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Using the core-mass approach, we have generated a vibrational-mass surface for the triatomic H3
+. The

coordinate-dependent masses account for the off-resonance nonadiabatic coupling and permit a very accurate
determination of the rovibrational states using a single potential energy surface. The new, high-precision
measurements of 12 rovibrational transitions in the ν2 bending fundamental of H3

+ by Wu et al. [Phys. Rev. A 88,
032507 (2013)] are used to scale this surface empirically and to derive state-dependent vibrational and rotational
masses that reproduce the experimental transition energies to 10−3 cm−1. Rotational term values for J � 10 are
presented for the two lowest vibrational states and equivalent transitions in D3

+ considered.
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I. INTRODUCTION

The smallest polyatomic ion H3
+ has been the subject

of several, recent theoretical and experimental investigations.
Despite having only two electrons, accurate modeling of H3

+
spectroscopy is far from being a trivial task. Prompted by
the need of the astronomy community to characterize the
spectrum of H3

+ [1], recent works [2–8] have focused on
its high-lying rovibrational energy states. Especially elusive
[9] had been the states lying above the so-called barrier
to linearity, i.e., 10 000 cm−1 above the zero-point level or
14 360 cm−1 above the bottom of the potential energy surface
(PES). These states can access linear H3

+ configurations with
non-negligible probability. Theoretical shortcomings had not
allowed for a meaningful comparison with the experiment
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in this high-energy region until the very recent works of
Alijah [2], Pavanello et al. [3,4,6], and Jaquet et al. [7,8].

Until now the rovibrational spectrum of H3
+ has been

measured with 0.01 cm−1 accuracy [10]. In a new experiment,
Wu et al. [11] measured 12 rovibrational transitions between
the vibrational ground state (v1,v

|�|
2 ) = (0,00) and the first

vibrational excited state (0,11) of H3
+ with unprecedented

accuracy of about 10−4 cm−1. These new measurements
constitute a unique test bed for high-accuracy calculations.

On the theoretical side, Pavanello et al. [3,4] recently
presented a very accurate global H3

+ PES, called GLH3P, which
included diagonal adiabatic and relativistic corrections. Pa-
vanello and co-workers used this PES to calculate rovibrational
states located up to 5000 cm−1 above the barrier to linearity.
This PES is also employed here as the potential in the nuclear
Schrödinger equation, from which the rovibrational levels are
determined. The ambiguity which still remains in the nuclear
Schrödinger equation is what masses one should use to best
describe the nuclear rovibrational motion [12]. The choice of
these masses is the main topic of the present study.

In very accurate rovibrational calculations one needs to
account for the fact that when nuclei displace during the
vibrational motion some of the electron density, particularly
that associated with the core electrons, follows the motion
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of the nuclei. This increases somewhat the masses of the
moving nuclei. This effect is called the nonadiabatic coupling
and it is usually accounted for using the perturbation theory
where the first order correction to the electronic wave function
is expanded in terms of higher electronic states. Far from
curve crossings one can also use an effective treatment in
accounting for this effect which involves modifying the nuclear
masses used in the rovibrational calculations. This has been
suggested by Bunker and Moss [13,14]; their theory leads
to coordinate-dependent effective masses. Moss [15] derived
optimized constant masses for the H2

+ system based on
fully nonadiabatic calculations; these have become known as
Moss masses. Jaquet and Kutzelnigg [16], in their study of
H2

+ and D2
+, concluded that for isolated electronic states

nonadiabatic effects on rovibrational states “have mainly to
do with the participation of the electrons in the nuclear
motion and hardly with a coupling of different electronic
states,” which supports the development of an effective-mass
approach considered in this work. In the above-mentioned H3

+
rovibrational calculations by Pavanello et al. an effective-mass
approach based on the Polyansky-Tennyson (PT) model [17]
was employed. In this model the Moss H2

+ mass [15] is used as
the effective vibrational H3

+ mass, while the rotational mass is
kept as the bare-nuclear mass. The accuracy achieved for H3

+
by using the PT model was better than 0.2 cm−1. The recent
high J calculations of Jaquet and Carrington [8] are also based
on the PT model. A fixed effective mass determined directly
for H3

+, which would lead to improvement of these results,
has not, to our knowledge, been reported yet.

Mohallem and co-workers [18,19] recently proposed an
alternative procedure based on a separation of motions of core
and valence electrons which uses core masses as the vibrational
masses and empirical masses for the rotational masses. They
tested those masses in calculations for H2, H2

+, and deuterated
isotopologues. As the masses are coordinate dependent, better
results were obtained than those computed with the constant
Moss masses. In the present work, the Mohallem et al. model
is applied to H3

+ and a vibrational-mass surface is generated.
The theoretical results for rovibrational states calculated with
this surface are better than the PT results by about one order
of magnitude. The results of the effective-mass calculations
can further be improved by simple empirical scaling of the
masses developed based on experimental data. Such data are
now provided by Wu et al. Their results (with J � 4) are
used in this work to determine effective empirical vibrational
and rotational masses. These masses give the best possible
agreement with the experimental data within the effective-
mass model. The empirical masses are also used in this work to
predict rovibrational term values for higher J states (J � 10)
of the two lowest vibrational states.

II. THEORY

In highly accurate calculations of molecular rovibrational
states the Born-Oppenheimer and adiabatic approximations
might be too crude even for an off-resonance situation where
the electronic state of interest is well separated from higher
electronic states. This is, in particular, true for light molecules,
as the neglected nonadiabatic terms scale as one over the
reduced mass. For H3

+ in the electronic ground state the effect

of the coupling to higher electronic states on the calculated
rovibrational energies amounts to at least about 1 cm−1 in
the energy region of up to 15 000 cm−1. In general, when
the nonadiabatic coupling between electronic states becomes
strong, a system of coupled nuclear-motion equations needs
to be solved to obtain accurate rovibrational energies. When
the coupling is weak, which happens in the off-resonance
case, a similarity transformation of the Hamiltonian can be
performed that moves much of the nonadiabatic coupling to
the diagonal (i.e., the PES) and the need to deal with the system
of coupled equations can be avoided. Such an approach was
developed by Bunker and Moss [13,14]. It preserves the useful
concept of a single PES. As Bunker and Moss showed, it is
mathematically possible to represent such a transformation
by making the reduced masses become functions of the
internuclear distances. Furthermore, they suggested using dif-
ferent vibrational reduced masses from the rotational reduced
masses. In their original work on H2 and H2

+ [15,20,21],
Bunker and Moss replaced these coordinate-dependent masses
by constant effective masses. These masses have become
known as Moss masses. Other authors applied the idea of
effective constant masses also to H3

+. In one such approach
the constant mass used for each nucleus in H3

+ was the proton
mass augmented with two-thirds of the electron mass [22,23].
This mass was denoted as NU23 [24]. However better results
were obtained when the Moss mass derived for H2

+ was
used instead [17]. This mass was roughly the proton mass
augmented with about half the mass of an electron (see below).
For a discussion of the different choices of masses see [25].

