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Collisional shift and broadening of the 2p-2s spectral lines in muonic helium ions
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In connection with the recently proposed Lamb-shift experiments at Paul Scherrer Institute in μ 4He+ and
μ 3He+ by using the laser-spectroscopy method, the pressure shift and width of the 2p-2s spectral lines in
muonic-helium ions were studied in the present paper within the fully quantum-mechanical close-coupling
approach. The calculations of the S matrix as well as of the energy-dependent shift and width were made
for collisional energies E = 10−5–1 eV. The shift and width averaged over energy were obtained for target
temperatures up to 350 K. It is shown that the fine-structure effect does not exceed a few percent. The isotopic
effect is very small and can be neglected for the shift at T � 150 K, contrary to the width, for which the isotopic
effect becomes much more pronounced at T � 150 K. At density N = 2.4145 × 1018 atom/cm3 corresponding
to the target pressure 100 mbar (T = 300 K) the predicted values of the shifts are equal to 35 (50) MHz for μ 3He+

and 33 (35) MHz for μ 4He+ respectively for upper (lower) values of the 2p-2s energy-level separation. At the
same conditions the values of the widths are equal to 2.4 (13.6) MHz for μ 3He+ and 2.0 (3.0) MHz for μ 4He+.
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I. INTRODUCTION

Low-energy muons entering the target form muonic atoms
in highly excited states. The further evolution of their initial
distributions in quantum numbers and kinetic energy are
defined by the competition of the radiative and collisional-
induced transitions as well as the elastic collisions during the
atomic cascade. The lightest muonic atoms of the hydrogen
and helium isotopes are of particular interest among the exotic
atoms due to their simplest structure (quite similar to ordinary
atoms but with an average size about two hundred times
smaller) and provide unique opportunities for both theoretical
and experimental investigations of a number of fundamental
problems, such as physics of exotic atoms, quantum electro-
dynamics, weak interaction, and nuclear structure.

A special place in these studies belongs to experimental
investigations of the metastable exotic atom states by means
of laser-spectroscopy methods (e.g., see Ref. [1]) widely used
in atomic physics. The crucial role for the feasibility of these
and similar planned in PSI μHe+ experiments [2,3] has a
population and lifetime of the long-lived (metastable) 2s state
formed during deexcitation cascade.

The arrival population of the 2s state in μHe+ should be
approximately the same as in the case of muonic hydrogen
at very low target densities [4,5] since in both cases the
deexcitation cascade is mainly dominated by the radiative
transitions.

However, contrary to the muonic hydrogen case, the
population of the metastable 2s state of μHe+ is practically
equal to the arrival population because of a strong suppression
of the Coulomb deexcitation and fast thermalization of the
muonic-helium ions due to long-range interatomic interaction.
Thus, a few percent of the initially formed μHe+ ions populate
the long-lived 2s state and this value weakly depends on the
density at a moderate pressure of the target gas [6]. Then a
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short laser pulse with a (tunable) wavelength corresponding
to the 2p-2s energy level separation can induce the 2s → 2p

transition, which is immediately (0.5 ps) followed by 2p → 1s

radiative deexcitation. According to the proposal [2,3], the
measurement of the transition frequencies with a precision of
50 ppm and their comparison with theoretical predictions will
allow us to determine the root-mean-square charge radii of the
nuclei 3,4He with a relative accuracy 3 × 10−4 corresponding
to 5 × 10−4 fm, that is an order of magnitude better than
presently known.

For the proposed Lamb-shift laser experiments in μ3,4He+

[2,3] it would be also important to know the values of the
pressure shift and broadening depending on the target density
to choose a muon beam line with the corresponding target
pressure. It is also important to be sure that there are no
systematic shifts (uncertainties) of the 2p-2s frequencies due
to the higher pressure, which does not allow us to reach
the assumed accuracy about 5 GHz (1 eV corresponds to
241.79893 THz).

A schematic diagram of the energy levels for the first
excited n = 2 states of (μ4He)+2lj

is given in Fig. 1. The
values of the Lamb shift and fine-structure splitting of the 2p

energy level (spin-orbital splitting of the nl states due to the
magnetic interaction between the orbital angular momentum
l and spin s = 1/2 of the muon) are given according to
Ref. [7].

