
previously just on thermochemistry data [18]. This problem
will be investigated in a follow-up study.

Systems with strong nondynamic correlation are of special
interest for the present model. One notoriously difficult such
system is Cr2, which has a highly multiconfigurational singlet
ground state [23–25]. To describe the antiferromagneticlike
character of Cr2 with DFT, Ruiz-Dı́az et al. [24] applied the
popular broken-symmetry DFT approach in which localization
of nonzero spin density is enforced into the atomic regions by
breaking the spin symmetry. They have estimated that the ef-
fective magnetic moment on each Cr atom is between ±1.0 μB

and ±2.0 μB , depending on the functional used [24]. We
calculated Fr (Cr) with our method using the SCF solutions of
various functionals and obtained it between 1.94 (B3LYP-B05)
and 1.82 (SCF RI-B05) without using a symmetry-breaking
procedure (Table IV). These comparisons indicate that the
present method may be useful in DFT studies of this type.

TABLE V. RI-B05/G3LARGE RKS results for the ground state and
two singlet excited states of C2. (RI-B05 RKS calculations using
converged Hartree-Fock solutions as initial guess. The SCF solutions
are obtained in combination with the MOM method [33].)

State 	E (eV) Re(C-C) (Å) Fr (C) N̄u %TAE(T4 + T5)a

X 1
+
g 0.00 1.25 0.678 1.356 1.83

B 1	g 0.78 1.39 0.323 0.646
1′

g 5.04 1.16 0.811 1.622

aFrom Ref. [22].

Another interesting aspect of Cr2 is its multiple bond nature.
A Cr atom has six valence electrons and Cr2 should form
formally a hextuple bond. The bond order reported by Brynda
et al. [26] and calculated with a single-determinant DFT is
indeed about six. They also calculated the effective bond
order using symmetry-broken DFT and multireference wave-
function methods and obtained lower multiplicity of about 3.46
and 4.51, respectively, with the former estimate being perhaps
less reliable due to the spin contamination. Our estimates of
the odd-electron atomic population Fr (Cr) of slightly less than
2 (Table IV) correspond to an effective correlated bond order
that is slightly larger than 4, i.e., about two electron pairs out
of six are not contributing to the bond multiplicity.

We note that the present method needs only SCF molecular
orbitals as an input and thus can be applied with any functional
in a post-SCF fashion, as shown by the results in Table IV
discussed above. It can also be applied to excited states as
long as the weight of the dominant configuration is sufficiently
large. To illustrate this point, we have analyzed a few electronic
states of the C2 molecule. It is another difficult case for single-
reference methods that has been studied extensively at various
levels including full CI (FCI) [27,28] and DFT methods [29].
Our results for Fr (C) and N̄u in the singlet ground state X 1
+

g

of C2 are Fr (C) = 0.68 and N̄u = 1.36 (Table V). These values
indicate a certain degree of strong ND correlation. However,
the equilibrium N̄u value is closer to 1 rather than 2, indicating
that the ground state might not be of the diradical type, which
is in agreement with the conclusions of Sherrill et al. based
on FCI analysis [30]. This observation is also in line with the
conclusion of Shaik et al. [31] based on valence-bond theory
that C2 has an “almost-quadruple” bond multiplicity.

It is interesting to see how Fr (C) changes upon dissociation
not only in the ground state, but also in excited states.
Figure 1(a) contains the dissociation energy curves of the
X 1
+

g ground state and the excited singlet state B 1	g

calculated in this work. Both states have been well studied
in the literature [27,28,32]; both dissociate to two triplet C
atoms. The ground- and excited-state energy curves of C2 are
calculated here using the RI-B05 functional [18] combined

TABLE IV. Population of odd electrons in Cr2 at its experimental bond length, R(Cr-Cr) = 1.679 Å, calculated with RI-B05/G3LARGE SCF
and with RI-B05/G3LARGE post-SCF using SCF solutions from other functionals.

Method B3LYP-B05 M06HF-B05 M062X-B05 MCY2-B05 RI-B05

Fr (Cr) 1.94 1.80 1.89 1.92 1.82
N̄u 3.88 3.60 3.78 3.84 3.64
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FIG. 1. (Color online) (a) RKS dissociation energy curves of three
singlet states of C2 calculated with RI-B05/G3LARGE using the MOM
method. (b) Odd-electron atomic population vs the C-C distance for
three singlet states of C2 calculated with RI-B05/G3LARGE RKS using
the MOM method.