It should be noted that, due to the weak coupling of the
nuclear rotations with the electronic degrees of freedom,
the rotational nonadiabatic effect is much smaller than the
vibrational nonadiabatic effect. Thus, for the rotational re-
duced mass, the nuclear reduced mass can be used in the
first approximation. In our recent investigation of highly
excited rovibrational states of H3

+ situated above the barrier to
linearity, we applied the PT model (the Moss vibrational mass
and the nuclear rotational mass) and obtained the most accurate
ab initio predictions of the rovibrational levels to date [3,4].
The Bunker and Moss nonadiabatic model was also used by
Schwenke for H2

+ and HD+ [26], and for H2 and water [27].
Though all terms in his work were calculated ab initio, in the
end some scaling of the results was found necessary to bring the
results in better agreement with the experiment. One should
also mention the work of Jaquet and Khoma [28,29] where
they made use of the Herman and Asgharian [30] approach to
generate coordinate-dependent nuclear masses in investigating
rovibrational spectra of H2

+ and H2. They also discussed the
feasibility of applying the approach to H3

+ and showed two
plots of a yet incomplete vibrational-mass surface restricted to
configurations with the C2v symmetry. In the present work, we
employ the methodology suggested by Mohallem et al. [18]
to obtain effective masses for H3

+. A complete mass surface
is generated and presented in a functional form.

A. Vibrational-mass surface

In the recent paper [19], three of the present authors
tested the effective-mass approach proposed by Mohallem
et al. [18]. The tests involved constructing vibrational masses
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from the so-called atomic core masses. These core masses
were obtained from the Mulliken population analysis [31]
of the electronic charge distribution at the nuclei forming
the system. The atomic electronic charges obtained from the
Mulliken analysis have two types of components, diagonal and
off-diagonal. Each diagonal component depends on the atomic
orbitals belonging to the same atom, while each off-diagonal
component depends on atomic orbitals of two different atoms.
These latter components, as associated with the electronic
charge densities on the bonds, are not included in the atomic
electronic charges used here. By adding the mass mI of the
nucleus I to the mass of the electrons at this nucleus, equal to
the negative of the Mulliken electronic charge nI at nucleus I ,
the effective vibrational mass of the I nucleus is obtained:

mI ( �R) = mI + nI ( �R)me. (1)

Such an approach is based on an assumption that, when the I

nucleus vibrates, this fraction of the total number of electrons
vibrates with it. The vibrational reduced mass is then derived
from the effective masses of the nuclei calculated according
to (1). As the effective masses are coordinate dependent,
a mass surface for the considered molecular system can
be generated. Our test calculations performed for H2 and
H2

+, and their deuterated isotopologues, showed that the
effective coordinate-dependent masses determined this way
lead to significantly more accurate results for the rovibrational
frequencies than the results obtained with constant masses
[19]. In the present work we test the variable-mass approach
in the calculations of rovibrational states of the H3

+ molecule.
A vibrational-mass surface is generated and used in the
rovibrational calculations.

In general, the effective vibrational masses of the three
nuclei in the H3

+ molecule do not need to be the same. Unequal
masses would be required, for example, to describe the highly
excited vibrational states near the lowest dissociation threshold
corresponding to fragmentation of the system into H2 and H+,
where interesting behavior is to be expected [32]. However,
for the low-energy vibrational excitations considered in this
work, it is reasonable to assume equal masses for the three
nuclei. Thus, the three masses mA( �R), mB( �R), and mC( �R) are
symmetrized by adding to each nuclear mass mI , I = A,B,C,
a mass equal to the average number of electrons per nucleus,
n( �R):

mI ( �R) = mI + nAA( �R) + nBB( �R) + nCC( �R)

3
me

= mI + n( �R) me. (2)

n( �R) is expressed, in the spirit of a many-body expansion of the
potential energy surface [33], as a sum of one-body, two-body,
and three-body terms,

n( �R) = n(1) +
3∑

i=1

n(2)(Ri) + n(3)( �R). (3)

The constant one-body term n(1) is the average number of
electrons that remains at each of the three nuclei upon their
complete separation. The two-body terms n(2)(R) account for
the modification of the one-body term in the situation when
any two nuclei are close to each other and strongly interact

while the third one is further away. The three-body term n(3)( �R)
accounts for modification of the one- and two-body terms when
all three nuclei strongly interact. Both, the two-body terms
and the three-body term, vanish at the complete dissociation
(atomization) of the system.

The possible three dissociation channels of H3
+, where

the molecule separates into a two-atom fragment and a one-
atom fragment, identify the diatomic fragments. As the lowest
dissociation limit for H3

+ is H2(X 1�+
g ) + H+, all three two-

body terms are equal and can be expressed as

n(2)(Ri) = 2
3

[
nH2 (Ri) − 1

]
, i = 1,2,3, (4)

where nH2 (R) is the fractional number of electrons at each
hydrogen in H2 in the ground state (X̃ 1�+

g ). In the limit of
R → ∞, the charge on each nucleus of H2 must be that of an
isolated hydrogen atom, which means limR→∞ nH2 (R) = 1.
To make the two-body term vanish at large R, this limit has
to be subtracted from nH2 (R). The factor of 2/3 accounts for
the fact that H3

+ is an ion and has only two electrons. In
the limit of the complete dissociation H3

+ → 2H + H+ the
average charge density is given by the one-body term which is

n(1) = 2
3 . (5)

In this limit, the effective atomic mass becomes

mI (∞,∞,∞) = mI + 2
3me. (6)

This is the so-called NU23 mass [24,34].
Two comments need to be made here. First, due to sym-

metrization of the three masses, the separation into 2H + H+
cannot be described by the model. This, however, does not
pose a problem in the calculation when only low-energy
bound vibrational states are considered. Second, the united
atom limits corresponding to one, two, or all three internuclear
distances approaching zero are not strictly implemented. This
could have been done analogically to the double many-body
expansion (DMBE) for the potential energy surface [35], but
was not considered relevant, as these configurations have very
high energies and are not accessed by bound-state vibrations.

