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Prospects of building optical atomic clocks using Er I or Er III
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The possibility of using neutral and double ionized erbium for atomic clocks of high precision is investigated.
In both cases the narrow electric quadrupole clock transition between the ground and first exited states of the
same configuration lies in optical region. The estimated ratio of decay width to transition energy is less then
10−20. We demonstrate that these transitions are not sensitive to blackbody radiation, and if other perturbations
are also considered the relative accuracy of the clocks can probably reach the level of 10−18 or better.
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I. INTRODUCTION

Atomic clocks are widely used in many areas of science
and industry due to their extremely high accuracy. The cesium
primary frequency standard which is currently used to define
the SI units of time and length has a fractional accuracy of
10−16 [1]. Frequency standards based on optical transitions in
neutral atoms trapped in an optical lattice aim at a fractional
accuracy of 10−18 [2]. The use of nuclear optical transitions
or optical transitions in highly charged ions may bring the
accuracy down to the level of 10−19 [3–8]. Such improvement
in accuracy is important since it widens the area of scientific
research and technical applications. For example, a fractional
accuracy of 10−18 to 10−19 is needed to test the so-called α-
dipole hypothesis, which claims that the fine structure constant
α is different in different places in the universe, changing
smoothly along a certain direction in space [9].

It was suggested in Refs. [7,8] to use highly charged ions
with the 4f 12 configuration of valence electrons (isoelectronic
sequence from Os18+ to U34+). The electric quadrupole
transition between the ground and first excited states of this
configuration is very narrow and not sensitive to external
perturbations. It was shown in Refs. [7,8] that these transitions
in highly charged ions can be used for atomic optical clocks
of extremely high fractional accuracy, about 10−18.

In this paper we study similar transitions in neural erbium
and its doubly ionized ion. The electron configuration is
[Xe] 4f 126s2 for Er I and [Xe]4f 12 for Er III. Both systems
have the 3H6 ground state and 3F4 first excited state, the same
as in ions considered in Refs. [7,8]. It is natural to expect
that many features of these transitions would be very similar
to those of the highly charged ions. The main difference is
expected to come from the larger polarizabilities. The values
of the electric dipole polarizabilities of highly charged ions
are small due to their small size and sparse spectrum [7].
This makes the ion transitions insensitive to the frequency
shift due to blackbody radiation (BBR). In neutral atoms
polarizabilities are large and BBR shift is often the main factor
limiting the accuracy of microwave or optical clocks. It is
important that the BBR shift is proportional to the difference
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of the polarizabilities of two clock states. When the states are
sufficiently different (e.g., belong to different configurations)
the difference is of the same order of magnitude as the
polarizabilities. This is the case for most of the optical clock
transitions considered so far. Most of optical clocks use the
ns2 1S0 – nsnp 3P0 transition in two-valence-electron atoms
(Sr, Yb, Hg, etc.; see, e.g., [2]). In these atoms the polarizability
of the upper state is about two times larger than for the lower
state [10]. In contrast, the transitions considered in the present
paper are between states of the same configuration. It turns
out that, due to the similarities in the wave function of both
states, the polarizabilities are almost the same; the difference is
about four orders of magnitude smaller than the polarizabilities
themself. This makes the transitions insensitive to the BBR
frequency shift.

The most obvious disadvantage of the use of the 3H6 – 3F4

transition as a clock transition is the high value of the total
angular momentum of both states. This makes the transitions
sensitive to the gradients of an electric field. The corresponding
uncertainty can be significantly reduced by averaging over
transitions with different projections of the total angular
momentum. We consider this and other perturbations in this
paper and demonstrate that a fractional accuracy of 10−18 and
lower may be possible for the Er I and Er III clock transitions.