In the case of (μ3He)+ each of the 2lj sublevels has also
hyperfine structure (an additional splitting in total angular
momentum F = j ± sn) due to magnetic interaction between
angular momentum j of the muonic state and spin sn = 1/2 of
the 3He nucleus. According to Ref. [7], a total energy splitting
between 2pF

j and 2sF ′
1/2 sublevels varies from 1.119 eV to

1.460 eV depending on (j,F,F ′).
Muonic helium ions (μ3,4He)+ formed in the deexcitation

cascade are characterized by large values of the elastic and
Stark mixing cross sections due to long-range polarization
potential, therefore they are quickly thermalized before the
laser pulse hits it. Thus, the kinetic energy distribution of
the muonic-helium ions has to be the same as the energy
distribution of the target atoms at given temperature.
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FIG. 1. Diagram of energy sublevels for muonic helium ion
(μ 4He)+2lj

. The values of the energy shift of the 2p1/2 and 2p3/2

sublevels relative to the 2s1/2 level are respectively equal to 1.377 eV
and 1.523 eV [7].

A general quantum theory of the collisional shift and
broadening of the spectral lines has been developed for the
different pairs of the colliding subsystems and has been
applied to numerous atomic and molecular systems (e.g., see
Refs. [8,9] and references therein). It would be beneficial to
apply this theory for the case of the muonic atoms (ions)
collisions with the ordinary ones. According to our knowledge,
in the case of the exotic atoms, this theory was only used for
calculations of the shift and broadening of E1 [10,11] and
M1 transitions [12,13] in antiprotonic helium atom, where
the achieved experimental accuracy allows to discuss these
values. Theoretical investigations of the collisional shift and
broadening of the spectral lines (2p-2s) for either (μ3He)+
or (μ4He)+ are of great interest since, as noted above,
the knowledge of these effects for (2p-2s) transitions in
muonic helium ions might be important for the planning and
interpretation of the Lamb-shift laser experiments.

In the present work we consider the collisional-induced
shift and broadening of the spectral lines 2p → 2s in μ 4He+

and μ 3He+ ions. In accordance with the general quantum
theory, these values are expressed in terms of the S matrix
for the collisions between muonic helium ions and ordinary
helium atoms. In order to obtain the S matrix, we use a close-
coupling approach, which was developed earlier by the authors
and applied to exotic atom collisions in a number of papers
(see, e.g., Refs. [5,14–19]).

The paper is organized as follows. A brief outline of the
approach and interaction model are described in Sec. II.
The results of the quantum-mechanical calculations of the
collisional shifts and broadenings for the spectral lines 2p →
2s in μ 4He+ and μ 3He+ ions are presented in Sec. III.
Their energy and temperature dependencies are calculated at
different values of the 2p-2s energy level separation for two
variants: with and without taking into account fine-structure
splitting. The main results of the paper are summarized in
Sec. IV.

Atomic units (h̄ = e = me = 1) are used throughout the
paper unless otherwise stated.

II. FORMALISM AND INTERACTION MODEL

The present study is based on a quantum-mechanical close-
coupling description of the collisions. In the problem under
consideration the kinetic energy of the relative ion-atomic
motion is much smaller than the energy separation between
the states of the muonic helium ion with the different principal
quantum numbers n. Besides, the Lamb shift (2s-2p energy
separation) is about an order of magnitude more than the fine

structure 2p3/2-2p1/2 energy splitting and much larger than
the hyperfine structure splitting in the case of the (μ 3He+)n=2.
Hence, the states of the muonic helium ions with n = 2 are
described in the present study in terms of the nonrelativistic
hydrogenlike 2s and 2p orbitals. The energy of the 2s sublevel
is shifted below on the value of the Lamb shift and summary
Lamb and fine-structure shifts relative to the 2p1/2 and 2p3/2

sublevels, respectively. Therefore, the wave functions of the
muonic helium states are defined by a vector coupling of the
space hydrogenlike wave function φnlm(r) = Rnl(r)Ylm(r̂) and
muon spin function χsσ :

〈r|nl,s : jmj 〉 = Rnl(r)
∑
mσ

〈lmsσ |jmj 〉Ylm(r̂)χsσ . (1)

Here, l, s = 1/2, and j = l ± 1/2 are, respectively, the
quantum numbers of the orbital, spin, and total muonic angular
momentum; r̂ = r/r and r is a radius vector of the muon
relative to its nucleus.