As mentioned, the effective electronic charges on the nuclei
are determined in this work through the Mulliken population
analysis. The analysis is performed using the GAMESS package
[36,37]. In our previous work we computed the Mulliken
charges for H2 on a dense grid 0.2a0 � Ri � 12a0, �Ri =
0.05a0, at the CI/cc-pV5Z level of theory. These data were
interpolated using cubic splines. The same level of theory is
applied in this work to calculate the Mulliken charges for H3

+.
The calculations are done for 187 geometrical configurations
of the system, which comprise the “classic” 69 MBB (Meyer,
Botschwina, Burton) [38] configurations augmented with the
additional 118 configurations suggested by Polyansky et al.
[39]. Next, the Mulliken charges are fitted with a polynomial
expressed in terms of transformed symmetry coordinates, Qi

(see, for example, Refs. [4,40]), as

n(3)( �R) =
∑
i,j,k

cijk Qi
1Q

j

2Q
k
3 T (Q1), i + 2j + 3k � N.

(7)

The Qi coordinates define the integrity basis [41],

Q1 = Sa, Q2 = S2
x + S2

y , Q3 = Sx

(
S2

x − 3S2
y

)
, (8)
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FIG. 1. (Color online) Visualization of the vibrational mass
surface for configurations with the C2v symmetry. r1 is the atom-
diatom distance and r2 is the diatomic distance.

in terms of Sa , Sx , and Sy , which are the usual symmetry
coordinates. Following Meyer et al. [38], the symmetry
coordinates are represented as Morse coordinates R̃i ,

R̃i = [1 − e−β(Ri/R0−1)]/β, (9)

where Ri are the internuclear distances and β = 1.3 and R0 =
1.65a0 are the expansion parameters. T is the following range-
determining factor ensuring that the three-body term goes to
zero at large distances:

T (x) = [1 + eγ (x−x0)]−1, (10)

with γ = 0.2a−1
0 and x0 = 11.0a0. A ten-degree polynomial

with 67 adjustable parameters is used in the fitting. Configu-
rations with one or more internuclear distances smaller than
0.7a0 are omitted from the fit. As their energies are very high,
they are not relevant in the calculations of bound states. The
root mean square error ERMS of the fit is RMS = 6.16 × 10−4.
Figure 1 shows this surface for symmetrical configurations
using the Jacobi coordinates. Near the equilibrium configura-
tion r1 = 1.65a0 and r2 = 1.845a0, the electronic contribution
to the vibrational mass amounts to about 0.3me. When both
distances become large, it approaches the NU23 limit.

The present rovibrational calculations, which are based
on our latest, very accurate potential energy surface, GLH3P,
incorporating diagonal adiabatic and relativistic corrections
[3,4], are performed with two codes: the DVR3D code [42]
for the initial vibrational calculations, owing to its efficiency,
and the hyperspherical code [43] for the final rovibrational
calculations, as it permits use of full symmetry. As neither
of these codes allows for directly using coordinate-dependent
masses in the kinetic energy operator, the following iterative
procedure, used before in our calculations on H2 and H2

+ and
deuterated isotopologues [19], is employed:

m
(i+1)
I,v1,v2,l

= mI + me

∫
n( �R)

[
χ

(i)
v1,v2,l

( �R)
]2

d �R, (11)

where χ
(i)
v1,v2,l

( �R) is the wave function calculated with the mass

m
(i)
I,v1,v2,l

. Starting with the mass set to m
(0)
I,v1,v2,l

= mI , the
iteration process continues until self-consistency. It usually
converges after one step.

Two tests have been performed to ascertain the accuracy
of the procedure. Prior to the tests the Mulliken charges

have been calculated at all DVR points on a grid with
1100 configurations corresponding to 11 diatomic distances,
ten values of the distance between the third particle and
the center of mass of the first two, and ten values of the
angular coordinate. The purpose of the first test was to verify
if the new data are accurately reproduced by the fit. The
test showed that the fit reproduces the data with RMS =
5.4 × 10−3. In the second test the vibrational states have been
calculated on the Discrete Variable Representation (DVR)
grid using the effective masses determined directly from
the Mulliken analysis for each grid point. Though in this case
the masses of the diatom are different from the third mass, the
vibrational energies of the lowest states come out the same as
obtained with the average mass defined in Eq. (2).

B. Rovibrational calculations using hyperspherical harmonics

Rovibrational calculations have been performed in the
democratic hyperspherical coordinates defined by Johnson
[44]. These hyperspherical coordinates are symmetric super-
positions of the three systems of Jacobi coordinates. Thus,
the symmetry with respect to the permutation of the three
nuclei and with respect to inversion of the coordinate system
is automatically implemented. A particularly effective hyper-
spherical approach is that of the hyperspherical harmonics
suggested by Wolniewicz [43]. The harmonics depend on
five coordinates and describe the motion of a three-particle
system on a given hypersphere. For H3

+ this means that they
describe the degenerate vibrational motion and the overall
rotation. The hyperradial motion corresponds to the symmetric
stretching vibration. When the rovibrational wave function
is expanded in terms of the harmonics, a system of coupled
equations expressed in terms of the hyperradius is obtained.
This system is integrated numerically. As the hyperspherical
harmonics describe the rotational problem analytically, the
size of the expansion does not scale unfavorably with the
rotational quantum number J . This is an attractive feature
of the harmonics approach. We also note that the harmonics
are readily symmetrized [45].