The natural linewidths of the clock transitions in Er I
and Er III are about 10 to 50 μHz (see next section).
Measuring such narrow transitions can be a challenging task.
The feasibility of the measurements of frequencies of the
extremely narrow transitions was demonstrated recently by
several groups performing measurements of the frequency
of the electric octupole transition between the 6s1/2 and
4f7/2 states of Yb+ [11–14]. The natural linewidth of this
transition (∼1 nanohertz) is four orders of magnitude smaller
than those of Er I and Er III. The excitation probability for
the clock transition under pulse probe laser operating in the
Fourier-transform-limited regime is proportional to I/�FT,
where I is the intensity of the laser field on the ion and �FT

is the transform-limited linewidth. The excitation probability
does not depend on the natural linewidth � as long as � � �FT.
The value of �FT = 40 Hz for Yb+ [11]. Therefore, the same
consideration should be valid for Er I and Er III. The intensity
of the laser field focused on the ion was 2 kW cm−2 in Ref. [11].
The required power of the probe laser depends on the degree
of focusing and the duration of the pulse, and varies between
∼1 and 100 mW [11–14].
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II. CLOCK TRANSITION

The first excited state for both Er and Er2+ is 3F4 with total
angular momentum Je = 4, while the ground state is 3H6 with
Jg = 6. Both ground and first excited states belong to the same
electron configuration (4f 12 in Er III and 4f 126s2 in Er I).
The first nonvanishing amplitude of transition between them
is the electric quadrupole transition (E2). The decay width of
the E2 transition is given by the expression

�e = 1

15
α5ω5 〈e ||E2|| g〉2

2Je + 1
, (1)

where ω is the transition frequency, α = 1/137 is the fine
structure constant, Je is the total moment of excited states,
and E2 is the operator of electric quadrupole transition
[r2Y2m(θ,φ)]. Here and further in the paper we employ atomic
units as a default system of units.

Table I represents some important properties of neutral and
doubly ionized erbium atoms. Energies are taken from the
NIST database [15], and lifetimes are calculated using the
configuration interaction (CI) method described in [16,17].
Comparing these properties with the ones of highly charged
ions [7,8], one can notice that the quality factors Q (Q = ω/�)
for Er I and Er III are of the same order as for the highly charged
ions. This is because the frequency of the clock transition in Er
I and Er III is about two times smaller than in the ions [8]. Since
frequency enters the transition probability (1) with power 5,
the resulting factor of about 30 compensates for the smaller
E2 transition amplitudes in ions.

Systematic effects which limit the accuracy of atomic
clocks include BBR, interaction of atomic quadrupole mo-
ments with the gradients of an electric field, micromotion
and secular motion, Stark and Zeeman shifts, background-gas
collisions, gravitational shift, etc. Some of these factors were
discussed in [7,18]. The most significant factors are BBR,
quadrupole moment interaction with gradient of electric field,
and Zeeman shifts.

The BBR shift originates from perturbation of the clock
transition by the environment photon bath. This shift is
described by the equation [19]

�ω

ω0

∣∣∣∣
BBR

≈ −2π3α3

15

T 4

ω0
�α(0) ≡ β

(
T

300 K

)4

, (2)

where T is the temperature. The differential scalar polarizabil-
ity can be calculated using the equation

�α(0) = 2

3(2Je + 1)

∑
k

〈k||d̂||e〉2

Ee − Ek

− 2

3(2Jg + 1)

∑
k

〈k||d̂||g〉2

Eg − Ek

, (3)

where d̂ = −er̂ is the dipole moment operator. This difference
must be very small for the states considered in the present
work. The states belong to the same configuration (4f 126s2 in
Er I and 4f 12 in Er III) and if we neglect small differences in
the relativistic composition of the states (relative contributions
of the 4f5/2 and 4f7/2 states) as well as small differences in
mixing with other configurations, then the clock states differ
by angular part of the wave functions which cannot affect the

TABLE I. Characteristics of proposed clock transitions in neutral
and double ionized Er. Numbers in square brackets represent the
power of 10.

Atom �E λ � τ

(cm−1) (nm) (μHz) (hours) 1/Q

Er 5035 1986 47 5.9 4.7[−20]
Er2+ 5081 1966 11 24 1.2[−20]

values of scalars such as polarizability, energy, etc. Indeed, the
CI calculations show that the difference in energies of the clock
states (5035 cm−1 in Er I and 5082 cm−1 in Er III) is only about
10−4 of the total energy of the corresponding configuration.
The difference in polarizabilities is also expected to be small.
It is instructive to consider a particular example in detail.