The basis states are constructed from the wave functions
of the muon |nl,s : jmj 〉 and the eigenfunctions |L,λ〉 of the
angular momentum of the relative motion:

〈r,R|nlsj,L : JM〉 = Rnl(r)YJM
lsj,L(r̂,R̂), (2)

where

YJM
lsj,L(r̂,R̂)

=
∑

mσλmj

〈lmsσ |jmj 〉〈jmjLλ|JM〉Ylm(r̂)YLλ(R̂)χsσ . (3)

Here the total angular momentum j of the muonic state is
coupled with the orbital momentum L of the relative motion
to give the total angular momentum J = j + L, and R̂ = R/R

with R is a radius vector, connecting the nucleus in the helium
atom with the center-of-mass of the muonic helium ion.

The total wave function of the scattering problem at the total
energy E and the definite quantum numbers of the total angular
momentum (J,M) and parity π = (−1)l+L is expanded in
terms of the basis states defined by Eqs. (2) and (3) as follows:

�EJMπ (r,R) = 1

R

∑
nljL

GEJπ
nljL (R)|nlj,L : JM〉. (4)

The expansion (4) leads to the close-coupling second-order
differential equations for the radial functions GEJπ

nljL (R) of the
relative motion:(

d2

dR2
+ k2

nlj − L(L + 1)

R2

)
GEJπ

nljL (R)

= 2Mr

∑
n′l′j ′L′

WJπ
nljL,n′l′j ′L′(R) GEJπ

n′l′j ′L′(R), (5)

where k2
nlj = 2Mr (Ecm − �nlj,n1j1l1 ) specifies the channel

wave number; Mr = M1M2/(M1 + M2) is a reduced mass of
the colliding subsystems (M1 = MZ + mμ, M2 = MZ + 2me

denote the masses of the muonic helium ion and helium atom),
where mμ, me, and MZ are the masses of the muon, electron,
and the helium-isotope nucleus, respectively. In the present
study we use the basis set in which both the open (k2

nlj > 0)
and closed (k2

nlj < 0, Im knlj > 0) channels were included. Ecm

is the relative motion energy in the entrance (n1l1j1) channel
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and �nlj,n1l1j1 is the threshold of the current (nlj ) channel
referring to the entrance channel threshold:

�nlj,n1l1j1 = εnlj − εn1l1j1 . (6)

Here εnlj is the bound-state energy for the (nlj ) state of the
muonic atom taking into account both the Lamb shift and
fine-structure splitting.

The interaction potential matrix elements are given by

WJ
c,c′ (R) = 〈nlj,L : JM|V (R,r)|nl′j ′,L′ : JM〉, (7)

where indexes c and c′ denote the set of the channel quantum
numbers: c ≡ {n,l,j,L}.

At a relative kinetic energy of 1 eV or less that we are
interested in, the interaction V (R,r) between an ordinary
helium atom and muonic helium ion in the low-lying states
with n = 2 can be introduced as a sum of two terms

V (R,r) = V0(R) + V1(R,r). (8)

The first term V0(R) is assumed to be mainly the same
as an adiabatic interaction potential of the point positively
charged particle (proton) and helium atom except at very small
separations [20,21]. As it will be shown in the next section
(see below Figs. 3 and 4), the details of the interaction at
separations R � 0.8 is unimportant in the scattering problem
under consideration due to both a small Bohr radius of the
(μHe+)n=2 [n2a0/(Zmμ) ≈ 5 × 10−11cm ≈ 0.01 a.u.] and the
extremely repulsive behavior of V0(R) (see Fig. 2). It is
important to note that the difference in mass has no meaning
with regard to the ground-state electronic wave function
(and, hence, to the ground electronic state potential of the
ion-atom pair) describing a helium atom in the external field
of the positively charged particle and depending parametrically
on the separation R between their center-of-mass. So, the
ion-atomic potential V0(R) was chosen to be the same as the
interatomic potential of (H+ + He) obtained in highly accurate
variational calculations [22] within the Born-Oppenheimer
approximation. Since the results of the improved adiabatic
calculations of the (H+ + He) interatomic potential have been
performed in Ref. [22] only at several points over a region R

from 0.9 up to 6.0 a.u., we used in our study the data [23] (see
the first and second columns of Table 1) derived from Ref. [22].
(Further in the text of the paper we will use the Refs. [22,23],
taking account of the above remark.) At R values less than
0.9 a.u. we used the results of the approximate variational
calculations [21] of the ground-state energy of (HeH)+.

