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Emergence of molecular chirality by vibrational Raman scattering
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In this study, we apply the monitoring master equation describing decoherence of internal states to an
optically active molecule prepared in a coherent superposition of nondegenerate internal states interacting with
thermal photons at low temperatures. We use vibrational Raman scattering theory up to the first chiral-sensitive
contribution, i.e., the mixed electric-magnetic interaction, to obtain scattering amplitudes in terms of molecular
polarizability tensors. The resulting density matrix is used to obtain elastic decoherence rates.
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I. INTRODUCTION

Chirality is a fundamental concept in molecular physics
and chemistry. Chiral molecules are stable but are not found in
symmetric stationary states. In 1927, Hund explained stability
of chiral states (and hence instability of their superposition)
by a double-well potential model [1]. In Hund’s model, chiral
states are assumed to be localized in two minima of the
potential. The superposition of chiral states is realized by tun-
neling between these two minima. However, Hund’s approach
seems unsatisfactory for some stable chiral molecules [2].
The problem can be addressed by introducing parity-violating
terms in the molecular Hamiltonian [3–8] or nonlinear terms
due to the interaction with the environment, known as the
decoherence program [9–20] (for a rather complete treatment
see [21]). The former, despite its small effect, can stabilize
chiral states if frequency of parity-violating contributions
would be larger than the inversion frequency, which is the
case for many biologically stable chiral molecules, but the
latter has received much attention.

According to the decoherence theory, properties relating to
molecular structure like chirality emerge after the interaction
of the molecule with the environment [9,16–19]. A molecule
is generally described by translational and internal states,
and environment is often modeled as a background gas or
thermal photons. The theory of collisional decoherence for a
particle with internal states is an extension of the positional
decoherence of a particle without internal states [22–32].
Hornberger derived a master equation describing internal
quantum dynamics of an immobile system [27] in the so-called
monitoring approach (hereafter monitoring master equation),
and Vacchini considered decoherence of translational and
internal states of a system interacting with an inert gas [29].
Trost and Hornberger applied the monitoring master equation
to the decoherence of chiral states of optically active molecules
affected by a background gas [20]. Their basic idea is that
an initially chiral molecule is blocked in that state through
repeated scattering by a host gas.

Here, by using monitoring approach of collisional de-
coherence, we study the chiral stabilization of optically
active molecules with internal states by thermal photons. The
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intermolecular effects are assumed to be negligible, which
is the case for a dilute chiral media. Our discussion is
limited to low temperatures at which the first two states of
contortional vibration (responsible for transforming between
chiral configurations) are available. This is valid in most cases
of interest. The initial state of the molecule is expressed by
a coherent superposition of contortional states. Unlike Trost
and Hornberger [20], we assume that the initial superposition
does not necessarily correspond to any chiral configuration.
Then, we show that chirality of the molecule emerges due to
the interaction with the beam of photons.

After a brief introduction to the monitoring approach,
we derive the monitoring master equation for an immobile
two-state system (hereafter implicit master equation). The
differential cross sections appearing in the implicit master
equation can be related to the vibrational Raman cross sections.
The theory of vibrational Raman scattering of optically active
molecules was first presented by Atkins and Barron, based
on polarizability tensors, as an extension of the Kramers-
Heisenberg formula [33]. We calculate the vibrational Raman
cross sections up to the discriminatory mixed electric-magnetic
interaction. The resulting master equation (hereafter explicit
master equation) is used to obtain elastic scattering rates.

