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Self-energy of an electron bound in a Coulomb field
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The evaluation method of the one-loop self-energy of the electron bound in a Coulomb field is described. The
method combines the relativistic multipole expansion with the free-particle approximation in the virtual states
without breaking any integrations of pieces. The relativistic multipole expansion is based on a single assumption:
except for the part of the time component of the electron four-momentum corresponding to the electron rest mass,
the exchange of four-momentum between the virtual electron and photon can be treated perturbatively. This
assumption holds very well, except for the electron virtual states with very high three-momentum. It is shown
that for such virtual states one can always rearrange the pertinent expression in a way that allows the electron to
be treated as free. The fraction of the free-particle approximation contained in the relativistic multipole expansion
carried out to a given order is precisely determined. Furthermore, it is pointed out that in the virtual states with
very large wave numbers the electron ceases to feel the Coulomb force from the nucleus for arbitrarily strong
fields. This results in a simple scaling behavior of the integrals over the large electron wave numbers. This in
turn enables us to avoid a decomposition of convergent integrals into the sum of divergent integrals encountered
earlier. By taking the method up to the ninth order and estimating the remainder of the series, the result obtained
for the ground state of the hydrogen atom differs from the other result of comparable accuracy by two parts in 109.
This amounts to the difference of 18 Hz for 2s-1s transition in hydrogen. This is by four orders smaller than the
uncertainty in determination of the proton radius. With an increasing nuclear charge Z, the rate of convergence of
the expansion slows down. Nonetheless, the obtained results are in very good agreement with the results obtained
by partial wave expansion up to Z = 90.
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I. INTRODUCTION

The Lamb shift in hydrogenlike atoms presents a classic
and, up to this time, one of the most precise tests of QED [1–4].
It is customary to write the Lamb shift on general S state as

�En = n3�En − �E1

n3
+ �E1

n3
, (1)

where the first and the second terms of the right member
will be referred to as the state-dependent and the state-
independent parts, respectively. The state-independent part
of the self-energy effect for the S states is by far the
dominant contribution to the Lamb shift in ordinary atoms
[1–4]. Therefore, considerable effort has been devoted to an
evaluation of this part of the effect [5–14].

The renormalized expression for the self-energy in the
nonrecoil limit reads (for notation and units used, see [15])

�E = 〈O − �m〉 = 〈ψ |γ0(O − �m)|ψ〉, (2)

where �m stands for the electromagnetic mass of the electron.
The regularized mass operator O reads

O = α

π

∫ �2

0
dλ

∫
d4kF

(k2 − λ)2
γμ

1

γ · (	 − k) − m
γμ (3)

and the wave function ψ of the reference state is a solution of
the stationary Dirac equation with the energy E,

(γ · 	 − m)ψ = 0. (4)

In the case that only the fine structure of the spectral lines is
of interest, the components of physical momentum 	 of the

particle are taken to be those in the external Coulomb field

	 =
(

E + Zα

R
, �P
)

, (5)

where �P is the canonical three-momentum.
The difficulty in the evaluation of Eq. (2) is usually stated

as follows [2,6,7,10]. In the region of short wavelengths of
the virtual photon the momentum imparted on the electron is
so high that, in the first approximation, the electron can be
in the virtual states treated as free. The problem can then be
formulated as a manageable problem of radiation correction
to multiple scattering of the electron by the external Coulomb
field. However, such an approach fails when one integrates over
long wavelengths of the virtual photon. In that region, the effect
of the binding potential has to be treated nonperturbatively.
On the other hand, to a first approximation, the motion of the
electron in that region is nonrelativistic and a dipole approx-
imation for the interaction of the electron and photon can be
used. The problem with the long wavelengths emerges because
of the zero photon mass. Indeed, when the effect of the vacuum
polarization is evaluated, the finite electron mass provides a
natural cutoff for small momenta of the virtual electron. The
potential expansion of the electron propagator can be used
without any difficulty. The leading term of the expansion yields
Uehling potential. This is, for light atoms, by far the dominant
contribution to the effect of vacuum polarization [1,2].

The different treatment of different wavelengths of the
virtual photon persists also in a calculation based on the partial
wave expansion (PWE) [12,13].

Following [8,9], we multiply 1/[γ · (	 − k) − m] in
Eq. (3) by [γ · (	 − k) + m]/[γ · (	 − k) + m] from the
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J. ZAMASTIL AND V. PATKÓŠ PHYSICAL REVIEW A 88, 032501 (2013)

right. Using the Dirac equation and properties of γ matrices
[15] we get

〈O〉 = − α

2π

〈
γμ

(
G4	μ − m

2
G · γ γμ

)〉
, (6)

where

G4,ν = (−4)
∫ �2

0
dλ

∫
d4kF

(k2 − λ)2

(1,kν/m)

k2 − 2k · 	 + H
. (7)

Here the second-order Hamilton operator H [8] reads

H = (γ · 	 + m)(γ · 	 − m)

= 	 · 	 − m2 + 1
4 [	μ,	ν][γμ,γν]. (8)

Recently, an expansion of the electron propagator has been
suggested [16–18]. This expansion will be referred to as a
relativistic generalization of multipole expansion (RME). This
expansion is based on a single assumption, namely, that the
four-momentum 	 of the bound electron in the virtual states
is dominated by the four-momentum ε of the electron at rest:

1

k2 − 2k · ε + H − 2k · (	 − ε)
= 1

z − H̃0 − λH̃1
. (9)

Here the propagator is written in a generic form (z − H̃ )−1,
where H̃ = H̃0 + λH̃1 is a generic Hamilton operator. Further-
more, λ is a formal perturbation parameter that is eventually
set to one,

ε = (m,0,0,0) (10)

and

z = k2 − 2k · ε, H̃0 = −H, λH̃1 = 2k · (	 − ε). (11)

Once the renormalization of the electron mass is made, each
term of the expansion is finite both in the infrared and
ultraviolet regions when one integrates over four-momentum
k of the virtual photon. From this standpoint, there are two
regions that cannot be simultaneously covered by a single
approximation, but they are characterized by the electron, not
the photon, wave numbers. The squared Hamilton operator H ,
Eq. (8), with four-momentum 	 given by Eq. (5) has for the
continuous part of the spectrum eigenvalues [16,19]

− H

m2
= (Zα)2

[
1 + k2

e (l0 + 1)2
]
, ke ∈ (0,∞),

(12)
l0 + 1 =

√
1 − (Zα)2.

The low- and high-energy regions are given by the discrete
part of the spectrum and ke up to, say, (Zα)−1 and by ke

ranging from (Zα)−1 to infinity, respectively. In the low-energy
region the convergence of the RME is very fast. As discussed
in detail in [17], the energy shift for non-S states and the
state-dependent part of the S states is determined nearly
completely by this low-energy part. Thus, very accurate
results can be obtained in these cases just by considering
a few terms of RME [17]. This reduces the problem to the
calculation of the ground state [see Eq. (1)]. In the high-energy
region the RME yields, after initially fast convergence, slowly
convergent series. However, in this region, a simplification
appears. Namely, under the circumstances to be specified later,
the free-particle approximation of the electron propagator can
be used. As shown in [18] and in a substantially simpler way

here, if the RME is truncated after a finite number of terms, one
can exactly determine how much of the free-particle result is
contained in it. Therefore, the part of RME causing the worst
convergence problems can be precisely summed up to the
infinite order. When considering the self-energy effect of
the light hydrogenlike ions, this is the greatest advantage of
the RME over the method used in [12–14] based on PWE.