Despite the intrinsic accuracy of the method, a problem
arises in relation to the lack of the separability of the vibrational
and rotational motions in the Hamiltonian and, thus, only
one reduced mass appears. It is the three-particle reduced
mass μ = √

mAmBmC/(mA + mB + mC). To deal with this
issue the following has been done. First, the calculations of
pure vibrational states (J = 0) have been performed with the
reduced mass obtained from the vibrational nuclear masses,
while for the rovibrational calculations of the states with
J �= 0 rotational masses have been used. To obtain the desired
term values for the case where the vibrational and rotational
masses are different, a “fake” J = 0 vibrational calculation has
been performed using the rotational mass. The rotational-term
values obtained in this calculation are then added to the band
origins calculated with vibrational masses to yield the final
rovibrational energies:

E(v1,v2,J,G; μvib,μrot) = E(v1,v2,0,0; μvib,μvib)

+{E(v1,v2,J,G; μrot,μrot)

−E(v1,v2,0,0; μrot,μrot)}. (12)
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TABLE I. Numerical values of the dimensionless parameter p,p = (mvib − mp)/me or p = (mrot − mp)/me, from which the vibrational
and rotational masses, mvib and mrot, may be calculated. The scaled core mass is the core mass multiplied by f = 0.90. The empirical
rotational mass is calculated using the parametrization given in Eq. (14). It can be improved by scaling the parameter RT . The numerical value
RT = 3.026a0, which is close of that of the H2 molecule, yields the optimized values of p = 0.1118.

Vibrational

Nuclear Moss NU23
Core mass Scaled core mass

(both states) (both states) (both states) (0,00) (0,11) (0,00) (0,11)

0.0 0.4758 0.6667 0.3155 0.3189 0.2839 0.2870

Rotational

Nuclear
Empirical

Averaged empirical, scaled
(both states) (0,00) (0,11) (both states)

0.0 0.0618 0.0661 0.1118

III. RESULTS AND DISCUSSION

A. Effective masses and comparison with experiment

In their new experiment Wu et al. [11] measured twelve
rovibrational transitions between the vibrational ground state
(v1,v

|�|
2 ) = (0,00) and the first excited state (0,11) of H3

+.
These very accurate data provide an excellent opportunity to
test the performance of the various effective-mass models. For
example, the Moss mass model, which has been used before
quite successfully, and our model of coordinate-dependent
masses can be put into a stringent test. The tests can also help
derive more efficient vibrational and rotational masses which
better reproduce the experimental transition energies and allow
for generating very accurate predictions for rotational terms
not yet measured in the experiment. For the tests to be
meaningful a very accurate PES is needed in the rovibrational
calculations. Such a PES is the GLH3P PES [3,4]. The accuracy

of the ab initio energies in the PES and the accuracy of the
analytical fit to this PES are better than 0.1 cm−1. GLH3P is
employed in the present work.

In the first step the PT [17] nonadiabatic model is tested.
The model uses the constant vibrational mass proposed by
Moss [15] for H2

+ and a constant rotational mass, which
is derived in the usual way from the nuclear masses (see
Table I). The energies of the rovibrational states obtained
with the model are presented in Table II. The results of a
standard adiabatic calculation are listed for comparison. When
comparing the calculated frequencies with the experimental
ones, a linear behavior of the deviation as a function of the
rovibrational energy is observed. Following Schiffels et al.
[46], the deviation can be expressed as the following function
of the J rotational quantum number:

obs.-calc. = a0 + a1J (J + 1). (13)

TABLE II. Comparison with experimental data of Wu et al. All transitions are from the vibrational ground state to the lowest degenerate state,
i.e., (0,11)u ← (0,00)l . (J,G)l denotes the rotational quantum numbers of the lower state. P , Q, and R denote spectra branches corresponding
to �J = Jl − Ju = −1,0,1, respectively. The G value is conserved, i.e., �G = 0. The results obtained in the following different calculations
are shown: AD, standard adiabatic calculation with nuclear vibrational and rotational masses; MM, calculation with Moss vibrational mass
and nuclear rotational mass; CRM, calculation with core vibrational mass and empirical rotational mass according to Diniz et al. [19]; emp,
calculation with Moss vibrational mass and nuclear rotational mass with a posteriori empirical vibrational and rotational corrections according
to Eq. (13); SCRM, calculation with scaled core vibrational mass and scaled averaged rotational mass. RMS is the root-mean-square value for
the method. spread is the maximum difference between any two values of the deviation. All data are in wave numbers (cm−1).

�J (J,G)l Obs. Obs.-calc. (AD) Obs.-calc. (MM) Obs.-calc. (CRM) Obs.-calc. (emp) Obs.-calc. (SCRM)

R(3,3)u 2918.02561 0.3871 0.0924 0.0160 −0.0003 0.0035
R(3,3)l 2829.92527 0.3911 0.0964 0.0152 0.0037 −0.0008
R(2,1)u 2826.11683 0.3885 0.0939 0.0142 −0.0042 −0.0007
R(2,2)u 2823.13780 0.3911 0.0971 0.0169 −0.0010 0.0020
R(2,2)l 2762.06965 0.3948 0.1002 0.0167 0.0021 −0.0004
R(1,1)u 2726.22025 0.3970 0.1023 0.0182 −0.0010 0.0011
R(1,0) 2725.89816 0.3949 0.1003 0.0162 −0.0030 −0.0009
R(1,1)l 2691.44305 0.3999 0.1053 0.0192 0.0020 0.0008
Q(2,2) 2554.66586 0.4084 0.1137 0.0237 −0.0002 0.0020
Q(1,1) 2545.42036 0.4089 0.1142 0.0234 0.0003 0.0016
Q(1,0) 2529.72464 0.4084 0.1138 0.0222 −0.0002 −0.0002
Q(2,1)l 2518.21154 0.4088 0.1141 0.0223 0.0002 −0.0007

RMS 0.3983 0.1040 0.0190 0.0021 0.0015
Spread 0.0218 0.0218 0.0095 0.0079 0.0044
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The two adjustable parameters in (13) are the vibrational
offset a0 = 0.1139 cm−1, and the rotational correction a1 =
−0.002 646 8 cm−1. The numerical value of the a1 parameter
is very close to that found by Schiffels et al. [46] (a1 =
0.002 043 6 cm−1 determined as the average value for all
vibrational states up to 10 000 cm−1). Following the work
by Oka and Morino [47], Morong et al. [48] related this
parameter to the rotational constants and the diagonal elements
of the g tensor for the rotational magnetic moment. When
the calculated rovibrational energy values are corrected using
function (13), the accuracy of the predicted rovibrational
frequencies is improved by two orders of magnitude. These
data, denoted empirical (emp), are also shown in Table II. The
parameter a1 is also used later in this work to derive a more
accurate rotational mass.