II. MONITORING MASTER EQUATION

Let us first explain the most widely used form of incor-
porating the environment, i.e., the weak-coupling approach.
Long before and long after the collision, particles are well
separated, and then evolution of the whole system is governed
by the Hamiltonian Ĥ◦ = Ĥ S

◦ + ĤE
◦ , where Ĥ S

◦ and ĤE
◦ are

Hamiltonians of the system and the environment, respectively.
Then, the total state at time t after scattering is obtained by

|ψ(t)〉 = Û |ψsca〉 = Û Ŝ|ψinc〉, (1)

where Û = exp(− iĤ◦t
h̄

) and Ŝ is the scattering operator. The
S matrix is characterized by the interaction Hamiltonian.
In the weak-coupling approach, interaction is weak, so that
a perturbative treatment of the interaction is permissible.
The monitoring approach, on the other hand, describes the
environmental coupling nonperturbatively by picturing the
environment as monitoring the system continuously, i.e., by
sending probe particles which scatter off the system at random
times. The temporal change of the system is obtained by
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multiplying the rate of collisions to the state transformation
due to a single scattering. In this approach, the time evolution
of the density matrix of the system is characterized by [27]

∂tρ
S = 1

ih̄
[Ĥ S

◦ ,ρS] + TrE
(
T̂ �̂

1
2 ρS ⊗ ρE�̂

1
2 T̂ †)

+ i

2
TrE

[
�̂

1
2 Re(T̂ )�̂

1
2 ,ρS ⊗ ρE

]
− 1

2
TrE

{
�̂

1
2 T̂ †T̂ �̂

1
2 ,ρS ⊗ ρE

}
, (2)

where [] and {} stand for commutation and anticommutation
relations, respectively. The operator T̂ is the nontrivial part of
the two-particle Ŝ operator, Ŝ = Î + iT̂ , describing the effect
of a single collision between the environmental particle and
system. The operator �̂ specifies the rate of collisions. In the
next section, we apply this master equation to the scattering of
a beam of photons from chiral molecules.

III. IMPLICIT MASTER EQUATION

A chiral molecule transforms between two chiral configu-
rations by a long-amplitude vibration known as contortional
vibration. To characterize this vibration, we employ a two-
dimensional approach, which is valid for most molecular
systems at low temperatures [34]. In this approach, the chiral
molecule is effectively described by a symmetric double-well
potential with two minima. If we denote the small-amplitude
vibration in each well by ω◦ and the potential height by V◦,
in the limit V◦ � h̄ω◦ � kBT (where T is the temperature
of the bath and kB is the Boltzmann constant), the first two
states of the contortional vibration energy are available. The
monitoring master equation is considerably made simple under
this assumption. Here, we assume that the interaction of the
chiral molecule with the beam of photons does not lead to
any recoil of momentum of the molecule; only internal states
are changed. This would be the case for massive molecules,
in which translational degrees of freedom are fully decohered,
and therefore their dynamics can be neglected. Then, the initial
state of the molecule ρM

inc for the relevant dynamics can be
written as a superposition of the first two states of contortional
vibration:

ρM
inc =

2∑
ν,ν ′=1

cνc
∗
ν ′ |ν〉〈ν ′|, (3)

where |ν〉 is the energy eigenstate, or a “channel” in the
language of standard scattering theory. Note that chiral states
are the maximal superposition of two corresponding channels.

The diagonal representation of the density matrix of the
incident photons can be expressed as

ρP
inc = (2πh̄)3

V

∫
dkμ(k)|η(k,n)〉〈η(k,n)|, (4)

where |η(k,n)〉 denotes the eigenstate of η photons in the mode
of momentum k (normalized over box volume V ) and circular
polarization n. The momentum state of the incoming photons
can be written as a phase-space integration over projectors
onto minimum-uncertainty Gaussian wave packets. Assuming
black-body radiation, the momentum probability distribution

of photons in unit volume could be expressed as

μ(k)dk = 1

4π3h̄3N

(
k2

eck/kBT − 1

)
dkdn̂, (5)

with N as the number of photons, c as the speed of light, and
dn̂ as a solid-angle differential in momentum space.