The paper is organized as follows. In Sec. II we use partial
wave expansion to integrate out spinor-angular degrees of
freedom. Section III contains the essence of the method. It
shows how the individual terms of the RME are generated.
The electron propagator is successively expanded in spatial
and time components of 	 − ε. Further, the four-momentum
of the virtual photon is integrated out. The only remaining
integration is then the integration over the continuous part
of the hydrogen spectrum. Furthermore, the relation between
RME and Zα expansion is clarified. In Sec. IV the numerical
results are presented and discussed. Appendices are devoted
to additional technical issues. In Appendix A we determine
the contribution of the virtual electron states with very large
wave numbers. This is achieved in several steps. First, we use
a nonrelativistic model introduced in [18]. Second, we specify
the conditions under which a free-particle approximation is
allowed. Third, we show how to convert the nonrelativistic
model in such a form. Finally, the integration over the photon
and electron variables is performed. In Appendix B we
discuss further applications of the nonrelativistic model. In
Appendix C we show how to obtain an asymptotic expan-
sion of the hypergeometric function needed in Sec. III. In
Appendix D, the integration over four-momentum of the
virtual photon is described in some detail. Finally, in
Appendix E the behavior of the integrands for the large electron
wave numbers encountered in integration over the continuous
part of the hydrogen spectrum in Sec. III is derived.

II. ANGULAR-SPINOR INTEGRATION

We insert Eq. (7) into Eq. (6) and use the equation

1

k2 − 2k · 	 + H
= ei�k· �R 1

k2 − 2k0	0 + H + ω2
e−i�k· �R.

(13)

The strategy is to separate the radial and spinor-angular degrees
of freedom. We do so in the spectral decomposition of the
Hamilton operator H , in the action of the momentum operator
	 on the reference state function ψ and by decomposition of
the plane wave exp{±i�k · �R} into spherical waves. After this
has been done we integrate out angular-spinor variables of the
electron and photon.

A. Spectral decomposition of the squared Hamilton operator

First, we use the spectral resolution of the Hamilton
operator H , Eq. (8), with 	 given by Eq. (5),

f (H ) =
∑


,K,j,m,l


f
(
Hl


) |
,K,j,m〉〈
,K,j,m|γ0

〈
,K,j,m|γ0|
,K,j,m〉 (14)

[see Eq. (45) of [16]]. Here 
, K , j (j + 1), and m denote
the eigenvalues of the relativistic generalization of the angular
momentum operator [16,19], the relativistic parity operator,
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and the square and the third component of the total angular
momentum, respectively. The eigenvalues 
 and K read
[16,19]


 = ρ|
|, ρ = ±1, |
| =
√

(j + 1/2)2 − (Zα)2 (15)

and

K = π |K|, π = ±1, |K| = j + 1/2. (16)

|
,K,j,m〉 are the corresponding eigenvectors. Their explicit
form reads

|
,K,j,m〉 =
(

c1〈�n|j,m〉π
c2〈�n|j,m〉−π

)
, (17)

where the symbol 〈�n|j,m〉π denotes the spherical spinors and

c1 = Zα

(2|K|)1/2(|K| − π
)
, c2 = − i

Zα
(K − 
)c1. (18)

The radial Hamiltonians Hl
 in the right member of Eq. (14)
stand for [16,19]

Hl
 = E2 − m2 + 2
EZα

R
−
(

P 2
R + l
(l
 + 1)

R2

)
, (19)

where the effective orbital quantum number l
 reads

l
 = δρ,1(|
| − 1) + δρ,−1|
|. (20)

The eigenvalues of the discrete part of the spectrum of Hl
 are
obtained from Eq. (12) by the substitution ke → −i/n, where
n = nr + l
 + 1, nr = 0,1,2, . . . .

The radial part of the wave function of the ground state
reads

〈r|l0 + 1,l0〉 = Cl0+1,l0r
l0e−r/(l0+1), (21)

where l0 is given by Eq. (12), Cl0+1,l0 is a normalization
constant to be explicitly specified below, and r is the electron
radial variable in atomic units. The transition from natural to
atomic units is

R = r

EZα
. (22)

The energy E of the ground state reads

E

m
=
√

1 − (Zα)2. (23)

The subscript 0 on the quantum numbers will refer to the
quantum numbers of the ground state,


0 =
√

1 − (Zα)2, K0 = 1, j0 = 1
2 , m0 = ± 1

2 . (24)

B. Action of momentum operator on the reference function

The action of the electron four-momentum 	 on the
wave function ψ of the ground state, 〈r|ψ〉 = 〈r|l0 +
1,l0〉|
0,K0,j0,m0〉, will be written in the form

(	 − ε)μ
m

ψ =
(

O0
μ + O−1

μ

r

)
ψ, (25)

where

O0
μ =

(
E − m

m
,

iEZα

m(l0 + 1)
�n
)

(26)

and

O−1
μ =

(
E

m
(Zα)2,

(−i)EZα

m
( �∇n + l0�n)

)
. (27)

The angular differential operator �∇n is given in Eq. (108)
of [16]. The action of the space components of the momentum
operator was evaluated by means of Eq. (107) of [16] and
Eq. (21).

C. Partial wave expansion

We insert Eqs. (7), (13), and (25) into Eq. (6). Writing
further

�k = ω�η,
(28)∫

d4kF fr (k2,ω)fa(�η) =
∫

d�η

4π
fa(�η)

∫
d4kF fr (k2,ω)

and concentrating on the angular part we are to integrate the
expressions∫

d�η

4π

〈
O1 exp{i�k · �R1}f (H )O2 exp{−i�k · �R2}rc

2

〉
(29)

and∫
d�ηηi

4π
〈γ0 exp{i�k · �R1}f (H )γiγ0 exp{−i�k · �R2}〉. (30)

In expression (29) O1 and O2 are in general the spinor-
angular operators whose concrete forms will be considered
in the moment. The superscript c on r in (29) is equal to
0 or −1. The actual value depends on the operator O2 and
can be read of Eqs. (6) and (25). The subscripts 1 and 2
on the operators O and R indicate only if these operators
appear before (1) or after (2) of the operator function f (H ).
Inserting Eq. (14) and a decomposition of the plane wave into
spherical waves

ei�k· �R = 4π

∞∑
L=0

iLjL(ωR)
L∑

mp=−L

Y ∗
L,mp

(�n)YL,mp
(�η) (31)

into expressions (29) and (30) we separate the radial and
spinor-angular operators

(29) =
∑
L,ρ,j

〈l0 + 1,l0|jL(ωR1)f
(
Hl


)
jL(ωR2)rc

2 |l0 + 1,l0〉

×
∑
π

�O1,O2 (L,j,ρ,π ) (32)

and

(30) =
∑

L,L′=L±1,ρ,j

〈l0 + 1,l0|jL(ωR1)f
(
Hl


)
jL′(ωR2)

× |l0 + 1,l0〉
∑
π

�γ0ηi ,γiγ0 (L,L′,j,ρ,π ). (33)