The proton-helium atom potential V0(R) evaluated in ab
initio quantum-chemistry calculations [22,23] is plotted in
Fig. 2. In the present paper this potential was analytically
approximated by the sum of the short-range Morse potential
VM (R) and long-range potential Vp(R) (interaction between
the point charge and the induced dipole on helium atom) as
follows:

V0(R) = VM (R) + Vp(R), (9)

where

VM (R) = De({1 − exp[−β(R − Re)]}2 − 1), (10)

Vp(R) = − αp

2R4
g(R), (11)
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FIG. 2. (Color online) Interaction potential: central interatomic
potential V0(R) (points are highly accurate adiabatic calculations
[22,23], the solid line is the present fit by the sum of the Morse
potential and long-range interaction (9)–(12); the dashed line is
the R-depending factor |Ir | dV0(R)

dR
(multiplied by 100 times) of the

nondiagonal interaction in Eq. (17).

g(R) =
{

0 R < Re,

1 − exp[−γ (R − Re)4], R > Re.
(12)

At the present fit the values of the well depth De,
equilibrium separation Re, and static dipole polarizability αp

of the He atom were fixed at their theoretical meanings:
De = 0.07493, Re = 1.4632 in accordance with [22], and
αp = 1.3837 from Ref. [24]. Thus, only two free parameters
β and γ , which determine the form of the Morse potential
and cutoff function g(R) of the long-range interaction Vp(R),
were fitted in the present study. As a result of the present fit
(χ -square method was applied) we obtained β = 1.489 and
γ = 0.0035 (all values are given in atomic units).

The results of analytical approximation (9)–(12) lead to
very good agreement with the numerical values [22,23] of the
interatomic potential over the whole range of R (see Fig. 2).

The second term in Eq. (8) is determined as the interaction
of the dipole moment of μHe+ with the electric field of the
ordinary helium atom (with account of its polarization by the
external field of the point charge of the μHe+)

V1(R,r) = −d · E(R), (13)

where, in accordance with the Hellmann-Feynman theorem,
the electric field is given by

E = −∇RV0(R). (14)

The interaction (13) results in the both dipole coupling of the
channels and mixing of the (μHe)+nlj states (2s and 2p in our
study). The dipole moment operator of the muonic helium ion
in its center-of-mass is given by

d = −ξr, (15)

where factor ξ = (1 + mμ/M1) arises due to the displacement
of the center of charge against the center-of-mass in the muonic
helium ion.
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Then the interaction matrix (7) for the interaction potential
V (R,r) defined by (8)–(15) can be written as

Wc,c′ (R) = V0(R)δcc′ + W
dip
c,c′ (R), (16)

where

W
dip
c,c′ (R) = (−1)J+1/2 l̂ l̂′L̂L̂′ĵ ĵ ′〈l0l′0|10〉〈L0L′0|10〉

×
{

l l′ 1
j ′ j 1/2

} {
L L′ 1
j ′ j J

}
Ir

dV0(R)

dR
.

(17)

Here â = √
2a + 1, 〈a0b0|c0〉 is a Clebsch-Gordan coeffi-

cient, { a b e

d c f } is a 6j symbol, and

Ir = ξ 〈2s| r |2p〉 = − ξ
√

3

MμHeZ
(18)

is a radial matrix element for the dipole moment operator of
the muonic helium ion (MμHe = mμMZ/M1 is the reduced
mass of the muonic helium ion in atomic units and Z = 2 is
a charge of the nucleus). The R-depending factor |Ir | dV0(R)

dR

(multiplied by 100 times) of the nondiagonal interaction in
Eq. (17) is shown in Fig. 2.

Solving the system of coupled equations (5) for the radial
functions of the relative motion Gc(R) with the proper
boundary conditions one can obtain the values for the S matrix
defined in the subspace of the open channels. To find the
S-matrix elements we use the propagator matrix method (for
the details see Appendix A in Ref. [5]), which was employed
in the recent calculations of the collisional quenching of the
metastable 2s state in muonic hydrogen [5] and collision-
induced absorption in hadronic atoms [18,19].