In the channel basis, the time evolution of the reduced
density matrix of the molecule is obtained as

∂tρ
M =

∑
ν ′′,ν ′′′

∂tρ
M
ν ′′ν ′′′ |ν ′′〉〈ν ′′′|, (6)

with matrix elements

∂tρ
M
ν ′′ν ′′′ = 
ν ′′ν ′′′ρM

ν ′′,ν ′′′ +
∑
ν,ν ′

ρM
ν,ν ′M

νν ′
ν ′′ν ′′′

−1

2

(∑
ν

ρM
ν,ν ′′′

∑
ν(4)

Mνν ′′
ν(4)ν(4)+

∑
ν ′

ρM
ν ′′,ν ′

∑
ν(4)

Mν ′′′ν ′
ν(4)ν(4)

)
,

(7)

where


ν ′′ν ′′′ = Eν ′′ + εν ′′ − (Eν ′′′ + εν ′′′ )

ih̄
(8)

and εν ′′ is the energy shift of the molecule from energy Eν ′′ to
Eν ′′ + εν ′′ . The rate coefficients are defined as

Mνν ′
ν ′′ν ′′′ =

∫
dk′〈η(k′,n′)|〈ν ′′|T̂ �̂

1
2 |ν〉

× ρP
inc〈ν ′|�̂ 1

2 T̂ †|ν ′′′〉|η(k′,n′)〉. (9)

The rate operator �̂ is given by

�̂ =
∑

ν

|ν〉〈ν| ⊗ nPcσ (k,ν), (10)

where nP is the number density of photons and σ (k,ν) is the
total scattering cross section.

The elements of the T matrix are conveniently defined in
terms of the multichannel scattering amplitude f as

T̂
kk′,nn′
νν ′ = ic

2πh̄

fνν ′ (k,n; k′,n′)
k

δ(Eν,k − Eν ′,k′), (11)

where Eν,k = ck + Eν . At first sight, this leads to an ill-
defined expression in terms of a squared δ function. However,
conservation of the probability current implies a simple rule
to deal with the squared matrix element [27,28]. So, we have

(2πh̄)3

V
T̂

kk′,nn′
νν ′′ T̂

†kk′,nn′
ν ′ν ′′′ → cχνν ′

ν ′′ν ′′′

× fν ′′ν(k,n; k′,n′)f ∗
ν ′′′ν ′(k,n; k′,n′)

k2
√

σ (k,ν)σ (k,ν ′)
δ(Eν ′′,k′ − Eν,k), (12)

with

χνν ′
ν ′′ν ′′′ =

{
1 if Eν ′′ − Eν = Eν ′′′ − Eν ′ ,

0 otherwise.
(13)
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Then, one obtains the rate coefficients as

Mνν ′
ν ′′ν ′′′ = nP c2χνν ′

ν ′′ν ′′′

∫
dkμ(k)dk′

× fν ′′ν(k,n; k′,n′)f ∗
ν ′′′ν ′(k,n; k′,n′)

k2
δ(Eν ′′,k′ − Eν,k).

(14)

Inserting rate coefficients into the density matrix of Eq. (6),
after some mathematics, we obtain

∂tρ
M = nP c2

2π3h̄3

∫
dkdn̂dk′dn̂′ k′2

eck/kBT − 1

×
∑
ν �=ν ′

[(
ρM

ν ′ν ′ − ρM
νν

)|fνν ′ |2|ν〉〈ν|

− ρM
νν ′ (|fνν |2 + |fνν ′ |2)|ν〉〈ν ′|], (15)

where dk′ = k′2dk′dn̂′ and the right side is multiplied by N ,
the number of independent scattering events. Here, the photon
dependence of scattering amplitudes and corresponding energy
conservations are implied for brevity.

In the case of elastic scattering, coherences are found to
decay exponentially:

∂t |ρνν ′ | = −γ ela
νν ′ |ρνν ′ |. (16)

The corresponding scattering rates are determined by the
difference of scattering amplitudes

γ ela
νν ′ = nP c2

4π3h̄3

∫
dkdn̂dk′dn̂′ k′2

e
ck

kBT − 1
|fνν − fν ′ν ′ |2. (17)

In the next section, we calculate the corresponding scattering
amplitudes.