In more detail, insertion of Eq. (31) and its complex conjugate
into expressions (29) and (30) leads to the double summation
over L and L′. The integration over the direction of the virtual
photon together with orthonormality of spherical harmonics
and selection rules for SO(3) vector operators enforces L′ =
L and L′ = L ± 1 on the right members of Eqs. (32) and
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(33), respectively. By means of Wigner-Eckart theorem and matrix elements of SO(3) vector operators we obtain for
the spinor-angular part of the integration

�γ0,1 = 4π
∑
m,mp

〈
0,K0,j0,m0|Y ∗
L,mp

|
,K,j,m〉〈
,K,j,m|γ0YL,mp
|
0,K0,j0,m0〉

〈
,K,j,m|γ0|
,K,j,m〉

= (∣∣c0
1

∣∣2|c1|2 − ∣∣c0
2

∣∣2|c2|2
)K



[δπ,1δj,L+1/2(L + 1) + δπ,−1δj,L−1/2L], (34)

�γi,ni
= 4π

∑
m,mp

〈
0,K0,j0,m0|γ0γiY
∗
L,mp

|
,K,j,m〉〈
,K,j,m|γ0niYL,mp
|
0,K0,j0,m0〉

〈
,K,j,m|γ0|
,K,j,m〉

= −i
Zα

2

K




{
δπ,1(δj,L−(1/2)

(L − 1)

(2L − 1)
[L − (
0 + 
)] + δj,L+(3/2)

(L + 1)

(2L + 3)
(L + 1 + 
0 + 
)

)

+ δπ,−1

(
δj,L+(1/2)

(L + 2)

(2L + 3)
(L + 1 + 
0 + 
) + δj,L−(3/2)

L

(2L − 1)
[L − (
0 + 
)]

)}
, (35)

�γi,∇n
i

= 4π
∑
m,mp

〈
0,K0,j0,m0|γ0γiY
∗
L,mp

|
,K,j,m〉〈
,K,j,m|γ0YL,mp
∇n

i |
0,K0,j0,m0〉
〈
,K,j,m|γ0|
,K,j,m〉

= −i
Zα

2

1




{
δπ,1

(
δj,L−(1/2)L

(
K − 
 + (K0 − 
0)

L

(2L − 1)

)
+ δj,L+(3/2)(K0 − 
0)

(L + 1)(L + 2)

(2L + 3)

)

+ δπ,−1

(
δj,L+(1/2)(L + 1)

(
K − 
 + (K0 − 
0)

(L + 1)

(2L + 3)

)
+ δj,L−(3/2)(K0 − 
0)

L(L − 1)

(2L − 1)

)}
, (36)

�γi,γ0γi
= 4π

∑
m,mp

〈
0,K0,j0,m0|γ0γiY
∗
L,mp

|
,K,j,m〉〈
,K,j,m|γiYL,mp
|
0,K0,j0,m0〉

〈
,K,j,m|γ0|
,K,j,m〉

= 1

4


{(
3(
0 + 1)(
 − K)L − (
0 − 1)(K + 
)

L(2L + 1)

2L − 1

)
δj,L−(1/2)δπ,1

+
(

3(
0 + 1)(
 − K)(L + 1) − (
0 − 1)(K + 
)
(L + 1)(2L + 1)

2L + 3

)
δj,L+(1/2)δπ,−1

− 4(K + 
)(
0 − 1)

(
(L + 1)(L + 2)

2L + 3
δj,L+(3/2)δπ,1 + L(L − 1)

2L − 1
δj,L−(3/2)δπ,−1

)}
(37)

and

−�γ0ηi ,γiγ0 (L,L′) = 4π
∑

m,mp,m′
p

∫
d�ηηi

4π

〈
0,K0,j0,m0|Y ∗
L,mp

(�n)YL,mp
(�η)|
,K,j,m〉

〈
,K,j,m|γ0|
,K,j,m〉

× 〈
,K,j,m|γiYL′,m′
p
(�n)Y ∗

L′,m′
p
(�η)|
0,K0,j0,m0〉iL(−i)L

′
. (38)

Here,

−�γ0ηi ,γiγ0 (L,L′ = L − 1) = Zα

4


{
δj,L+(1/2)δπ,1

2L(L + 1)

(2L + 1)
[
0 − K0 − (
 + K)]

− δj,L−(1/2)δπ,−1L

(

0 − K0 − (
 + K)

(2L + 1)
− (
 − K) + 
0 + K0

)}
and

−�γ0ηi ,γiγ0 (L,L′ = L + 1) = −Zα

4


{
δj,L−(1/2)δπ,−1

2L(L + 1)

(2L + 1)
[
0 − K0 − (
 + K)]

+ δj,L+(1/2)δπ,1(L + 1)

(

0 − K0 − (
 + K)

(2L + 1)
+ 
 − K − (
0 + K0)

)}
.
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In [16] we have found that

−�γμηi ,γiγμ
= −2�γ0ηi ,γiγ0 (39)

so the term �γj ηi ,γiγj
need not be calculated.

III. RELATIVISTIC GENERALIZATION
OF MULTIPOLE EXPANSION

The relativistic generalization of multipole expansion
consists of expanding the left member of Eq. (9) in space
and time components of 	 − ε. The expansion in the space
components is obtained by expanding the right members of
Eqs. (32) and (33) where f (H ) = (k2 − 2k0	0 + H + ω2)−1

in powers of ω2. The expansion in the time components is
obtained first by using a spectral decomposition of the operator
(k2 − 2k0	0 + H )−1 and then expanding in powers of k0.
After these expansions are made one can integrate over four-
momentum of the virtual photon and sum the contributions of
the electron intermediate states.

A. Expansion in space components

We expand the spherical Bessel functions jL(ωR) in powers
of ω, thus converting the partial wave expansion into a
multipole expansion:

jL(ωR) =
∞∑

q=0

(
−1

2

)q
rL+2q

q!(2L + 2q + 1)!!

(
ω

EZα

)L+2q

.

(40)

This is accompanied by the expansion

1

k2 − 2k0	0 + Hl
 + ω2

=
∞∑

q=0

ω2q

q!

dq

dσ q

1

k2 − 2k0	0 + Hl
 + σ

∣∣∣∣
σ=0

. (41)

By inserting Eqs. (40) and (41) into Eqs. (32) and (33) and
collecting the terms of order ω2v and ω2v−1 we obtain

〈O1G4,0O2〉 =
∞∑

v=0

v∑
L=0

∑
ρ=±1

∞∑
j−(1/2)=0

∑
π=±1

�O1,O2 (L,j,ρ,π )
v−L∑
p=0

(EZα)−2(p+L)

(
−1

2

)p

×
p∑

q=0

1

q!(2L + 2q + 1)!!

1

(p − q)![2L + 2(p − q) + 1]!!

1

(v − p − L)!

dv−p−L

dσ v−p−L
U4,0(v,L,l
,p,q,c)

∣∣∣∣
σ=0

(42)

and

〈γ0Giγiγ0〉 =
∞∑

v=0

v∑
L=0

∑
ρ=±1

∞∑
j−(1/2)=0

v−L∑
p=0

(EZα)−2(p+L)+1

(
−1

2

)p

×
p∑

q=0

∑
π=±1

{
�γ0ni ,γiγ0 (L,L′ = L − 1,j,ρ,π )[2L + 2(p − q) + 1] − �γ0ni ,γiγ0 (L,L′ = L + 1,j,ρ,π )2(p − q)

}

× 1

q!(2L + 2q + 1)!!