Let us consider clock transitions of Er I in a single-
configuration approximation. The wave function of the ground
state can be written as

�g = |4f 12 3H6〉|6s2 1S0〉. (4)

The wave function of the upper clock state is

�e = |4f 12 3F4〉|6s2 1S0〉. (5)

The expressions for polarizabilities (3) are strongly dominated
by transitions to specific states of the 4f 126s6p configuration.
The states which contribute the most to the polarizability of
the ground state (4) are

�JM = CJM
6M10|4f 12 3H6〉|6s6p 1P1〉, J = 5,6,7. (6)

Here J is total angular momentum, M is its projection, and
CJM

6M10 is the Clebsch-Gordan coefficient. Transitions from the
clock state (5) are dominated by

�J ′M ′ = CJ ′M ′
4M ′10|4f 12 3F4〉|6s6p 1P1〉, J ′ = 3,4,5. (7)

Experimental and calculated energies and g factors for six
states [(6) and (7)] as well as calculated electric dipole
transition amplitudes from the ground state (4) to excited odd
states (6) and from second clock state (4) to odd states (7)
are presented in Table II. Note that the energies within each
triplet are very close, and the difference between lower and

TABLE II. Strong E1 transitions fromf clock states in Er. Energies
are measured from the ground state. Experimental values for energies
and g factors are taken from the NIST database [15]. Calculated
energies and g factors are presented in parentheses. Reduced matrix
elements of E1 transitions (RME) were calculated using the CI
method.

Energy RME
Term J (cm−1) g factor (a.u.)

Ground state 4f 12(3H )6s2(1S), J = 6, E = 0

4f 12(3H )6s6p(3P ) 7 25598(25530) 1.15(1.14) 14.70
4f 12(3H )6s6p(3P ) 6 26237(26217) 1.16(1.16) 13.77
4f 12(3H )6s6p(3P ) 5 25364(25445) 1.18(1.19) 12.55

Exited state (J =4) 4f 12(3F )6s2(1S), J =4, E= 5035 cm−1

4f 12(3F )6s6p(3P ) 5 31364(31903) 1.23(1.07) 12.52
4f 12(3F )6s6p(3P ) 4 31155(31883) 1.14(1.11) 11.12
4f 12(3F )6s6p(3P ) 3 31364(31917) 1.23(1.11) 10.03
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upper triplet energies is very close to the energy difference
between clock states. This is natural because the groups of
states differ only by the configuration of 4f electrons (3H6

or 3F4). Finally note that in the considered approximation the
sum over k in (3) is reduced to the sum over J [as in (6)] for
the first term and over J ′ [as in (7)] for the second term. The
above-mentioned notion about equal energy shifts means that
energy denominators in both terms are almost the same.

Reduced matrix elements of the electric dipole transitions
in (3) can be written using (4)–(7) as

〈�g||d̂||�J 〉 = (−1)6−M

(
6 1 J

−M 0 M

)−1

× CJM
6M10〈6s2 1S0|d̂|6s6p 1P1〉, (8)

〈�e||d̂||�J ′ 〉 = (−1)4−M ′
(

4 1 J ′
−M ′ 0 M ′

)−1

× CJ ′M ′
4M ′10〈6s2 1S0|d̂|6s6p 1P1〉. (9)

Note that matrix elements of the electric dipole operator are
the same in (8) and (9).

Substituting (8) and (9) into (3) and neglecting the small
difference in energy denominators, we reduce summation
over J and J ′ to summation over angular coefficients. This
summation gives the same result for both clock states:

2

3(2Jg + 1)

∑
J

(
Jg 1 J

−M 0 M

)−2 (
CJM

JgM10

)2

= 2

3(2Je + 1)

∑
J ′

(
Je 1 J ′

−M ′ 0 M ′

)−2 (
CJ ′M ′

JeM ′10

)2 = 2,

(Jg = 6, Je = 4). (10)

Therefore, in this approximation the polarizabilities of both
clock states are exactly the same.