with the maximum overlap method (MOM) of converging
SCF equations to solutions that approximate certain excited
states [33]. As shown in Fig. 1(b), the calculated Fr (C)
values show the correct trend upon dissociation for both
states. The B 1	g excited state originates from electronic
configuration {(core)2σ 2

g 2σ 2
u 1π2

u3σ 2
g } [27], which differs from

the ground-state configuration {(core)2σ 2
g 2σ 2

u 1π4
u } by having

the former lowest unoccupied molecular orbital (LUMO) 3σg

filled by half emptying the doubly degenerate highest occupied
molecular orbital (HOMO) 1πu. This is accompanied by a
decrease of Fr (C) and N̄u in this excited state by about a factor
of two (Table V), possibly because the two electrons migrating
from 1πu to 3σg decrease the degree of sp hybridization
and thus increase the degree of self-pairing of the two (2s)
electrons on each C atom. The two energy curves cross at
certain stretched C-C distance [Fig. 1(a)], which is a known
feature of the B 1	g state [27]. Note that in spite of the
energy crossing, the Fr (C) values that remain there are largely
different in each state [Fig. 1(b)]. We have also obtained a
solution that simulates one high-energy singlet excitation of
C2, denoted here as 1′


g; see Table V and Fig. 1(a). This state
has quite a large total number of odd electrons, N̄u = 1.6,

FIG. 2. (Color online) Population of odd electrons in NO dimer
calculated with RI-B05/G3LARGE RKS method.

suggesting that the (virtual) bonding in this excited state may
have a diradical character. This is probably because the former
ground-state HOMO remains now completely filled, while
emptying the inner orbital 2σu decreases the screening of the
1πu valence electrons from the nuclei. This high excited state
dissociates toward two quintuplet C atoms, as is seen from
Figs. 1(a) and 1(b). We note in passing that the RI-B05 method
combined with the MOM technique yields a qualitatively more
adequate asymptote of the C2 energy curves compared to
the second-order Møller-Plesset (MP2) and coupled cluster
with single, double, and partially triple excitations [CCSD(T)]
curves reported in the literature [27,28].

Going beyond diatomic molecules, strong ND correlation is
the major factor governing the properties of the NO dimer (cis-
ONNO) in its singlet ground state [17,34,35]. The usual picture
of each monomer sharing a single electron to form a covalent
N-N bond pair ia not adequate for this system. Hartree-Fock
predicts an unbound dimer with an energy of 50 kcal/mol
above the monomers, whereas in reality the dimer is bound by
about 3.2 kcal/mol. We have shown previously that the RI-B05
model is able to predict the ground-state energy of cis-ONNO
correctly [17,36,37]. Our estimate of the odd-electron atomic
population here is depicted in Fig. 2. The total number of
odd electrons is N̄u = 2.04, with each monomer having 1.02
radical electrons shared between the oxygen [Fr (O) = 0.53]
and the nitrogen [Fr (N) = 0.49]. This picture supports a
diradical type of bonding between the two NO monomers.

IV. CONCLUSIONS

In this work, we propose a method that captures the
effects of strong ND correlation with a single-determinant
treatment. It yields the population of odd electrons within
the standard Kohn-Sham DFT framework, which can be used
as a DFT-based descriptor of chemical bonding, especially
regarding strongly correlated systems. It also gives a quan-
titative estimate of localized magnetic moments, which can
be used in studies of magnetic materials. The method does
not require any symmetry-breaking procedure in order to
generate the localized magnetic moments in singlet systems.
Our exemplary analysis of some well-known difficult cases
shows that the proposed method offers a similar quality of
description as the multiconfiguration wave-function methods
and helps to elucidate the unusual bonding phenomenon of
systems such as Cr2 and NO dimer. Calculations on the C2

molecule show that the method is capable of distinguishing
bonding patterns of different electronic states. It has the distinct
advantage that it can be applied to much larger systems than
presently allowed by the conventional multireference methods.
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This approach can be further improved in line with the B13
model of Becke [38] that extends the applicability of the B05
method to describe better strong electron correlation.
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APPENDIX

The notion of effectively unpaired (odd) electrons discussed
in this paper is related to the nonidempotency of the correlated
first-order reduced density matrix (RDM-1). This property
stems from certain exact features of the second-order reduced
density matrix (RDM-2) �̃ with its diagonal elements defined
as (in normalization of McWeeny [39])

�̃(x1,x2) = N (N − 1)
∫

. . .