1

(p − q)!(2L + 2(p − q) + 1)!!
1

(v − p − L)!

dv−p−L

dσ v−p−L
U1(v,L,l
,p,q)

∣∣∣∣
σ=0

, (43)

where

U4,0(v,L,l
,p,q,c) = (−4)
∫ �2

0
dλ

∫
d4kF (1,k0/m)

(k2 − λ)2
〈l0 + 1,l0|rL+2q ω2v

k2 − 2k0	0 + Hl
 + σ
rL+2(p−q)+c|l0 + 1,l0〉 (44)

and

U1(v,L,l
,p,q) = (−4)
∫ �2

0
dλ

∫
d4kF ω/m

(k2 − λ)2
〈l0 + 1,l0|rL+2q ω2v−1

k2 − 2k0	0 + Hl
 + σ
rL+2(p−q)−1|l0 + 1,l0〉, (45)

respectively. In derivation of Eq. (43) we used Eq. (40) twice. In the second time we substituted L → L ± 1. For L → L − 1
this produces the factor [2L + 2(p − q) + 1] multiplying the angular part �γ0ni ,γiγ0 (L′ = L − 1). For L → L + 1 we shift the
summation variable in Eq. (40) by −1. This then produces the factor (−2)(p − q) multiplying the angular part �γ0ni ,γiγ0 (L′ =
L + 1).
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B. Elimination of explicit appearance of �0 − m

The diagonalization of the operator (k2 − 2k0	0 + Hl
 + σ )−1 yields [see also Eqs. (44)–(51) of [16]]

〈l0 + 1,l0|ra 1

k2 − 2k0	0 + Hl
 + σ
rb|l0 + 1,l0〉

=
∫ ∞

0
dke

P
a,b
l


(ke,ξ )

k2 − 2k · ε + �[keξ (l0 + 1),ξ ] + σ
+

∞∑
n=l0+2

P
a,b
l


(− i
n
,ξ
)

k2 − 2k · ε + �
[− i

n
ξ (l0 + 1),ξ

]+ σ

∣∣∣∣
ξ=1− k0

E

, (46)

where ε is given by Eq. (10). For the continuum part of the spectrum

−�[keξ (l0 + 1),ξ ]

m2
= (Zα)2

{
[(l0 + 1)ξke]2 + 1 + (ξ − 1)

2(l0 + 1)

2 + l0

}
(47)

and

P
a,b
l


(ke,ξ ) = 〈l0 + 1,l0|ra|ke,l
〉ξ (〈l0 + 1,l0|rb|ke,l
〉ξ )∗, (48)

where [20]

〈l0 + 1,l0|ra|ke,l
〉ξ = Cl0+1,l0
(l
 + l0 + a + 3)ξ 1/2(l0 + 1)l0+a+2 2l



(2l
 + 2)

√
2

π

∣∣∣∣

(

l
 + 1 − i

ke

)∣∣∣∣
× exp

( π
2 − 2 arctan keξ (l0 + 1)

ke

)(
ξ (l0 + 1)ke

1 − iξke(l0 + 1)

)l
+1

[1 + iξke(l0 + 1)]−(l0+a+2)

×F

(
− i

ke

+ l
 + 1,l
 − l0 − a − 1,2l
 + 2,− 2ikeξ (l0 + 1)

1 − ikeξ (l0 + 1)

)
. (49)

Likewise, for the discrete part of the spectrum

−�
[− i

n
ξ (l0 + 1),ξ

]
m2

= (Zα)2

{
− [(l0 + 1)ξ ]2

n2
+ 1 + (ξ − 1)

2(l0 + 1)

2 + l0

}
(50)

and

P
a,b
l


(
− i

n
,ξ

)
= 〈l0 + 1,l0|ra|n,l
〉ξ (〈l0 + 1,l0|rb|n,l
〉ξ )∗, (51)

where [20]

〈l0 + 1,l0|ra|n,l
〉ξ = Cl0+1,l0
(l
 + l0 + a + 3)Cn,l
 ξ
(2l
+3)/2

(
1

l0 + 1
+ ξ

n

)−(l
+l0+a+3)

×F

(
−n + l
 + 1,l
 + l0 + a + 3,2l
 + 2,

2ξ/n

1/(l0 + 1) + ξ/n

)
. (52)

The normalization constant for the discrete part of the spectrum is

Cn,l
 = 2

n2

√

(n + l
 + 1)


(n − l
)

(
2
n

)l


(2l
 + 2)

. (53)

C. Expansion in time components

The expansion in time component of (	 − ε) is now obtained by expanding the right member of Eq. (46) in powers of k0,∫ ∞

0
dke

P
a,b
l


(ke,ξ )

k2 − 2k · ε + �[keξ (l0 + 1),ξ ] + σ

∣∣∣∣
ξ=1−(k0/E)

=
∞∑
t=0

1

2t t!

(−2k0

E

)t
∂ t

∂ξ t

∫ ∞

0
dke

P
a,b
l


(ke,ξ )

k2 − 2k · ε + �[keξ (l0 + 1),ξ ] + σ

∣∣∣∣
ξ=1

(54)

and analogously for the discrete part.

D. Integration over four-momentum of virtual photon

The integration over four-momentum of the virtual photon yields (see Appendix D)

(−4)
∫ �2

0
dλ

∫
d4kF

(
1, k0

m

)
(k2 − λ)2

(2ω)2v(−2k0)t

k2 − 2kε + � + σ
= (−1)v(2v + 1)!!�2v,t

4,0 (� + σ )m2v+t , (55)
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where

�
2v,t
4,0 (� + σ ) = 2v(−1)t

∂ t

∂(ε0)t

∫ 1

0
dy yv(1,yε0)

∫ −(�+σ )/m2

0
dv+tw ln

(
ε2

0y + w

y

) ∣∣∣∣
ε0=1

(56)

and

(−4)
∫ �2

0
dλ

∫
d4kF

ω
m

(k2 − λ)2

(2ω)2v−1(−2k0)t

k2 − 2kε + � + σ
= (−1)v(2v + 1)!!

1

2
�

2v,t
4 (� + σ )m2v−1+t . (57)

The symbol dnw in Eq. (56) henceforth stands for n iterated integration over the parameter w:∫ a

0
dnw f (w) =

∫ a

0
dwn · · ·

∫ w3

0
dw2

∫ w2

0
dw1 f (w1) = 1

(n − 1)!

∫ a

0
dw(a − w)(n−1)f (w). (58)

The contribution to the electromagnetic mass of the electron, Eq. (80) of [16], was subtracted from the left members of
Eqs. (55) and (57) and the terms proportional to negative powers of cutoff � neglected. Henceforth, m stands for the measurable
mass of the electron. This is the renormalization of the electron mass.

The insertion of Eqs. (46) and (55) into Eq. (44) yields

U4,0(v,L,l
,p,q,c) = (−1)v
(2v + 1)!!

22v
m2v

∞∑
t=0

(
m

E

)t 1

2t t!