The obtained S-matrix elements are used to calculate
the collisional shift d̃(E) and broadening w̃(E) of the E1
spectral lines (2pj → 2s1/2) in the muonic helium ion as a
function of the kinetic energy Ecm applying a general theory
of the similar effects in atoms. In the case of the isolated
lines (nonoverlapping levels) relevant to the problem under
consideration, the collisional shift and broadening can be
defined by means of the equation (59.98) from Ref. [8], which,
in the present designations, takes the form

id̃(E) + w̃(E)

2

= N
π

M2
r

√
Mr

2E

∑
LL′JiJf

(−1)L+L′

× (2Ji + 1)(2Jf + 1)

{
Jf Ji 1

ji jf L

}{
Jf Ji 1

ji jf L′

}

× [δLL′ − 〈jiL
′|SJi (Ei)|jiL〉〈jf L′|SJf (Ef )|jf L〉∗],

(19)

where N is the target density and 〈jiL
′|SJi (Ei)|jiL〉 is a

scattering matrix element in the coupled |jLJ 〉 representation.
The elements of the S matrix in Eq. (19) correspond to
the identical kinetic energies Ecm in the initial (i) and final
(f ) channels and therefore to different total energies of the
system before and after the collision: Ei = Ecm + ε2li ji

and
Ef = Ecm + ε2lf jf

, respectively. So the system of coupled

equations (5) must be solved for each total angular momentum
and parity as many times as there are different thresholds in
the multichannel scattering problem, i.e., three times in the
general case for our problem.

The averaged values for collisional broadening w and shift
d at a definite target temperature T are obtained by averaging
(19) over energy with the Maxwellian energy distribution of
the target atoms:

id + w

2
=

∫ ∞

0
F (E; T )

[
id̃(E) + w̃(E)

2

]
dE, (20)

where F (E; T ) is the normalized Maxwellian energy distribu-
tion of the target atoms

F (E; T ) = 2√
π

(kBT )−3/2
√

E exp[−E/(kBT )], (21)

(kB is the Boltzmann constant).

III. RESULTS

Close-coupling calculations were performed in the relative
energy range from 10−5 up to 1 eV (600 values in the whole
range of the energy) until the convergence over partial waves
was reached at given energy. The present calculations required
about 70 partial waves at the highest energy. In addition,
the distance at which the solutions can be safely treated
as the free-field solutions was also determined numerically.
The temperature dependencies of the widths and shifts were
calculated at 0.5 K intervals in the range T = 1–350 K.
In all present calculations the value of the target density
N = 2.4145 × 1018 atom/cm3 corresponding to the target
pressure 100 mbar at room temperature was adopted.

A. Shift and width in μ 4He+ without fine-structure splitting

We first consider the energy and temperature dependencies
of the 2p → 2s spectral line shift and width in μ 4He+

calculated without taking into account fine-structure splitting
of the 2p state. Then the corresponding basis states of the
scattering problem are given by

〈r,R|nl,L : JM〉 = Rnl(r)
∑
mλ

〈lmLλ|JM〉Ylm(r̂)YLλ(R̂).

(22)

In the case of the 2p and 2s states Eqs. (17) and (19) are
reduced to the following:

W
dip
2pL,2sL′ (R) = (

δLJ L̂′ + δL′J L̂
) 〈L0L′0|10〉Ir

dV0(R)

dR
,

(23)

and

id̃(E) + w̃(E)

2

= 1

3
N

π

M2
r

√
Mr

2E

∑
L,J=L,L±1

(2J + 1)

×[1 − 〈2pL|SJ (E2p)|2pL〉〈2sL|SL(E2s)|2sL〉∗]. (24)

In the spinless case, we have a three-channel scattering
problem if parity π = (−1)J and a one-channel problem
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FIG. 3. (Color online) Energy dependence of the collisional shift
of the spectral line 2p → 2s (1.377 eV). Solid line corresponds to
the integration of the close-coupling equations starting from R0 = 0;
dotted line, from R0 = 0.9 a.u. Dashed and dash-dotted lines illustrate
the Maxwellian energy distribution of the target atoms calculated
at target temperature 4.6 and 300 K, multiplied by 0.5 and 20,
respectively.

otherwise, while in the case of an explicit account of the fine-
structure splitting the scattering problem is a four-channel one
at any parity. Below in Figs. 3–6 we present the results of the
present study for the energy and temperature dependencies of
the collision-induced shift demonstrating both the sensitivity
of the pressure shift to the interaction potential and strong
closed-channel effect in the case of μ4He+. It is noted that the
same general features are also true in the case of μ3He+.