IV. SCATTERING AMPLITUDES

The squared modulus of each scattering amplitude can
be related to the corresponding Raman differential scattering
cross section as

|fνν ′(k,n; k′,n′)|2 = 4π2

(
k2

k′2

)(
dσνν ′

dn′

)
R

. (18)

Since a molecule transforms between two chiral configurations
by a vibration, the scattering amplitudes correspond to the
vibrational Raman scattering, in which the interaction between
the chiral molecule and the photon changes the vibrational state
of the molecule (the electronic state of the molecule being
unchanged), corresponding to the change of momentum and
polarization of the photon. The corresponding contribution
of the scattering amplitude is of the second order with two
types of intermediate states, where there is absorption of one
photon with momentum k and circular polarization n and
emission of one photon with momentum k′ and polarization n′.
Then, initial and final states can be written as |ν; η(k,n)〉 and
|ν ′; (η − 1)(k,n),1(k′,n′)〉. There are two types of scattering
amplitudes, one-channel amplitudes fνν and two-channel
amplitudes fνν ′ . It is convenient to develop one-channel
amplitudes of Rayleigh scattering first and then convert them
to two-channel amplitudes of Raman scattering. In Rayleigh
scattering, the final state of the molecule is the same as the

initial state. The matrix element corresponding to the second
order is obtained by

Rνν =
∑

I

〈f |Ĥint|i〉
Eν − EI

, (19)

where |i〉 and |f 〉 are the initial and final states, summation is
over all possible intermediate states I , and Ĥint is the molecule-
photon interaction Hamiltonian. The leading contribution of
the scattering amplitude is purely electric in essence, occurring
via electric dipole coupling, by which one cannot recognize
optical activity. For chiral molecules, however, it is necessary
to include the magnetic dipole coupling, leading to a relatively
small chiral-sensitive mixed electric-magnetic contribution in
the interaction Hamiltonian. The absolute value of the matrix
element corresponding to the interaction of the electric (μ)
and magnetic (m) dipole moments of the molecule with the
corresponding fields of the light is obtained as [35]

|Rνν | =
(

h̄k

2ε◦V

)
η

1
2
∣∣cn̂′∗

i n̂j α
νν
ij (k)

+ n̂′∗
i (k̂ × n̂)jβ

νν
ij (k) ∓ in̂′∗

i n̂j β
νν∗
ji (k)

∣∣, (20)

where unit vectors n̂ and n̂′ are the incident and scattered
polarization vectors and k̂ is the direction of the momentum
of the incident photon. Here, the upper and lower signs refer
to left- and right-circular polarizations of the incident pho-
ton. Frequency-dependent electric polarizability and mixed
electric-magnetic polarizability are defined as

ανν
ij (k) =

∑
r

(
μrν

i μrν
j

Erν − h̄ck
+ μνr

j μνr
i

Erν + h̄ck

)
,

βνν
ij (k) =

∑
r

(
μrν

i mrν
j

Erν − h̄ck
+ mνr

j μνr
i

Erν + h̄ck

)
, (21)

where μrν = 〈r|μ|ν〉 and mrν = 〈r|m|ν〉 and Erν stands for
the energy difference. Unlike the electric polarizability tensor
α (and its magnetic analog), the mixed electric-magnetic
polarizability tensor β is parity variant. Therefore, it can
discriminate two chiral configurations.