∂t

∂ξ t

⎧⎨
⎩
∫ ∞

0
dke P

L+2q,L+2(p−q)+c

l

(ke,ξ ) �

2v,t
4,0 {�[keξ (l0 + 1),ξ ] + σ }

+
∞∑

n=l0+2

P
L+2q,L+2(p−q)+c

l


(
− i

n
,ξ

)
�

2v,t
4,0

{
�

[
− i

n
ξ (l0 + 1),ξ

]
+ σ

}⎫⎬
⎭

ξ=1

. (59)

A similar result is obtained for U1 by inserting Eqs. (46) and (57) into Eq. (45),

U1(v,L,l
,p,q) = 1

m
U4(v,L,l
,p,q,c = −1). (60)

E. Contribution of the virtual electron states with very large wave numbers

For very large electron wave numbers ke, the overlap integrals (48) behave as

P
a,b
l


(ke,ξ ) → ξ (l0 + 1)P a,b
l
,∞[keξ (l0 + 1),ξ ], (61)

where

P
a,b
l
,∞[keξ (l0 + 1),ξ ] = A

a,b
l


B
a,b
l
,∞[keξ (l0 + 1)]

(
1 + c1,0 + c1,1ξ

keξ (l0 + 1)
+ c2,0 + c2,1ξ + c2,2ξ

2[
ke(l0 + 1)ξ

]2 + · · ·
)

, (62)

A
a,b
l


= ∣∣Cl0+1,l0

∣∣2 2

π

(

(l
 + 1)


(2l
 + 2)

)2

22l
 (l0 + 1)2l0+a+b+3
(l
 + l0 + a + 3)
(l
 + l0 + b + 3)

×F (l
 + 1,l
 − l0 − a − 1,2l
 + 2,2)F ∗(l
 + 1,l
 − l0 − b − 1,2l
 + 2,2) (63)

and

B
a,b
l
,∞[ke(l0 + 1)ξ ] = [1 + iξ (l0 + 1)ke]−a−l0−2[1 − iξ (l0 + 1)ke]−b−l0−2 [ke(l0 + 1)ξ ]2l
+2

{1 + [ke(l0 + 1)ξ ]2}l
+1
. (64)

To obtain the expansion (62) from Eqs. (48) and (49) one needs an asymptotic expansion of the hypergeometric functions
appearing in Eq. (49). This is described in Appendix C. For actual evaluation we write∫ ∞

0
dke P

a,b
l (ke,ξ )�2v,t

4,0 {�[keξ (l0 + 1),ξ ] + σ }

=
∫ ∞

0
dke

[
P

a,b
l (ke,ξ ) − ξ (l0 + 1)P a,b

l,∞(keξ (l0 + 1),ξ )
]
�

2v,t
4,0 {�[keξ (l0 + 1),ξ ] + σ }

+
∫ ∞

0
dke P

a,b
l,∞(ke,ξ )�2v,t

4,0 [�(ke,ξ ) + σ ], (65)

where in the second term on the right member we made the substitution

ke → ke

ξ (l0 + 1)
. (66)
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This is advantageous for the following reason. The integral
over the electron wave numbers ke on the right member
of Eq. (59) is convergent. However, before we carry out a
numerical integration over the electron wave numbers ke,
we have to differentiate it with respect to ξ . In general
for t > 1 we then get a convergent integral as a sum of
divergent integrals. Since we have to integrate numerically,
this has to be avoided. Therefore, we take as many terms in

the asymptotic expansion in Eq. (62) as to get the integral
in the first term on the right member of Eq. (65) after
differentiation with respect to ξ as a sum of convergent
integrals. When we differentiate with respect to ξ , the
second term on the right member of Eq. (65) also yields
a convergent integral; insertion of the second term on the
right member of Eq. (65) into Eqs. (42) and (59) leads to the
expression

m2v(EZα)−2(p+L) 1

t!

∂t

∂ξ t

∫ ∞

0
dke P

L+2q,L+2(p−q)+c

l
,∞ (ke,ξ )
dv−p−L

dσ v−p−L
�

2v,t
4,0

∣∣∣∣
σ=0

∣∣∣∣
ξ=1

. (67)

As shown in detail in Appendix E,

(67) � (Zα)2t−[t]ct,tA
L+2q,L+2(p−q)+c

l


(
E

m

)−2(p+L)

([t] − 1)!!2v+[t]/2
∫ 1

0
dy yv+[t]/2(1,y)

∫ 1

0
dL+p+t−[t]/2w

×
∫ ∞

0
dke

(
1 + k2

e

)t−[t]/2

kt
e

(
k2
e

1 + k2
e

)l
+1 (
1 + k2

e

)−l0−2
(1 − ike)−c ln

[
y + w(Zα)2(k2

e + 1
)]+ · · · , (68)

where

[t] = t ± (−1)t − 1

2
. (69)

Here + and − signs hold for �
2v,t
4 and �

2v,t
0 , respectively.

Recall that c is equal to 0 or −1 and it is present just
for the terms with �

2v,t
4 . We are thus coming to the im-

portant conclusion that when integrating over the electron
wave numbers ke, the integrand never behaves for large ke

worse than k−2l0−3
e ln ke. Thus, the integrals converge rather

fast.
A natural question then arises as to why we do not

make the substitution (66) already in Eq. (59). The reason
is that if we look at Eq. (49), we see that differentiation of
P

a,b
l


(ke,ξ ) with respect to ξ involves, among other things, also
differentiation of the hypergeometric functions F (− i

ke
+ l
 +

1,l
 − l0 − a − 1,2l
 + 2, − 2ikeξ (l0+1)
1−ikeξ (l0+1) ). This is easily done.

On the other hand, after the substitution (66) we would need
to differentiate with respect to ξ the hypergeometric functions
F (− iξ (l0+1)

ke
+ l
 + 1,l
 − l0 − a − 1,2l
 + 2, − 2ike

1−ike
). This

is a much more difficult task even for modern computer
languages for symbolic calculation.

The difficulty in evaluating the integrals over ke on the right
member of Eq. (59) has been noticed already in [16]. In fact
it was incorrectly concluded that these integrals diverge. The
solution proposed there follows. Instead of the partition (11),
consider the partition

z = k2, H̃0 = 2k · ε − H, λH̃1 = −2k · (	 − ε), (70)

where

ε =
(

H + m2

E
,0,0,0

)
. (71)

The solution proposed here is, however, significantly better
than the one proposed in [16]. First, the generation of the
individual terms of the expansion based on the partition (70)
is somewhat more involved than the one based on the
partition (11). Second, and more importantly, the convergence

of the expansion based on the partition (11) is much faster than
the one based on the partition (70).

F. Formula for �E

As in the previous papers [16,18], we order the individual
terms according to naive counting of powers of Zα:

�E = m
α

π
(Zα)4

∞∑
v=1

Fv (72)

−2(Zα)4Fv =
v∑

t=0

〈
γ0G

2(v−t),t
4 + γμG

2(v−t−1),t
4

(	 − ε)μ
m

+ γ0G
2(v−t),t
0 + γ0G

2(v−t)−1,t
i γiγ0

+
(

−1

2

)
γμ

[
G

2(v−t−3),t
0 ,γ0γμ

]〉
. (73)

This naive counting follows from transition (22) from natural
to atomic units: each additional power of spatial and time
components of 	 − ε contributes the additional factors of Zα

and (Zα)2, respectively. As already discussed in the previous
papers [16,18], this counting holds only in the low-energy
region. Nonetheless, the expansion in time components of
	 − ε produces at least the factor Zα in the high-energy
region [see Eq. (68)]. As discussed further, the expansion in
space components of 	 − ε leads in the high-energy region to
convergent series [see Eq. (78) below].