For further discussion of scalar polarizabilities calculation
of Er and Er2+ it is convenient to employ a secondary
quantization formalism and rewrite the wave functions in terms
of hole states. In these notations the wave functions of clock
states for Er I and Er III are practically the same and indicate
strong domination of the 4f 2

7/2 configuration:

�66 = 0.95
∣∣4f 7

2 ; 7
2
4f 7

2 ; 5
2

〉 + 0.31
∣∣4f 7

2 ; 7
2
4f 5

2 ; 5
2

〉
,

(11)
�44 = 0.81

∣∣4f 1
7
2 ; 5

2
4f 1

7
2 ; 3

2

〉 + 0.55
∣∣4f 1

7
2 ; 7

2
4f 1

7
2 ; 1

2

〉 + · · · .

Here �JM is the wave function of the state with total angular
momentum J and its projection M . In the expression for
�44 there are four more terms of the 4f7/24f5/2 and 4f 2

5/2
configurations. One can see from these expressions that the
4f 2

7/2 configuration contributes 90% to the first state and
96% to the second state. The difference in energies and
polarizabilities of these states is due to this small difference in
the composition of the wave functions. In addition to this the
difference in the 4f7/2 and 4f5/2 wave functions is small due
to strong suppression of the relativistic effects for states with
high angular momentum.

Above we considered clock states in a single-configuration
approximation. Adding more configurations leads to the

following composition of the states:

Er: (J = 6) 4f 126s2, 93.489%

4f 126p2, 5.763%

(J = 4) 4f 126s2, 93.497%

4f 126p2, 5.763% (12)

Er2+: (J = 6) 4f 12, 99.9%

(J = 4) 4f 12, 99.9%.

The admixture of other configurations is small. We see that
the composition of clock states is almost identical for both Er
I and Er III. Therefore, after adding more configurations the
difference in polarizabilities of clock states remains small. The
CI calculations in a single-configuration approximation gives
the following values for the polarizabilities: α0 ≈ 250 a.u.
for Er I, α0 ≈ 10 a.u. for Er III while �α0 ≈ 0.05 a.u. for
both Er I and Er III. This leads to small value of the BBR
shift parameter β [see (2)]: β ≈ 10−18 for both Er I and
Er III. Note that our values for the polarizabilities are probably
overestimated. The value for Er I is about 1.6 times larger
than the value 153(38) a.u. presented in Ref. [20]. Adding
more configurations reduces the value of α0 while having little
effect on �α0. Accurate calculations of the polarizabilities
for erbium are problematic due to its complicated electron
structure. However, we believe that the small value for the
difference in polarizabilities of the clock states is reliable
because of well established similarities between the states. The
value β = 10−18 means that the BBR shift �ω/ω = 10−18 at
room temperature. Better accuracy might be possible if cooling
is used [18,21].

Building an atomic clock with neutral erbium would
involve capturing the atoms in an optical lattice. Then the
frequency of the clock transition would be affected by the
lattice electric field. The standard way around this problem is
finding the magic wavelength for the lattice field [2] so that
the energy shifts of both states are exactly the same. At our
present level of accuracy we cannot reliably calculate accurate
values of the magic frequencies. However, it is easy to prove
their existence and to indicate their positions approximately.
The polarizabilities are smooth and monotonic functions of
frequencies apart from small areas near resonances. Since
the two states are slightly different, they have resonances at
different frequencies. As soon as one of the polarizabilities
of two states has a resonance while the other one does not,
there is a value of frequency for which two polarizabilities
have the same value. This happens in the vicinity of every
transition from the ground state to odd states with total angular
momentum J = 5,6,7 and every transition from the second
clock state to odd states with J = 3,4,5. For example, for
states in Table II there are magic frequencies near E = 25364,
25598, 26120, 26237, and 26329 cm−1.