It is well known that the real ion-atomic potential is usually
more repulsive at small R than its approximation by Morse
potential. In order to study the sensitivity of our results to the
precise details of the interaction potential, the close-coupling
equations were numerically solved using different values for
the start value R0 for outward integration (usually to be equal
to zero) in the range R from 0 up to 1.0 a.u.

In Fig. 3 the energy dependence of the collisional shift
calculated for two values R0 = 0 and R0 = 0.9 is shown. It
is seen that the energy dependence of the shift reveals the
resonancelike structures associated with a presence of the
bound or quasibound rovibronic states, whose positions and
widths are quite sensitive to the form and details of the used
potential. Comparison of the two variants of the calculations
with the different values of R0 shows that the details of the
internal range of the ion-atomic interaction at R < 0.9 are
practically not important. It is noted that the calculation with
R0 = 0.9 in general maintains both the absolute values and
complicated structure of the energy dependence shown in
Fig. 3 for R0 = 0. Besides, our fit of the ab initio potential
[22,23] very exactly reproduces the data of the highly accu-
rate quantum-chemistry calculations [22] even for R = 0.9
(see Fig. 2).

The Maxwellian energy distribution of the target atoms
corresponding to the two values of the target temperature 4.6
and 300 K (the Maxwellian distribution calculated at T =
300 K is multiplied by a factor 20, while at 4.6 K by 0.5)
are also plotted in Fig. 3 in order to demonstrate explicitly

0 50 100 150 200 250 300 350
T (K)

20

30

40

50

60

d 
(M

H
z)

R
0
=0

R
0
=0.85

R
0
=0.9

R
0
=0.95

R
0
=1.0

FIG. 4. (Color online) The sensitivity of the collisional shift of the
spectral line 2p-2s (1.377 eV) in μ4He+ to the interatomic potential
at small distances R � 1.0 a.u. The results obtained by integration
starting from different values R0 = 0–1.0 a.u. are shown.

that averaging over energy in Eq. (20) leads to the smooth
dependence of the pressure shift and width on temperature
except for the range of very low temperature T � 25 K, as it
is shown in Figs. 4–6.

Indeed, since the temperature dependence of the collisional
broadening w and shift d at a definite target temperature T is
obtained by averaging (19) over energy with the Maxwellian
energy distribution of the target atoms, only the resonancelike
structures at very low collision energy survive and determine
the behavior of both shift and width at the target temperatures
below 25 K. At T > 25 K we observe the smooth dependence
of the shift on temperature: the pressure shift decreases with
the increase of temperature.

In Fig. 4 the effect of the short-range repulsion at R0 <

1.0 is illustrated in more detail. According to our study, the
details of the interaction potential in the range R < 0.85 are
not important, since its total contribution to the pressure shift
is less than 0.5%. At the same time, the shift is quite sensitive
to the precise details of the potential at R0 > 0.85 (see also
Fig. 5). In particular, the shifts calculated with R0 = 0.85 and
R0 = 1.0 differ more than 25%. It is worthwhile to emphasize
that the observed in Fig. 3 and especially in Fig. 4 sensitivity
of the shifts to the variation of the starting point of the outward
integration in the classically forbidden range is explained by
a significant quantum effect. Indeed, the locations of the inner
classical turning point Rtp increase from 0.994 (L = 0) up to
1.318 (L = 30) and from 0.960 (L = 0) up to 1.240 (L = 30)
at collision energies 0.05 and 0.5 eV, respectively. Therefore,
the classical or semiclassical approaches are only useful for
making crude estimations, however, the results can differ by
up to 50% or more in comparison with a rigorous quantum-
mechanical description.

The fitted parameter β determines the form (strength)
of both the short-range Morse potential VM (R) (10) and
potential of the dipole coupling V1(R,r) (13). Besides, this
parameter changes the relative role of the coupling interaction
as compared with the central interaction potential V0(R) (9).
The temperature dependence of the shift calculated at the
energy 2p-2s separation 1.377 eV in μ4He+ for three values
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FIG. 5. (Color online) The temperature dependence of the colli-
sional shift d(T ) calculated for the energy 2p-2s splitting 1.377 eV
in μ4He+ at the different values of Morse potential parameter β: 1.65
(solid line), 1.489 (dashed line), and 1.35 (dash-dotted line).

of the parameter β = 1.35,1.489, and 1.65 is plotted in Fig. 5.
We observe here the general property: the value of the shift
increases with the increase of β.