Let us now examine the results obtained using the core-mass
plus rotational-mass (CRM) model, where our vibrational-
mass surface is combined with the empirical, coordinate-
dependent rotational mass suggested by Diniz et al. [19].
This rotational mass changes from the nuclear mass near the
equilibrium geometry to the atomic mass at large separations
and it is parametrized as

mA;rot(R) = mA + a{1 − [1 + eα(R−RT )]−1}. (14)

Here a is the number of electrons at the particular atomic
center (for example, a = 1 for H2, a = 1

2 for H2
+, and

a = 2
3 for H3

+), while α is the smoothness parameter and
RT is the turning point. For H2, the numerical values
of these parameters were fixed at α = 1.5a−1

0 and RT =
3.0a0. For a diatomic molecule X, Diniz et al. proposed
the relation RT (X) = RT (H2)Req(X)/Req(H2) and α(X) =
α(H2)/[Req(X)/Req(H2)], where Req is the equilibrium dis-
tance of the diatomic and Req(H2) = 1.4a0. Applying this
procedure to H3

+, where the equilibrium bond length is
Req(H3

+) = 1.65a0, yields a rotational mass surface, from
which constant rotational masses for a particular vibrational
state are generated using a similar procedure as used before
for the vibrational mass, i.e., by calculating the expectation
value of the mass surface with the vibrational wave function
of the state considered. DVR3D [42] has been used to compute
these averages and their numerical values are given in Table I.
The masses are then transformed into the reduced masses for
the particular chosen coordinate system in the usual way. A
comparison of the results obtained with the Moss mass with
the results obtained with the core mass combined with the
parametrized rotational mass obtained from the Diniz et al.
procedure shows that the latter are improved by about one
order of magnitude (see the CRM results in Table II). Also the
spread of the rotational results is significantly reduced, from
0.022 to 0.009 cm−1.

In their work on H2 and H2
+, Diniz et al. improved their

core-mass (CM) results by applying an empirical scaling to
the vibrational mass (let us call such a scaled CM approach
a SCM approach). The purpose of the scaling is to correct
the shortcoming of the Mulliken population analysis which is
known to be dependent on the basis set used in the calculation;
a larger and more complete basis set does not always give
the best Mulliken atomic charges. The problem is related to
the distribution of the electronic charge between the diagonal

TABLE III. Rotational term values of the rovibrational state
(0,00). J , G, and s denote the rotational quantum numbers. 
 is
the permutation-inversion symmetry and n is an index counting the
states with the same symmetry. EMM is the rovibrational energy
relative to the hypothetical J = 0 zero-point energy calculated with
the Moss vibrational mass and the nuclear rotational mass, Eemp is
the rovibrational energy obtained with the Moss vibrational mass
and the nuclear rotational mass and with empirical vibrational and
rotational corrections. ESCRM is the rovibrational energy obtained with
the scaled core vibrational mass and the scaled averaged rotational
mass. The latter is expected to be the most accurate result presented
in this work. Data are given in cm−1.

J G s 
 n EMM cm−1 Eemp cm−1 ESCRM cm−1

0 0 1 A′
1 0 0.000 0.000 0.000

1 1 E′′ 0 64.128 64.123 64.124
1 0 1 A′

2 0 86.966 86.961 86.961

2 2 E′ 0 169.308 169.293 169.298
2 1 E′′ 0 237.369 237.353 237.354

3 3 1 A′′
2 0 315.364 315.332 315.346

3 2 E′ 0 428.042 428.010 428.016
3 1 E′′ 0 494.792 494.760 494.762
3 0 1 A′

2 0 516.907 516.875 516.876

4 4 E′ 0 502.059 502.006 502.029
4 3 −1 A′′

2 0 658.748 658.695 658.708
4 2 E′ 1 768.510 768.457 768.465
4 1 E′′ 0 833.620 833.567 833.570

5 5 E′′ 0 729.043 728.964 729.000
5 4 E′ 0 929.014 928.934 928.959
5 3 1 A′′

2 0 1080.536 1080.456 1080.472
5 2 E′ 1 1187.159 1187.080 1187.089
5 1 E′′ 1 1250.365 1250.286 1250.291
5 0 1 A′

2 0 1271.324 1271.245 1271.249

6 6 −1 A′
2 0 995.914 995.803 995.855

6 5 E′′ 0 1238.503 1238.392 1238.430
6 4 E′ 0 1430.777 1430.666 1430.693
6 3 −1 A′′

2 0 1577.402 1577.291 1577.309
6 2 E′ 1 1679.866 1679.755 1679.768
6 1 E′′ 1 1740.972 1740.861 1740.870

7 7 E′′ 0 1302.190 1302.042 1302.114
7 6 1 A′

2 0 1586.656 1586.507 1586.562
7 5 E′′ 1 1818.218 1818.069 1818.111
7 4 E′ 0 2002.544 2002.396 2002.428
7 3 1 A′′

2 0 2142.194 2142.046 2142.070
7 2 E′ 1 2242.088 2241.940 2241.959
7 1 E′′ 2 2300.956 2300.808 2300.823
7 0 1 A′

2 1 2320.494 2320.346 2320.360

8 8 E′ 0 1647.321 1647.130 1647.224
8 7 E′′ 0 1972.878 1972.688 1972.762
8 6 −1 A′

2 0 2242.292 2242.101 2242.161
8 5 E′′ 1 2462.981 2462.790 2462.838
8 4 E′ 1 2639.256 2639.066 2639.104
8 3 −1 A′′

2 0 2775.792 2775.602 2775.633
8 2 E′ 2 2868.997 2868.806 2868.833
8 1 E′′ 2 2925.538 2925.347 2925.371

9 9 1 A′′
2 0 2030.688 2030.450 2030.570

9 8 E′ 0 2396.509 2396.270 2396.369
9 7 E′′ 0 2702.193 2701.954 2702.036
9 6 1 A′

2 0 2957.430 2957.192 2957.260
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TABLE III. (Continued.)