The transition rates can be obtained by Fermi’s rule as

�νν = 2π

h̄
ρ|Rνν |2, (22)

where ρ is the density of final states

ρ = V k′2dn′

(2π )3h̄c
, (23)

with dn′ being a solid angle around k′. Since, in fluids,
molecules are randomly oriented, the transition rate is obtained
by taking a rotational average [35]:

〈�νν〉 = 4πρcη

h̄

(
h̄k

2ε◦V

)2

Aνν, (24)

with

Aνν = ∓Re

[
i

2
(δjl − k̂j k̂l ∓ iεjlmk̂m)

× n̂′∗
i n̂′

k

(〈
ανν

ij β∗νν
kl

〉 + 〈
ανν

ij βνν
lk

〉)]
, (25)
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where brackets denote the rotational average. Here, squared
terms α2 and β2 become zero for random orientations, and the
elements of polarization of the incident photon were simplified
as

n̂i n̂
∗
j = 1

2 (δij − k̂i k̂j ∓ iεij l k̂l). (26)

The rotational averaging of the fourth-rank tensor 〈αijβkl〉 is
calculated by [35]

〈αijβi ′j ′ 〉 = I (4)αμμ′βλλ′ , (27)

with

I (4) = 1

30

⎡
⎣ δij δi ′j ′

δii ′δjj ′

δij ′δi ′j

⎤
⎦

T ⎡
⎣ 4 −1 −1

−1 4 −1
−1 −1 4

⎤
⎦

⎡
⎣ δμμ′δλλ′

δμλδμ′λ′

δμλ′δμ′λ

⎤
⎦,

(28)

where T means transpose and Latin and Greek indices
refer to space-fixed and molecular-fixed frames, respectively.
Summation over repeated tensor suffixes is implied. For the
nondegenerate molecular states, polarizabilities α and β can
be chosen to be real and imaginary, respectively. So inserting
Eq. (28) into Eq. (27) and then into Eq. (25), one gets

Aνν = ± 1

30

[
(|n̂′·k̂|2 ± 5|k̂·k̂′| − 7)ανν

λμβνν
λμ

+ (3|n̂′·k̂|2 ∓ 5|k̂·k̂′| + 1)ανν
μμβνν

λλ

]
. (29)

The differential cross section is obtained by dividing the
transition rate by the incident flux of the photons ηc/V ,(

dσνν

dn′

)
R

= k2k′2

8π2ε2◦c
Aνν. (30)

To obtain two-channel cross sections, we extend the results
to the case of Raman scattering. As in conventional Raman
experiments, we assume that the frequency of the incident
photon is not near resonance, i.e., |Erν − h̄ck| � 0. Then,
the corresponding polarization tensors for the case of Raman
scattering after factoring out rotational transitions are obtained
by

ανν ′
ij = 〈i|ανν

ij |j 〉, βνν ′
ij = 〈i|βνν

ij |j 〉, (31)

where ανν
ij and βνν

ij are the usual Rayleigh polarizability tensors
which depend on the normal coordinates of nuclei for the
relevant vibration. Then, the Raman scattering cross section
for optically active molecules is obtained by substituting the
usual Rayleigh tensors with corresponding Raman tensors.

V. THE EXPLICIT MASTER EQUATION

Inserting the differential cross sections in Eq. (30) into Eq.
(18) and then into Eq. (15), the dynamics of the density matrix
of the molecule is obtained as

∂tρ
M = nP c

4π3h̄3ε2◦

∫
dkdn̂dk′dn̂′ k4

eck/kBT − 1

×
∑
ν �=ν ′

[(
ρM

ν ′ν ′ − ρM
νν

)
Aνν ′ |ν〉〈ν|

− ρM
νν ′ (Aνν + Aνν ′)|ν〉〈ν ′|]. (32)

Here, the fourth-power dependence on k (Rayleigh’s law)
appears. The polarization of the scattered photon can be
written as the linear superposition of linear polarizations n̂′ =
1/

√
2
(
n̂′‖ ± in̂′⊥)

, where n̂′‖ and n̂′⊥ are linearly polarized
basis vectors. Then, if θ is the angle between k̂ and k̂′,
we have

Aνν = ± 1

30

[ (
1√
2

sin2 θ ± 5 cos θ − 7

)
ανν

λμβνν
λμ

+
(

3√
2

sin2 θ ∓ 5 cos θ + 1

)
ανν

μμβνν
λλ

]
. (33)

The square of the amplitudes is isotropic, depending only on
the magnitude of k and the scattering angle θ . Then, we can
carry out the angular integrations by∫

dn̂dn̂′ → 8π2
∫

d(cos θ ), (34)

and the momentum integral can be computed using the
definition of the Riemann ζ function for integer n:

ζ (n) = 1

(n − 1)!