∫

(x1,x2,x3, . . . ,xN )

×
∗(x1,x2,x3, . . . ,xN )dx3dx4, . . . ,dxn, (A1)

where xi ≡ (ri si) denotes the space and spin coordinates of an
electron, and N = Nα + Nβ is the total number of electrons.
After integrating over the spin coordinates in Eq. (A1), one
obtains the spin-traced RDM-2 as a sum of three independent
spin-spin components [40],

�(r1,r2) = �αα(r1,r2) + �ββ(r1,r2) + 2�αβ(r1,r2). (A2)

We will need here only the parallel-spin diagonal elements
of RDM-2. These components obey the following exact
normalization and reduction relations [40]:∫∫

�σσ (r1,r2)dr1dr2 = Nσ (Nσ − 1), (A3)
∫

�σσ (r1,r2)dr2 = (Nσ − 1) ρσ (r1), (A4)

where ρσ (r1) is the electron density of spin σ at position r1.
The �σσ components can be cast in different forms. The one
we start with is in terms of the exchange-correlation hole hXC,
a two-electron function commonly used in DFT studies (hXC is
considered positively defined here, which is more convenient
for the derivations in this work):

�σσ (r1,r2) = ρσ (r1) ρσ (r2) − ρσ (r1)hXCσσ (r1,r2). (A5)

The reduction relation, given by Eq. (A4), leads to the
following sum rule for an isolated system:∫

hXCσσ

(
rr1 ,rr2

)
dr2 = 1. (A6)

The exchange-correlation hole itself is further partitioned into
an exchange hole and a correlation remainder,

hXCσσ (r1,r2) = hXσσ (r1,r2) + hCσσ (r1,r2). (A7)

This leads to the following decomposition of the sum rule
given by (A6): ∫

hXσσ

(
rr1 ,rr2

)
dr2 = 1, (A8)

∫
hCσσ (r1,r2)dr2 = 0. (A9)

The exchange hole alone can be readily obtained from
the occupied Kohn-Sham orbitals and the Kohn-Sham SCF
electron density,

hXσσ (r1,r2) = 1

ρσ

occ∑
i,j

ψks
iσ (r1)ψks

iσ (r2)ψks
jσ (r2)ψks

jσ (r1)

≡ 1

ρσ

γ scf
σ (r1; r2) γ scf

σ (r2; r1), (A10)

where γ scf
σ is the first-order reduced density matrix (RDM-1) at

the Kohn-Sham SCF level. The diagonal elements of RDM-2
in this Kohn-Sham based representation read

�σσ (r1,r2) = ρσ (r1) ρσ (r2) − γ scf
σ (r1; r2) γ scf

σ (r2; r1)

− ρσ (r1)hCσσ (r1,r2). (A11)

If the correlation term is omitted, the diagonal elements of
RDM-2 at the KS SCF level become

�scf
σσ (r1,r2) = ρσ (r1)ρσ (r2) − γ scf

σ (r1; r2)γ scf
σ (r2; r1). (A12)

The idempotency relation of RDM-1, discussed in the paper,
holds true only at the SCF level: integrating Eq. (A12) over
one of the electron coordinates and taking into account the
reduction relation (A4) gives

∫
�scf

σσ (r1,r2)dr2

≡ (Nσ − 1)ρσ (r1)

= Nσρσ (r1) −
∫

γ scf
σ (r1; r2)γ scf

σ (r2; r1)dr2, (A13)

which leads to Eq. (1).
An alternative representation of the correlated RDM-2 is

given by the so-called cumulant expansion [10,41],

�σσ (r1,r2) = ρσ (r1)ρσ (r2) − γσ (r1; r2)γσ (r2; r1)

−�c
σσ (r1,r2), (A14)

where γσ (r1; r2) are now elements of the correlated RDM-1.
In analogy with the exchange only case, given by Eq. (A10),
the correlated RDM-1 cross product γσ (r1; r2) γσ (r2; r1) can
be viewed as representing a “cumulant exchange.” It does not
obey the idempotency relation any longer. Instead, the follow-
ing cumulant sum rule stems from the reduction formula, given
by Eq. (A4) [10]:

∫
�c

σσ (r1,r2)dr2 = ρσ (r1) −
∫

γσ (r1; r2)γσ (r2; r1)dr2.

(A15)

In this representation, the cumulant correlation term �c is a
generator of odd-electron density [10,41].

To use the cumulant expansion for evaluating the density
of odd electrons, we need some approximate form of �c.
The formation of odd electrons is mainly due to the left-
right correlation, so we need an approximation for �c that
would take into account such effects. In multicenter systems
with strong nondynamic correlation, the exact-exchange hole
alone is artificially too delocalized. In Becke’s B05 method
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[6], this extra delocalization is compensated for by using a
special real-space model of the exchange-correlation (XC)
hole h̄XCσσ (r1,r2),

h̄XCσσ (r1,r2) = heff
ndσσ (r1,r2) + h̄

dyn
Cσσ (r1,r2), (A16)

heff
ndαα(r1,r2) = h̄aux

Xαα(r1,r2) + 	nd
ββαα(r1,r2), (A17)

	nd
ββαα(r1,r2) ≡ fc(r1) h̄aux

Xββ(r1,r2) + h̄nd
Cαα(r1,r2), (A18)

where fc(r1) is the opposite-spin correlation factor given by
Eq. (9), h̄nd

Cαα is the second-order parallel-spin ND correction
to the XC hole that appears only in the open-shell case [6], and
heff

ndαα is modified by the ND correlation effective (“screened”)
exchange hole that now obeys the sum rule (A8), in place of
the original exact-exchange hole:

∫
heff

ndαα(r1,r2)dr2 = 1. (A19)

In the above expressions, h̄aux
Xαα(r1; r2) is the auxiliary model

exchange hole function of the B05 model described by Eqs. (7)
and (8). The last term on the right-hand side (rhs) of Eq. (A16)
is the dynamic-correlation hole for electrons with parallel
spins, which obeys the sum rule given by Eq. (A9). The B05
real-space model of left-right correlation gives us an idea of
how we can find a suitable approximation of the cumulant
correlation term. We start with the formally exact expression
of RDM-2, given by Eq. (A11), and we modify it in the manner
of the method of successive approximations [42]: we first add
and subtract one and the same (positively defined) term that
reflects the strength of ND correlation in Eq. (A17),

�αα(r1,r2) = ρα(r1)ρα(r2) − [
γ scf

α (r1; r2) γ scf
α (r2; r1)

− ρα(r1)	nd
ββαα(r1,r2)

] − ρα(r1) 	nd
ββαα(r1,r2)

− ρα(r1)hCαα(r1,r2). (A20)

The expression in brackets in the above equation has the
meaning of a RDM-1 cross product that is modified by the
ND correlation. This is still just a formal rearrangement and
manipulation of the exact expression of �σσ . It gives, however,
an idea of how to find a suitable successive approximation for
the cumulant correlation term. If we consider formally the
terms in brackets in Eq. (A20) as a low-order approximation
to the correlated RDM-1 cross product, then the last two terms
of this equation can be considered as an approximate form of
the cumulant correlation term �c in the cumulant expansion
(A14):

�σσ (r1,r2) ≈ ρσ (r1)ρσ (r2) − γσ (r1; r2)γσ (r2; r1)

− �̃c
σσ (r1,r2), (A21)

�̃c
αα(r1,r2) = ρα(r1)	nd

ββαα(r1,r2) + ρα(r1)hCαα(r1,r2).

(A22)

Integrating both sides of Eq. (A21) over r2 and using Eqs. (A4)
and (A9) leads to∫

γα(r1; r2)γα(r2; r1)dr2

= ρα(r1)

[
1 − fc(r1)N eff

Xβ(r1) − 1

2
Aαα(r1)M (2)

α (r1)

]
,

(A23)

where the last of the terms in brackets on the rhs of the above
equation is the second-order parallel-spin ND contribution,
Aαα is the corresponding parallel-spin correlation factor, and
M (2)

α is the integrated second moment of the auxiliary B05
exchange hole h̄aux

Xαα [6]. Equation (A23) leads directly to the
following general expression of the odd-electron density per
spin direction:

Dα(r1) =
∫

�̃c
αα(r1,r2)dr2

= ρα(r1)fc(r1)N eff
Xβ(r1) + 1

2
ρα(r1)Aαα(r1)M (2)

α (r1).

(A24)

The main expression of odd-electron density per spin direction
for closed-shell systems used in the paper, given by Eq. (11),
can now be contemplated from this more general perspective.
In the closed-shell case, Eq. (A24) reduces to

Dα(r1) = ρα(r1)fc(r1)N eff
Xβ(r1). (A25)

Using the formula for the opposite-spin correlation factor fc,
given by Eq. (9), and the fact that in the closed-shell case
fα = fβ , leads to Eq. (11), provided that fσ is set to not
exceed 1 from the outset. The technique of imposing such
an upper bound is described in Refs. [17,18]. Therefore, the
ansatz given by Eqs. (10) and (11) is consistent with and is
supported by the present, more general analysis.

Since in this work we use mostly the RI-B05 functional
to obtain the Kohn-Sham SCF solutions, we have modified
slightly Eq. (A25) to be consistent with the corresponding non-
dynamic correlation energy expression of the B05 model [6]:

E
opp
nd = 1

2
and−opp

c

∫
fc(r1)

[
ρα(r1)UHF

β (r1)

+ ρβ (r1)UHF
α (r1)

]
dr1, (A26)

where UHF
α is the Slater HF exchange potential. The value of

the RI-B05 opposite-spin linear coefficient is a
nd−opp
c = 0.526

from Ref. [18]. The ideal theoretical value of this coefficient
is 1/2, which corresponds to a “coefficient” of 1.0 on the
rhs of Eq. (A25). Rescaling it from 1/2 to a

nd−opp
c requires a

factor of 2 a
nd−opp
c multiplying the rhs of Eq. (A25):

Dα(r1) = 2and−opp
c ρα(r1)fc(r1)N eff

Xβ(r1). (A27)

This expression lead to Eq. (12) after some algebra using
Eq. (9) and following the same considerations as for Eq. (A25)
above.
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