The spinor-angular part of the integration of 〈γμG4(	 −
ε)μ〉/m and 〈γ0Giγiγ0〉 is by the factor (Zα)2 smaller than the
spinor-angular part of the integration of 〈γ0G4,0〉. Likewise,
the spinor-angular part of 〈(− 1

2 )γμ[G0,γ0γμ]〉 is by the factor
(Zα)6 smaller. This is the reason for a shift of the first
superscript on G’s in the second, fourth, and fifth terms on
the right member of Eq. (73).
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G. Series in Zα

It is well known that the self-energy has expansion in
powers of Zα,

�E = mα(Zα)4

πN3s3
F (Zα,N,lj ), (74)

where [7–11]

F (Zα) = A41 ln s(Zα)−2 + A40 + A50(Zα)

+ (Zα)2[A62 ln2 s(Zα)−2 + A61 ln s(Zα)−2 +A60]

+ (Zα)3[ln s(Zα)−2A71 + A70] + · · · , (75)

and s = 1 in the nonrecoil limit. Setting s = 1 + me/mn,
where me/mn is a ratio of the electron and nuclear masses,
one takes into account the dominant part of the nuclear recoil
effect [1,2]. The coefficients A = A(N,lj ) are summarized,
e.g., in [1,13]. With the exception of the coefficients A60

and A71 the coefficients were calculated more than once. The
analytic form of the coefficient A70 is unknown and even the
form of the series beyond the α(Zα)7 term is not known.

A question then arises as to the relation of the series (72)
to (75). As argued in [16–18] the coefficients A41, A40, and
A62 are contained in F1 + F2 and the coefficient A61 and a
sufficiently great part of the A60 coefficient is contained in
F1 + F2 + F3. (See Tables 2 and 3 of [18] for the precise
meaning of “sufficiently great part.”) The coefficient A50 is
contained in the complete sum (72). This coefficient is entirely
determined by the electron virtual states with very high wave
numbers ke and short wavelengths of the virtual photon. It is
for these states that the assumption underlying the RME breaks
down. Fortunately, as shown in detail in Appendix A, one can
always rearrange the appropriate expression for these states in
such a way that the electron can be in these states treated as
free. Writing

A50 =
∞∑

v=1

A
(v)
50 , (76)

where A
(v)
50 is the part of the A50 coefficient contained in Fv

one obtains (see Appendix A)

A
(v)
50

= −23 

(

1
2

)


(
v − 5

2

)
(16v4 − 32v3 + 296v2 + 8v − 267)

π
(v)(2v + 5)(2v + 3)(2v + 1)2(2v − 3)
.

(77)

This result implicitly appeared already in [18]. However, the
formulas given there are so complicated that the dependence
of A

(v)
50 on v is rather obscured. For large v Eq. (77) behaves as

A
(v)
50 � − 4

π1/2
v−7/2. (78)

The complete coefficient A50 is [7–10]

A50 = 4π

(
139

128
− ln 2

2

)
. (79)

For the self-energy function F (Zα), Eq. (74), we write

F (Zα) = (Zα)A50 +
∞∑

v=1

Sv, (80)

where

Sv = Fv − (Zα)A(v)
50 . (81)

IV. RESULTS AND DISCUSSION

A. Computational details

Up to the summation and integration over discrete and
continuous parts of the hydrogen spectrum the calculation is
analytic. We wrote two independent routines in MAPLE and
MATHEMATICA. For each expansion of the functions G in 2v

spatial and t time components of (	 − ε) the calculation was
done in symbolic form up to the very end. Thus, there is just one
summation and one integration performed for given v and t .

For the discrete part of the spectrum we took the partial
sums up to n = 35 and then used Richardson extrapolation
(see, e.g., [21]) on the interval of n from 20 to 35. For the
continuous part of the spectrum we broke the interval ke ∈
(0,∞) into several regions, much in the same way as in [16].
As discussed in [16], the functions � became unstable for
very small and very large values of ke. In these regions the
asymptotic expansions of � in � and 1/� have to be used.
The form of the functions � used in the actual calculation is
given in the Appendix D.

B. Truncation of the expansion

There are some considerable simplifications when evaluat-
ing the terms (73) of the series (72) for light hydrogenlike
ions. First, as noted in the previous papers [16,17] the
contribution of the terms 〈γμ[G0,γ0γμ]〉 is for the S states
exceedingly small (see the first three rows of Table I).
Second, the contribution of the higher temporal multipoles
is highly suppressed. More precisely, the contribution of the
terms 〈γ0G

2v,t
4,0 〉 for t > 3 and 〈γ0G

2v−1,t
i γiγ0〉, 〈γμG

2v,t
4 (	 −

ε)μ〉/m for t > 2 is very small. In Table I the contributions of
the first two spatial multipoles for 〈γ0G

2v,4
4,0 〉, 〈γ0G

2v−1,3
i γiγ0〉

and 〈γμG
2v,3
4 (	 − ε)μ〉/m are displayed. Third, as noted in

[16] the terms 〈γμG
2v,t
4 O−1

μ 〉 are by the factor of (Zα)2 smaller

than the terms 〈γμG
2v,t
4 O0

μ〉. For given t and sufficiently

large v the contribution of the terms 〈γμG
2v,t
4 O−1

μ 〉 becomes

completely negligible compared to that of 〈γμG
2v,t
4 O0

μ〉. In par-

ticular, the values 〈γμG
2v,3
4 (	 − ε)μ〉/m given in Table I were

obtained by omitting the terms 〈γμG
2v,3
4 O−1

μ 〉 completely.
Taking into account the above simplifications, instead of

Eq. (73) we considered

−2(Zα)4Fv �
〈
γ0

T∑
t=0

(
G

2(v−t),t
4 + G

2(v−t),t
0

)

+
T −1∑
t=0

(
γμG

2(v−t−1),t
4

(	 − ε)μ
m

+ γ0G
2(v−t)−1,t
i γiγ0

)〉
, (82)

where T = 3. The convergence of the series (80) is displayed
in Table III. For the complete self-energy function F we
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TABLE I. Some of the smaller contributions to Eq. (73) justifying the neglect of the terms (− 1
2 )〈γμ[G2v,t

0 ,γ0γμ]〉 and the terms with higher
number of time components. The contributions are multiplied by the factor [−2(Zα)4]−1.