J G s 
 n EMM cm−1 Eemp cm−1 ESCRM cm−1

9 5 E′′ 1 3167.475 3167.237 3167.294
9 4 E′ 1 3335.707 3335.469 3335.518
9 3 1 A′′

2 1 3461.218 3460.980 3461.023
9 2 E′ 2 3555.594 3555.356 3555.394
9 1 E′′ 2 3609.756 3609.518 3609.553
9 0 1 A′

2 1 3627.749 3627.510 3627.545

10 10 E′ 0 2451.613 2451.321 2451.470
10 9 −1 A′′

2 0 2856.825 2856.534 2856.659
10 8 E′ 1 3197.023 3196.732 3196.839
10 7 E′′ 0 3484.925 3484.634 3484.726
10 6 −1 A′

2 0 3726.731 3726.439 3726.520
10 5 E′′ 1 3926.355 3926.063 3926.134
10 4 E′ 2 4086.623 4086.332 4086.395
10 3 −1 A′′

2 1 4215.444 4215.153 4215.209
10 2 E′ 3 4296.831 4296.540 4296.593
10 1 E′′ 2 4348.576 4348.285 4348.335

and off-diagonal elements of the density matrix. The fact
that there is a scaling factor, which, when applied to the
results, leads to their uniform improvement, indicates that
the core-mass approach is, in principle, valid, but perhaps
the Mulliken charges are not the best to use to determine the
core masses.

If one studies transitions between just two vibrational states,
an exact vibrational mass ratio for the two states can be
obtained. To this end, an accurate value of the band origin
of the (0,11) state relative to the hypothetical ground state
(0,00) with J = 0 (this state is forbidden, the true ground state
has J = 1), is derived from the experimental data with the
help of the a0 parameter, Eacc = EMM + a0. The mass surface
is then scaled to reproduce this term exactly. As this scaling
factor, which is equal to f = 0.90, is close to 1, it indicates
that the initial data are quite satisfactory. In Table I we present
the numerical values of these scaled core masses.

Let us now turn to the optimization of the rotational mass.
As we have seen, the use of the empirical rotational mass
surface obtained from simple parametrization of Eq. (14) with
the values of the two parameters related to those of H2, as
suggested in [19], leads to an immediate improvement of the
predicted rotational term values over those obtained with the
nuclear masses. The spread of the term values is reduced by
nearly 60% to just 0.009 cm−1. However, the rotational spread
of the empirically corrected, emp, data is even lower and equal
to 0.006 cm−1, which suggests that the rotational mass surface
can still be improved. The a1 parameter can be used to achieve
this, just as the a0 parameter was used to scale the vibrational
mass. In general, the direct use of an improved rotational mass
in the rovibrational calculations is likely to yield more accurate
results than an a posteriori empirical correction, because the
a1 parameter is derived from the new experimental data which
include states with J � 4. It is reasonable to expect that, when
this parameter is used to predict the energies of higher J states,
these energies are somewhat less accurate than the energies
calculated for the J � 4 states. To scale the rotational-mass
correction with the help of the a1 coefficient, we first assume

TABLE IV. Rotational term values of the vibrational state (0,11)
(see Table III for details). For comparison, the band origin calculated
with the nuclear masses is E = 2521.5946 cm−1.

J G s 
 n EMM cm−1 Eemp cm−1 ESCRM cm−1

0 1 E′ 0 2521.300 2521.414 2521.414

1 2 E′′ 1 2548.056 2548.165 2548.169
1 1 E′ 0 2609.434 2609.543 2609.543
1 0 1 A′′

2 0 2616.577 2616.685 2616.685

2 3 −1 A′
2 0 2614.168 2614.266 2614.276

2 2 E′′ 1 2723.861 2723.959 2723.962
2 1 E′ 1 2755.466 2755.564 2755.567
2 1 E′ 2 2790.246 2790.344 2790.343
2 0 −1 A′′

2 0 2812.764 2812.862 2812.860

3 4 E′′ 1 2719.378 2719.460 2719.480
3 3 1 A′

2 1 2876.747 2876.829 2876.839
3 2 E′′ 2 2931.278 2931.360 2931.368
3 2 E′′ 3 2992.349 2992.431 2992.434
3 1 E′ 1 3002.810 3002.892 3002.896
3 1 E′ 2 3063.392 3063.474 3063.472
3 0 1 A′′

2 1 3025.868 3025.950 3025.953

4 5 E′ 2 2863.836 2863.897 2863.929
4 4 E′′ 1 3069.234 3069.295 3069.314
4 3 −1 A′

2 0 3145.193 3145.254 3145.272
4 3 −1 A′

2 1 3233.297 3233.358 3233.368
4 2 E′′ 2 3260.139 3260.200 3260.210
4 2 E′′ 3 3351.317 3351.378 3351.380
4 1 E′ 3 3326.040 3326.101 3326.108
4 1 E′ 4 3423.060 3423.121 3423.119
4 0 −1 A′′

2 1 3446.990 3447.051 3447.048

5 6 1 A′′
2 1 3047.287 3047.322 3047.370

5 5 E′ 2 3300.050 3300.084 3300.117
5 4 E′′ 2 3396.458 3396.492 3396.522
5 4 E′′ 3 3510.084 3510.118 3510.138
5 3 1 A′

2 1 3553.269 3553.304 3553.324
5 3 1 A′

2 2 3673.910 3673.944 3673.954
5 2 E′′ 4 3660.284 3660.318 3660.333
5 2 E′′ 5 3792.990 3793.024 3793.027
5 1 E′ 3 3722.576 3722.610 3722.621
5 1 E′ 4 3863.374 3863.408 3863.407
5 0 1 A′′

2 2 3743.126 3743.160 3743.170

6 7 E′ 2 3269.495 3269.498 3269.565
6 6 −1 A′′

2 1 3569.388 3569.390 3569.439
6 5 E′ 3 3685.032 3685.035 3685.080
6 5 E′ 4 3825.373 3825.376 3825.409
6 4 E′′ 2 3884.080 3884.082 3884.116
6 4 E′′ 3 4035.742 4035.745 4035.765
6 3 −1 A′

2 1 4029.999 4030.002 4030.027
6 3 −1 A′

2 3 4202.281 4202.284 4202.295
6 2 E′′ 4 4129.282 4129.285 4129.305
6 2 E′′ 5 4309.348 4309.351 4309.356
6 1 E′ 5 4188.756 4188.759 4188.775
6 1 E′ 6 4378.365 4378.368 4378.369
6 0 −1 A′′

2 2 4401.068 4401.071 4401.070

7 8 E′′ 3 3530.159 3530.125 3530.214
7 7 E′ 2 3876.977 3876.942 3877.010
7 6 1 A′′

2 1 4010.192 4010.158 4010.222
7 6 1 A′′

2 2 4177.876 4177.842 4177.891
7 5 E′ 3 4249.926 4249.892 4249.942

032506-7



LEONARDO G. DINIZ et al. PHYSICAL REVIEW A 88, 032506 (2013)

TABLE IV. (Continued.)