Coupling of the atomic quadrupole moment to the gradient
of an external electric field is another important source of
systematic frequency shift. The shift is given by

HQ = 1

2
Q

∂Ez

∂z
, (13)

where Q is the quadrupole moment of the clock state. The
single configuration CI calculations give practically the same
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values of the quadrupole moments for clock states of Er I and
Er III: Q6 = 0.66 a.u. and Q4 = −0.57 a.u. Using ∂Ez/∂z ∼
106 V/m2 as a typical value for the traps [22] leads to �ω/ω ∼
10−15 for Er III. Using ∂Ez/∂z ∼ 107 V/m2 as a typical value
for the optical lattice [23] leads to �ω/ω ∼ 10−14 for Er I.
These shifts are large and need to be suppressed or canceled
out if possible. There are several ways to achieve this [24–26].
It was suggested in Refs. [7,8] to recover the actual frequency
of the clock by measuring two frequencies of the transitions
between states of different projections of the total angular
momentum J . This method requires knowledge of the ratio
of quadrupole moments Q6/Q4 of the clock states. It can be
used for Er I and Er III as well. However, there is another
possibility which may give more accurate results. Measuring
three frequencies instead of two allows us to exclude the ratio
of quadrupole moments so that the result would not depend on
the uncertainty in this ratio.

The energy shift for the state with total angular momentum
J and its projection M can be written as

δEJM ∼ 3M2 − J (J + 1)

3J 2 − J (J + 1)
QJ

∂Ez

∂z
= CJMQJ

∂Ez

∂z
. (14)

Using (14) one can write down the expression for the
frequency of transition between two levels J1,M1 → J2,M2

as

ω = ω0 + (
CJ1,M1QJ1 − CJ2,M2QJ2

)∂Ez

∂z
. (15)

Writing similar expressions for transitions between states of
different projections M ′

1,m
′
2,M

′′
1 ,M ′′

2 and solving the resulting
system of linear equations leads to

ω0 =
∣∣∣∣∣∣

ω CJ1,M1 CJ2,M2

ω′ CJ1,M
′
1

CJ2,M
′
2

ω′′ CJ1,M
′′
1

CJ2,M
′′
2

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 CJ1,M1 CJ2,M2

1 CJ1,M
′
1

CJ2,M
′
2

1 CJ1,M
′′
1

CJ2,M
′′
2

∣∣∣∣∣∣. (16)

The above expression allows us to exclude large quadrupole
shift from three known transitions with different magnetic
quantum numbers.

First-order Zeeman shift can be canceled out by averaging
results for two different frequencies that corresponds to
transitions J1,M1 → J2,M2 and J1, − M1 → J2, − M2. This
is a well known technique that was described in detail in

[27,28]. It is also possible to perform an accurate estimate
of the second-order Zeeman effect (see for example [18]). It
should be noted that, for even isotopes of erbium, The Zeeman
effect should be at least several orders of magnitude smaller
compared to that of the Al+ ion [18] due to the absence of
hyperfine structure.

Micromotion and secular motion can also cause significant
systematic shift of the clock frequency via the special relativity
effect known as time dilation [29]:

�ω

ω0

∣∣∣∣
time dilation

∼ − 3T

2Mc2
, (17)

where T is effective temperature of ion motion in atomic units.
This shift is suppressed in erbium due to its relatively large
mass. Taking the kinetic temperature of the cooled ion as
T = 2 mK, as was achieved for the strontium ion clock [30],
one obtains 1.8 × 10−18 for time-dilation shift. Micromotion
also causes Stark shift in ion clocks. It was shown in [30–32]
that this shift can be canceled by the time-dilation shift by an
appropriate choice of the angular frequency of the trap field.
At least one order of magnitude suppression up to 10−19 is
expected to be a result of such cancelation for the proposed
clock.

III. CONCLUSION

We show that neutral Er I and double ionized Er III
are promising candidates for optical atomic clocks. Both
systems are not sensitive to BBR shift due to extremely small
differential scalar polarizability. Dominating systematic shift
comes from coupling of the atomic quadrupole moments to
the gradients of an electric field. However, this shift can
be strongly suppressed by averaging over transitions with
different projections of the total angular momentum. Other
systematic shifts are either small or can be suppressed. A
fractional accuracy of 10−18 is probably achievable for both
types of clocks.
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