Term Z = 1 Z = 5 Z = 10 Z = 20(− 1
2

) 〈
γμ

[
G

0,0
0 ,γ0γμ

]〉
0.790 × 10−7 0.812 × 10−5 0.547 × 10−4 0.340 × 10−3(− 1

2

) 〈
γμ

[
G

2,0
0 ,γ0γμ

]〉 −0.697 × 10−8 −0.588 × 10−6 −0.268 × 10−5 0.454 × 10−6(− 1
2

) 〈
γμ

[
G

0,1
0 ,γ0γμ

]〉 −0.27 × 10−9 −0.143 × 10−6 −0.187 × 10−5 −0.211 × 10−4〈
γμG

0,3
4 (	 − ε)μ

〉 −0.18 × 10−9 −0.694 × 10−6 −0.917 × 10−5 −0.836 × 10−4〈
γμG

2,3
4 (	 − ε)μ

〉 −0.483 × 10−7 −0.174 × 10−5 −0.361 × 10−4〈
γ0G

1,3
i γiγ0

〉 −0.180 × 10−7 −0.542 × 10−5 −0.547 × 10−4 −0.489 × 10−3〈
γ0G

3,3
i γiγ0

〉
0.5 × 10−10 −0.106 × 10−6 −0.339 × 10−5 −0.774 × 10−4〈

γ0G
0,4
0

〉
0.691 × 10−8 0.249 × 10−5 0.285 × 10−4 0.304 × 10−3〈

γ0G
2,4
0

〉 −0.257 × 10−9 −0.102 × 10−6 −0.120 × 10−5 −0.667 × 10−5〈
γ0G

0,4
4

〉 −0.248 × 10−7 −0.651 × 10−5 −0.600 × 10−4 −0.480 × 10−3〈
γ0G

2,4
4

〉
0.70 × 10−9 0.177 × 10−6 0.354 × 10−6 −0.281 × 10−4

write

F (Zα) = A50(Zα) +
V∑

v=1

Sv + Frem + Fsmall. (83)

The coefficients Sv are calculated from Eq. (81), where Fv are
taken from Eq. (82). Fsmall is the contribution of smaller terms
not included in Eq. (82). Their contribution is estimated by
summing the terms displayed in Table I. V is the number of
explicitly calculated terms (81). Frem stands for the remainder
of the series

(−2)(Zα)4Frem =
∞∑

v=V +1

Sv. (84)

It is seen from Table II that with increasing v the ratios Sv/Sv−1

approach the ratios A
(v)
50 /A

(v−1)
50 . For v > V this offers the

possibility to estimate the remainder of the series by replacing
the ratios Sv/Sv−1 by the ratios A

(v)
50 /A

(v−1)
50 ; then

Frem � SV

A
(V )
50

∞∑
v=V +1

A
(v)
50 = SV

A
(V )
50

(
A50 −

V∑
v=1

A
(v)
50

)
. (85)

It is reassuring that this appears also for higher nuclear
charges: though the coefficients Sv differ for different Z in
the magnitude significantly, their ratios tend to be very close
to each other (compare Tables II and III).

Table IV displays preliminary results obtained by means
of series (72) for higher nuclear charges Z > 20. Instead
of evaluating the full expression (73), we again made the

approximation (82), where we took T = 4. To this we added

(−2)(Zα)4Fspin =
(

−1

2

) 1∑
v=0

v∑
t=0

〈
γμ

[
G

2(v−t),t
0 ,γ0γμ

]〉
. (86)

Further we made an approximation 〈γμG
2v,3
4 (	 − ε)μ〉/m �

〈γμG
2v,3
4 O0

μ〉. Furthermore, the terms 〈γ0G
2v,4
0,4 〉 with v > 1

were omitted for Z = 30 and with v > 2 for Z = 40; the
terms 〈γμG

6,3
4 O0

μ〉 and 〈γ0G
7,3
i γiγ0〉 were omitted for Z = 30

and Z = 40. Some of these approximations could not be
completely justified. Thus, the agreement between RME and
PWE for high nuclear charges, Z > 60, is likely to result
from cancellation of the uncalculated terms. Further, the error
committed by the free-particle approximation in the electron
virtual states is too large for higher nuclear charges. For
example, for Z = 30 the free-particle approximation yields
for the terms 〈γ0G

2v,2
4 〉 typically just about 10% of the whole

effect; compare this with the results for Z = 1 in Table V.
Therefore, for Z > 20 we did not try to supplement RME by
free-particle result.

C. Discussion

The result for hydrogen (Z = 1) is of greatest interest.
The error of the present calculation due to the sum of
uncalculated contributions and the rounding errors of the
calculated ones for hydrogen is estimated to be 0.7 × 10−8.
The only other calculation of comparable accuracy to the
one presented here is given in [13]. In that paper, several
millions of partial waves were considered. For each partial
wave there is a three-dimensional integration to be performed

TABLE II. Comparison of the ratios A
(v)
50 /A

(v−1)
50 and Sv/Sv−1 for different nuclear charges.

v A
(v)
50 /A

(v−1)
50 Z = 1 Z = 5 Z = 10 Z = 20

5 0.2645 0.1907 0.1958 0.1989 0.2078
6 0.3921 0.3466 0.3481 0.3431 0.3225
7 0.4868 0.4625 0.4643 0.4570 0.4265
8 0.5577 0.5404 0.5404 0.5351
9 0.6119 0.6110 0.6057
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TABLE III. The convergence of RME with the infinite order summation of α(Zα)5 terms. The terms Sv are calculated from Eq. (81). “Lead”
stands for the sum S1 + S2 + A50(Zα). “rem” is the estimate of the remainder of the series obtained from Eq. (85). “small” is the sum of the
contributions displayed in Table I. “other” is the result of PWE taken from [13] for Z = 1 and Z = 5 and from [12] for Z = 10 and Z = 20.
“r.d.” is the relative difference between “Total” and “Other.”

Z = 1 Z = 5 Z = 10 Z = 20

Lead 10.315870916 6.238382304 4.615985057 3.143785475

S3 0.891183 × 10−3 0.1252179 × 10−2 0.3552640 × 10−2 0.9320166 × 10−1

S4 0.23509 × 10−4 0.537629 × 10−3 0.1992039 × 10−2 0.720546 × 10−2

S5 0.4484 × 10−5 0.105272 × 10−3 0.396161 × 10−3 0.149713 × 10−2

S6 0.1554 × 10−5 0.36643 × 10−4 0.135912 × 10−3 0.48289 × 10−3

S7 0.719 × 10−6 0.17011 × 10−4 0.62117 × 10−4 0.20594 × 10−3

S8 0.388 × 10−6 0.9192 × 10−5 0.33240 × 10−4

S9 0.237 × 10−6 0.5568 × 10−5

sum 10.316792992 6.251615412 4.654130926 3.246378550
rem 0.648 × 10−6 0.1519 × 10−4 0.7583 × 10−4 0.37690 × 10−3

small 0.36 × 10−7 −0.283 × 10−5 −0.5123 × 10−4 −0.57784 × 10−3

Total 10.316793675(7) 6.2516278(7) 4.654156(9) 3.24618(9)
Other 10.316793650(1) 6.251627078(1) 4.6541622(2) 3.2462556(1)
r.d. 0.24 × 10−8 0.11 × 10−6 0.14 × 10−5 0.24 × 10−4

numerically (for details see [12,13]). These two completely
independent calculations, the present one and the one in [13]
agree with each other on the fractional level of two parts
in 109, although the difference is slightly greater than the
estimated errors of the calculations. This difference leads to
the shift of 18 Hz for the 2s-1s transition in hydrogen. This
uncertainty is smaller by the order of magnitude than the one
found in [17] for the state-dependent part of the S states.
Altogether, such an agreement between different, completely
independent approaches definitely excludes the possibility that
the discrepancy in the determination of the proton radius from
the comparison of the theory and experiment in ordinary
[1] and muonic [22] hydrogen has anything to do with the
calculation of the one-loop self-energy.