J G s 
 n EMM cm−1 Eemp cm−1 ESCRM cm−1

7 5 E′ 4 4431.665 4431.631 4431.665
7 4 E′′ 4 4420.266 4420.231 4420.278
7 4 E′′ 6 4636.019 4635.985 4636.007
7 3 1 A′

2 2 4562.803 4562.768 4562.802
7 3 1 A′

2 4 4793.716 4793.682 4793.697
7 2 E′′ 7 4663.854 4663.819 4663.847
7 2 E′′ 8 4892.077 4892.043 4892.055
7 1 E′ 5 4720.385 4720.350 4720.375
7 1 E′ 6 4961.735 4961.700 4961.706
7 0 1 A′′

2 3 4739.264 4739.230 4739.254

8 9 −1 A′
2 1 3828.930 3828.853 3828.967

8 8 E′′ 3 4222.522 4222.445 4222.535
8 7 E′ 3 4371.283 4371.207 4371.293
8 7 E′ 4 4567.254 4567.177 4567.246
8 6 −1 A′′

2 1 4650.922 4650.846 4650.915
8 6 −1 A′′

2 2 4862.789 4862.713 4862.765
8 5 E′ 6 4874.389 4874.313 4874.371
8 5 E′ 7 5107.274 5107.198 5107.236
8 4 E′′ 4 5028.414 5028.337 5028.390
8 4 E′′ 7 5304.918 5304.841 5304.869
8 3 −1 A′

2 2 5171.171 5171.094 5171.137
8 3 −1 A′

2 4 5463.172 5463.096 5463.115
8 2 E′′ 6 5257.318 5257.241 5257.280
8 2 E′′ 8 5532.844 5532.767 5532.790
8 1 E′ 8 5313.008 5312.932 5312.968
8 1 E′ 9 5606.850 5606.774 5606.787
8 0 −1 A′′

2 3 5629.142 5629.066 5629.078

9 10 E′′ 3 4165.416 4165.292 4165.434
9 9 1 A′

2 2 4605.675 4605.551 4605.666
9 8 E′′ 4 4767.560 4767.436 4767.549
9 8 E′′ 5 4992.962 4992.838 4992.930
9 7 E′ 3 5086.325 5086.201 5086.294
9 7 E′ 4 5328.337 5328.213 5328.286
9 6 1 A′′

2 3 5342.110 5341.986 5342.066
9 6 1 A′′

2 4 5610.362 5610.238 5610.296
9 5 E′ 6 5565.312 5565.188 5565.259
9 5 E′ 7 5842.955 5842.831 5842.877
9 4 E′′ 6 5689.727 5689.602 5689.668
9 4 E′′ 9 6031.773 6031.649 6031.685
9 3 1 A′

2 3 5809.441 5809.317 5809.376
9 3 1 A′

2 5 6175.288 6175.163 6175.194
9 2 E′′ 8 5908.718 5908.594 5908.647
9 2 E′′ 10 6225.777 6225.652 6225.690
9 1 E′ 8 5962.228 5962.103 5962.154
9 1 E′ 9 6306.920 6306.796 6306.822
9 0 1 A′′

2 5 5979.253 5979.129 5979.179

10 11 E′ 4 4539.202 4539.025 4539.199
10 10 E′′ 3 5026.071 5025.894 5026.037
10 9 −1 A′

2 1 5198.209 5198.031 5198.173
10 9 −1 A′

2 2 5454.437 5454.260 5454.379
10 8 E′′ 4 5555.443 5555.266 5555.387
10 8 E′′ 5 5827.756 5827.578 5827.676
10 7 E′ 6 5842.751 5842.573 5842.680
10 7 E′ 7 6145.304 6145.126 6145.208
10 6 −1 A′′

2 3 6087.576 6087.399 6087.493
10 6 −1 A′′

2 4 6412.407 6412.230 6412.298
10 5 E′ 8 6226.836 6226.658 6226.753

TABLE IV. (Continued.)

J G s 
 n EMM cm−1 Eemp cm−1 ESCRM cm−1

10 5 E′ 10 6628.757 6628.580 6628.640
10 4 E′′ 6 6401.193 6401.016 6401.098
10 4 E′′ 9 6811.884 6811.706 6811.755
10 3 −1 A′

2 3 6540.009 6539.832 6539.906
10 3 −1 A′

2 6 6959.188 6959.011 6959.053
10 2 E′′ 8 6612.545 6612.368 6612.439
10 2 E′′ 10 6967.507 6967.330 6967.385
10 1 E′ 11 6666.175 6665.998 6666.065
10 1 E′ 13 7055.466 7055.288 7055.332
10 0 −1 A′′

2 5 7080.594 7080.416 7080.457

the following expansion for the energy of the J rotational state:

Erot(J ) = BJ (J + 1) + (C − B)G2 + · · · , (15)

which includes the lowest order term in J (J + 1) and a G term
for nondegenerate vibrational states, i.e., l = 0. B and C are
rotational constants. At equilibrium B ≈ 2C. A higher order
expression of the rotational energy was given by Watson [49],
but is not needed here. The rotational constant B is inversely
proportional to the rotational reduced mass, which itself is
proportional to the effective atomic mass. In hyperspherical
coordinates, for example, it is equal to the three-particle
reduced mass, μrot = mnuc/

√
3. Hence we obtain

B + a1

B
= mnuc

mrot
. (16)

The rotational mass mrot is readily obtained from this equation.
The value of B is computed from the J = 0 and J = 1 states
with G = 0 corresponding to the vibrational ground state
(v1 = 0, v2 = 0, l = 0) using Eq. (15):

B = E(J = 1,G = 0) − E(J = 0,G = 0)

2
. (17)

These states were chosen since �G = 0 and hence the second
term in Eq. (15) vanishes. The numerical value of the rotational
constant and thus the rotational mass derived from it is much
more accurate than the simple formula may suggest. This
rotational mass can be used to scale the turning point parameter
RT of the empirical formula, Eq. (14). We employ such scaling
in the rovibrational calculations involving the two lowest
vibrational states (see Table I). The use of the same rotational
mass for the two vibrational states is justified by the fact that
the a1 parameter corrects rotational transition energies rather
than the individual term values. Furthermore, the numerical
value of this parameter was determined from a calculation
with identical rotational masses.