There are at least two obvious reasons for such effect.
First, the increase of β enhances the relative role of the dipole
coupling in comparison with the diagonal interaction. Second,
since at collisional energies below the 2s-2p threshold the
effect of the closed channels is very important (see Fig. 6),
the increase of β leads also to the enhancement of the shift
values. In particular, the temperature dependence of the shift
plotted in Fig. 6 shows the significant difference between the
shift values, obtained with and without taking into account the
closed channels. The shift of the spectral lines calculated with
the closed channels taken into account, as shown in Fig. 6,
are about four times larger than the shift obtained without the
closed channels.

0 50 100 150 200 250 300 350
T (K)

10

20

30

40

50

60

d 
(M

H
z)

FIG. 6. (Color online) Effect of the long-range interaction Vp(R)
and closed channels on the temperature dependence of the collisional
shift of the spectral line 2p-2s (1.377 eV) in μ4He+. The solid line
corresponds to full calculation, the dashed line to the calculation
without Vp , and the dash-dotted line to the calculation without taking
into account the closed channels.

It is important to note that, according to the present study,
the large contribution to the collisional shift of the spectral
lines arises also due to the term in the interaction potential
matrix associated with the long-range polarization interaction
(see Fig. 6). This contribution is increased and becomes much
more pronounced at temperature T < 150 K. In particular, at
T = 25 K the long-range interaction contributes to the total
shift about 50%.

B. Fine-structure effect in μ 4He+

The fine-structure effects on the calculated values of the
shift and width arise mainly from the coefficients of the
angular momentum coupling (6j symbols) in the interaction
matrix potentials Eq. (17) and corresponding dependence of
the S-matrix elements due to these interactions. Besides, the
scattering problem becomes four channels with two splitting
2pj sublevels as compared with the spinless case.

The effects of the fine-structure splitting on the calculated
shift and width values are illustrated respectively in Figs. 7
and 8 in comparison with the case without a fine structure
splitting taken into account.

The temperature dependence of the shift calculated at
the same value of the 2p-2s energy level separation is
similar in both cases: the shift has a characteristic reso-
nancelike behavior at very small temperature �25 K and
tends to decrease slowly with the increase of the target
temperature. As a whole the fine-structure effect is not very
strong and leads to less than 10% differences of the shift.
Thus, the role of the fine-structure splitting is relatively
unimportant.

According to the present study, the collisional width of
the 2p → 2s spectral lines in average are about an order
of magnitude less than the shift. However, the temperature
dependencies of both the shift and width are quite similar
and have some general features: resonancelike behavior at

0 50 100 150 200 250 300 350
T (K)

30

40

50

60

d 
(M

H
z)

μ4
He

+

FIG. 7. (Color online) The fine structure effect on the shift of
the spectral 2p-2s lines in in the case of (μ 4He)+2l −4 He collision vs
target temperature. The solid and dotted lines show shifts for the lines
2p1/2-2s1/2 (1.377 eV) and 2p3/2-2s1/2 (1.523 eV), respectively. The
dashed and dash-dotted lines correspond to the calculations without
fine-structure splitting, respectively, for the values 1.377 eV and
1.523 eV of 2p-2s energy level separation.
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FIG. 8. (Color online) The fine-structure effect on the width
in the case of (μ 4He)+2l −4 He collision vs target temperature. The
designations are the same as in Fig. 7.

low temperature (�25 K) and decreasing of their values
with the increase of the temperature. The fine-structure effect
on the width temperature dependence is also revealed and
shown in Fig. 8. As in the case of the shift (see Fig. 7), the
widths calculated with and without taking into account the
fine-structure splitting differ as a whole about 10–15 %. It is
noted, that in the range 25–75 K of the target temperature the
effect of the fine structure is much stronger.

C. Isotopic effect: Shift and width in μ 3He+

The approach developed in the present paper allows us to
realize the analogous (as for μ 4He+) program of the theoretical
study for the case of μ 3He+, taking into account also the
hyperfine-structure splitting. However, since fine-structure
splitting is much larger than hyperfine-structure splitting and,
according to the present study, the fine-structure effects are
about 10% then we can conclude that the hyperfine-structure
effects are negligible for both the shift and width values at
the present level of experimental accuracy. Besides, it seems
reasonable to assume that the principal results obtained above
would be also true for the 2p-2s spectral lines in the case
of (μ 3He)+. Therefore, now our main interest is to estimate
the isotopic effect by comparing, at fixed value of the 2p-2s

energy level splitting, the collisional shift and width of the
2p-2s spectral lines calculated for μ 3He+ and μ 4He+. The
corresponding results of the present calculations are shown in
Figs. 9–10.