∫ ∞

0
dx

xn−1

ex − 1
. (35)

So we finally obtain

∂tρ
M = 8npk5

BT 5

5πh̄3c4ε2◦

∑
ν �=ν ′

[(
ρM

ν ′ν ′ − ρM
νν

)
Bνν ′ |ν〉〈ν|

− ρM
νν ′ (Bνν + Bνν ′)|ν〉〈ν ′|], (36)

with

Bνν = ∓
[

38

3
√

2
ανν

λμβνν
λμ − 6√

2
ανν

μμβνν
λλ

]
. (37)

Inserting the corresponding amplitudes into Eq. (17) and
assuming no phase difference between fνν and fν ′ν ′ , the elastic
decoherence rates are obtained as

γ ela
νν ′ = 4npk5

BT 5

5πh̄3c4ε2◦

∣∣∣B 1
2
νν − B

1
2
ν ′ν ′

∣∣∣2
. (38)

In order to estimate an order of magnitude for the decoherence
rate, one should calculate the electric polarizability α and
electric-magnetic polarizability β tensors for the two-state
contortional vibration mode in Rayleigh scattering from a chi-
ral media. The quantum-mechanical calculations of Rayleigh
optical activity can be employed for our purpose. The results
quoted in the literature are usually expressed in terms of mean
(αβ)νν and anisotropic (γ 2)νν invariant observables [36],

(αβ)νν = 1
9ανν

λλβ
νν
μμ,

(γ 2)νν = 1
2

(
3ανν

λμβνν
λμ − ανν

λλβ
νν
μμ

)
. (39)

The calculations show that the mean invariant (αβ)νν is
usually one to three orders of magnitude smaller than the
anisotropic invariant γ 2 [37], and polarizability of molecules
at their vibrational excited states goes smoothly to larger
values [38]. Then, the polarization-dependent term in the
decoherence rate would be on the order of (γ 2)00. The
order of magnitude of a typical (γ 2)00/c (c is the speed
of light) is about 10−83 C2 V−2 m4 [37]. So, after making
explicit the temperature dependence of the number density
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of photons, the order of magnitude of the decoherence rate
could be estimated as 10−95 (T/K)8 s−1. This shows clearly
that the environmental photons cannot cause any suppression
of interference between ground and excised states. At low
temperatures, the maximal superpositions of the first two
relevant molecular states are chiral states. Then, according
to the einselection rule, decoherence of molecular states is
equivalent to the stabilization of chiral states.

VI. CONCLUSION

Chemists and some physicists are using chirality in the
classical sense, i.e., by presupposing a molecule to be in one
particular chiral state. However, according to decoherence
theory, classical properties like chirality emerge as a con-
sequence of the interaction with the environment. Based on
this approach, we have explored the collisional decoherence
of a chiral molecule prepared in a coherent superposition of
nondegenerate internal states interacting with thermal photons.

The temperature is assumed to be low, so that the first two
states of the relevant vibration of the molecule would be
available. The reduced density matrix of the molecule is
obtained in Eq. (15) as an extension of the monitoring master
equation. The differential scattering amplitudes that appear are
calculated using vibrational Raman scattering theory to obtain
the final master equation in Eq. (36). The corresponding elastic
decoherence rates are calculated in Eq. (38). According to its
estimated value, one can claim that the chirality of a molecule
is an emergent property resulting due to the interaction of the
molecule with a beam of photons.
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