When a full rovibrational calculation is performed with
these masses and the scaled core masses are used as vibrational
masses, very accurate results are obtained. This model involv-
ing the scaled core vibrational masses and the scaled averaged
rotational masses is denoted as SCRM in the further discussion.
The SCRM results and their comparison with the experimental
results and with the results obtained with the other models
are presented in Table II. For higher values of J the SCRM
predictions are expected to be more accurate than the empirical
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FIG. 2. (Color online) Comparison of experimental D3
+ tran-

sition frequencies with calculated values obtained using different
effective nuclear masses.

(emp) ones. A selective check with the experimentally derived
term values by Lindsay and McCall [10] confirms this.

We have also performed a test to verify if the mass-surface
approach works equally well for D3

+ as it does for H3
+. The

(0,11) fundamental band of D3
+ has been studied experimen-

tally [50–52]. Of the measured frequencies, we have analyzed
those for transitions with J � 4, i.e., 54 transitions. Figure 2
gives a comparison of the predictions for these 54 transitions
with different treatments of the effective mass. As can be seen,
use of the nuclear mass (md = 2.013 532 13 u) or Moss mass
(mD = 2.013 814 0 u) give significantly worse results than
use of the core mass [mD = md + 0.3138me = 2.013 725 34
u for (0,00) and mD = md + 0.3162me = 2.013 726 66 u for
(0,11)]. Furthermore, use of the SCRM, with a scaling factor
of the vibrational mass of 0.9, as used for H3

+, and a rotational
mass of md + 0.1118me, same increment as for H3

+, give a
further factor of 2 improvement in our predictions. The residual
is only 0.0025 cm−1, which may be compared with the experi-
mental error bar of 0.002 cm−1 [51,52] and 0.0005 cm−1 [50].

B. Calculated rotational term values for the two lowest
vibrational states

The SCRM model is used together with the GLH3P potential
energy surface to compute very accurate term values for the

two lowest vibrational states. The calculations are performed
with the hyperspherical code assuming full symmetry. The
absolute error of the SCRM term values is of the order of
0.01 cm−1, while the frequencies derived from these term
values are expected to be even more accurate. Hence our
theoretical predictions are approaching the accuracy of the
previous experiments.

The spectroscopic assignments provided by Schiffels et al.
[53] for the J � 7 state are used. States with higher J are
assigned on the basis of their symmetry using the procedure
described by Schiffels et al. Some of them can be compared
with the list of states derived from the experimental data
by Lindsay and McCall [10]. For higher values of J , some
assignments become ambiguous due to strong level mixing.
For this reason, we limit the calculation in this work to
states with J � 10. No experimentally derived term values are
available for the rovibrational states (0,00) with J = 10, G =
10 and J = 10, G = 2 and (0,11) with J = 10, G = 11,
J = 10, G = 10, and J = 10, G = 2.

IV. CONCLUSIONS

When a molecule vibrates, the atoms forming the system
move about their equilibrium positions. This motion involves
the nuclei of the atoms and some part of the electrons. It is
reasonable to assume that all inner-shell (core) electrons move
along with the vibrating nuclei, but only a part of the valence
electrons is involved in this motion. It is also reasonable to
assume that the electron density, which closely follows the
nuclei in the vibrational motion, is not constant but depends
on the geometry of the molecule in the particular phase of
the motion. For example, for a diatomic molecule connected
with a covalent bond the number of electrons which moves
along with the nuclei when the geometry of the molecule is
near the equilibrium geometry can be expected to be smaller
than the number of the moving electrons at a geometry where
the bond is elongated. This is because some of the electrons
at equilibrium are involved in the bonding and do not move
with the nuclei, while, when the bond is almost broken, some
of the bonding electrons join the core electrons in following
the nuclei in their vibrational motion. This simple picture
suggests that one can easily improve the accuracy of the
calculation of the rovibrational states of a molecule by adding
some electronic mass to each nuclear mass and using such
effective vibrational masses in the vibrational calculations.
Furthermore, one can make these effective masses dependent
on the molecular geometry.

The effective vibrational-mass model of Mohallem and
co-workers (i.e., the core-mass model) is considered in this
work in the calculation of the rovibrational spectrum of the H3

+
ion. The effective masses are obtained from the diagonal terms
resulting from the Mulliken population analysis. It is shown
that the model gives much improved results in comparison to
using nuclear masses as the vibrational masses. It also gives
improved results in comparison with the model of Bunker
and Moss where the masses are determined from the analysis
of the nonadiabatic corrections to the nuclear wave functions
obtained from perturbation-theory calculations. Further im-
provement of the results is obtained by applying empirical
scaling to the effective masses. The effective-mass model
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developed in this work is used to predict energies of some
rovibrational states of H3

+, which have not been measured
yet. The predictions concern transition frequencies for highly
excited rotational states and the two lowest vibrational
states.

This work also shows that by using a simple, physically
motivated, effective-mass model based on the Mulliken popu-
lation analysis one can bypass the computational bottleneck of
evaluating nonadiabatic corrections to the rovibrational levels
with the use of the perturbation theory. Despite the simplicity
of the effective-mass model very accurate results are obtained.
Whether the model is equally accurate in describing states
where both vibrational and rotational motions are excited
to higher levels requires more testing. Such tests should be
performed for the highest states known from the experiment
near 16 000 cm−1. There are also some theoretical issues in
variable-mass calculations which need to be addressed. For
example, Pachucki and Komasa [54] showed that the effective
masses computed for H2 using rigorous nonadiabatic theory
can be larger than the masses of the nuclei plus the electron
masses for internuclear distances near 4 a.u. However, these
internuclear distances are only accessed in H2 in highly excited

vibrational states. Another issue is the problem with imposing
the correct permutational symmetry in the rovibrational wave
function. Using different geometry-dependent vibrational
masses for the three H3

+ nuclei makes them “distinguishable.”
A question which arises is, can one still symmetry adapt
the nuclear wave function? There is also a related question
concerning the form of the kinetic energy operator representing
the rovibrational motion. These issues will be discussed in our
future work as will the treatment of asymmetric isotopologues
whose spectra are known to be particularly sensitive to beyond
Born-Oppenheimer effects [55].
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