To illustrate the isotopic effect, the temperature dependen-
cies of the shift (Fig. 9) and width (Fig. 10) were calculated
at fixed value 1.377 eV of the 2p-2s energy level separation
for both (μ 3He)+ and (μ 4He)+ without taking into account
fine-structure splitting of the 2p state.

The isotopic effect for the shift is almost invisible at
T > 200 K, while at low temperature below 175 K the shift
in (μ 3He)+ is larger than in (μ 4He)+ and the difference
grows with the decrease of the temperature reaching about 8%
at 25 K.

Quite the opposite picture of the isotopic effect is observed
for the collisional width, especially at target temperature above
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FIG. 9. (Color online) Isotopic effect in the pressure shift: the
temperature dependence of the collisional shift of the 2p → 2s

spectral lines in (μ 4He)+ (solid line) and (μ 3He)+ (dashed line),
calculated for the fixed energy level separation is equal to 1.377 eV.

100 K. The width in (μ 3He)+ increases with temperature
above 100 K while the width in (μ 4He)+ decreases with
temperature. At T = 300 K the width in (μ 3He)+ is about
three times larger than in (μ 4He)+.

In Fig. 11 we present the temperature dependence of both
the collisional shift and width in (μ 3He)+ calculated for
two values of the 2p-2s energy level separation (1.119 and
1.460 eV) corresponding to the lower and upper physical val-
ues, respectively. As it is seen, the temperature dependencies
of the shift and width calculated for two values of the energy
level separation differ significantly due to large difference
of the energy level separation. Such a strong difference in
the behavior of the shifts and widths calculated with the
energy level separations 1.119 eV and 1.460 eV requires some
additional remarks. The effects of the energy splitting between
the 2p and 2s states were considered in the present paper and,
according to our study, the influence of the energy splitting
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FIG. 10. (Color online) The same as in Fig. 9, but for collisional
width. The width of the 2p → 2s spectral lines vs target temperature
calculated at the fixed energy level separation 1.377 eV: the solid line
for (μ 4He)+, and dashed line for (μ 3He)+.
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FIG. 11. (Color online) Temperature dependence of the colli-
sional shifts and widths calculated for the spectral line 2p → 2s of
(μ 3He)+ at two physical values of the 2p-2s energy level separation
1.119 and 1.460 eV.

can be very strong and results in both the different values and
even the different sign of the collisional shift and also changes
its temperature dependence. In particular, the decrease of the
2p-2s energy level separation from 1.460 eV to 1.119 eV,
leads to the enhancement of the closed-channel effect, which
mainly determines both the shift and width values (see Fig. 6)
at collisional energies below the 2s-2p threshold.

IV. CONCLUSION

The general features of the collisional shifts and broad-
enings have been studied in a wide range of the collisional
energy E = 10−5–1 eV and target temperature from 1 up to
350 K. According to the present study, at target density N =
2.4145 × 1018 atom/cm3 corresponding to the target pressure
100 mbar (T = 300 K) the predicted values of the pressure
shift of the spectral lines 2p-2s are equal to 33–35 MHz and
35–50 MHz for μ 4He+ and μ 3He+, respectively, which is
comparable with the systematic uncertainty of the frequency
calibration, arising from pulse-to-pulse fluctuations in the
laser pulse. At the same conditions the widths are equal to
2.4–13.6 MHz for μ 3He+ and 2.0–3.0 MHz for μ 4He+.

The present results are very important for the experiments
proposed at Paul Scherrer Institute (PSI) aimed at precision
measurements of the Lamb 2p-2s shifts in μ 4He+ and μ 3He+

ions. In particular, the present predictions of pressure shifts
and broadenings of the spectral lines 2p-2s in μ 4He+ and
μ 3He+ ions give a reliable estimation of their contribution
to the systematic uncertainty of the Lamb shift experiments
in PSI and allow us to work at much higher gas pressure
as compared with muonic hydrogen experiments and, there-
fore, increase the expected signal rates and also improve
statistics.
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