Reference [14] is an attempt to substantially reduce the
number of partial waves to be taken into account in comparison
with [13]. Nonetheless, the result obtained there for the
hydrogen atom is worse than the result of the present method
taken up to the third order, that is, by considering the terms of
the expansion (81) up to v = 3.

The relative difference between the series (75) truncated
after the α(Zα)6 term and the numerical result is three parts

in 106 even for Z = 1. This difference is significantly higher
than the current experimental accuracy [23]. In view of the
complexity of the calculation of the A60 coefficient [10], there
is no hope of achieving significantly better accuracy with the
approach based purely on the series (75). Clearly, such an
approach is not sufficient anymore. As has been pointed out
in [18], the result obtained by means of the series (75) for low
Z is reproduced by the present method taken up to the third
order.

The results obtained by the present method up to Z = 20
are in very good agreement with the results obtained by PWE
in [12,13]. This agreement definitely excludes the possibility
that the excellent agreement between RME and PWE found
for Z = 1 is accidental. Understandably, the convergence of
RME slows down with the increasing nuclear charge. Also,
the importance of higher temporal multipoles rises with an
increasing nuclear charge (see Tables I and III).

The results for nuclear charges Z > 20 displayed in
Table IV illustrate the remarkable fact that although RME
was primarily aimed to obtain accurate results for light
hydrogenlike ions, its domain of applicability is not restricted
to weak external fields (see also discussion in [16]). However,

TABLE IV. The convergence of RME for the hydrogenlike atoms with higher nuclear charges. “Lead” stands for the sum F1 + F2. “Spin”
is given by Eq. (86). “Other” is the result of PWE taken from [12]. “r.d.” is the relative difference between “Total” and “Other.”

Z 30 40 50 60 70 80 90

Lead 2.572289 2.141568 1.85198 1.6476 1.4999 1.3925 1.3145
F3 −0.014237 −0.004437 0.00691 0.0194 0.0332 0.0481 0.0634
F4 −0.003527 −0.000598 0.00457 0.0129 0.0261 0.0471 0.0813
F5 −0.001720 −0.001668 −0.00145 −0.0011 −0.0004 −0.0001 −0.0017
F6 −0.000793 −0.001006 −0.00115
F7 −0.000413 −0.000008

Spin 0.000927 0.001999 0.00373 0.0064 0.0107 0.0177 0.0299
Total 2.5525(5) 2.1358(6) 1.8646(10) 1.6853(30) 1.5694(50) 1.5053(60) 1.4874(100)
Other 2.5520151(1) 2.1352284(1) 1.8642743(2) 1.6838358(3) 1.5674075(4) 1.5027775(4) 1.4875419(4)
r.d. 0.20 × 10−3 0.29 × 10−3 0.17 × 10−3 0.89 × 10−3 0.12 × 10−2 0.17 × 10−2 0.9 × 10−4
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J. ZAMASTIL AND V. PATKÓŠ PHYSICAL REVIEW A 88, 032501 (2013)

TABLE V. The comparison of the exact calculation, nonrelativistic approximation, and free-particle approximation contributing at the order

(Zα)5 for the terms 〈γ0G
2v,2
4 〉. The contributions are multiplied by −[2(Zα)4]−1; Bv = 24
( 3

2 )(−1)v (v−1)


( 7
2 −v)
(v)(v− 3

2 )(v− 1
2 )(v+ 1

2 )
[see Eq. (A80)]. The relative

error of the nonrelativistic and free-particle approximations with respect to the exact result are displayed in parentheses in the third and fourth
columns, respectively.

v
〈
γ0G

2v,2
4

〉 〈
G

2v,2
4

〉
0

(Zα)5Bv

1 0.294962 × 10−2 0.294948 × 10−2 (0.47 × 10−4) 0.222396 × 10−2 (0.25)
2 0.230441 × 10−3 0.230090 × 10−3 (0.15 × 10−2) 0.185330 × 10−3 (0.20)
3 0.514669 × 10−4 0.514055 × 10−4 (0.12 × 10−2) 0.421204 × 10−4 (0.18)
4 0.172584 × 10−4 0.172376 × 10−4 (0.12 × 10−2) 0.141751 × 10−4 (0.18)

to obtain the results of similar accuracy as that in [12],
further refinement of the present method of calculation of the
contributions of higher temporal multipoles for high nuclear
charges is needed.

V. CONCLUSION

The presented method has a number of advantages. Once
the renormalization of the electron mass is made, all the
integrals over either photon or electron variables are finite
both at the lower and upper bounds of the integrations. Thus,
no separation of any of the integrations is necessary. The
terms of RME are generated very easily. In fact, by means
of computer languages for symbolic calculation like MAPLE or
MATHEMATICA they can be generated automatically. The only
integrals to be performed numerically are one-dimensional
integrals over the electron wave numbers of the continuous
part of the spectrum. These integrals converge very fast. The
contribution of the terms with very large wave numbers can be
precisely summed up to the infinite order.

The most difficult part of the computation is numerical
integration, more precisely, the evaluation of the pertinent
hypergeometric functions. This requires nearly all computer
time needed for calculation of the terms of the expansion (72).
Further, we encountered difficulties when calculating higher
spatial multipoles, v > 9, for low temporal multipoles, t <

4, and generally the contributions from higher temporal
multipoles, t � 4. This is probably the consequence of severe
numerical cancellations. Thus, there is still room for further
improvement of the method. Until the puzzle of the proton
radius is resolved, there is no need for further refinement of
the present method for light hydrogenlike ions. Otherwise,
such refinement could also become desirable when the precise
independent check of the results obtained in [12] for higher
nuclear charges is sought.

There is a number of other problems the present method
can be extended to. These include calculations of the two-
loop corrections [24–26], radiative recoil corrections [27], self-
energy correction to hyperfine splitting and g-factor of a bound

electron [28], radiation corrections to transitions amplitudes,
both ordinary [29] and parity violating [30], and so on.
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APPENDIX A: CONTRIBUTION OF VIRTUAL STATES
WITH VERY LARGE WAVE NUMBERS FOR LOW

NUCLEAR CHARGES

1. Nonrelativistic approximation

The contribution of the terms α(Zα)5 is determined by the
double limit of small Zα and large ke. The former is obtained
by taking a nonrelativistic approximation to the spinor-angular
part of the integration and by the replacement of l
 and l0 in
the radial integrals 〈l0 + 1,l0|ra|ke,l
〉〈ke,l
|rb|l0 + 1,l0〉 by
their nonrelativistic values. For small Zα the quantum number
|
| approaches j + 1

2 [see Eq. (15)]. Then l
 � δρ,1(j − 1
2 ) +

δρ,−1(j + 1
2 ) [see Eq. (20)]. With this replacement the leading

terms of the asymptotic expansion (62) generally vanish and
one has to consider the subleading terms in Eq. (62). Thus, to
obtain the desired double limit is far from trivial. In [18] we
found this limit to be

〈γμG4εμ〉 �
〈
G4 + (Zα)2

4
Ḡ4

〉
0

, (A1)

〈γμG4(	 − ε)μ〉
m

�
〈
− 1

2m2
Pi(G4 + G̃4)Pi + G̃4

	0 − m

m

〉
0

,

(A2)

−1

2
〈γμG0γ0γμ〉 �

〈
G0 + (Zα)2

4
Ḡ0

〉
0

, (A3)

and

1

2
〈γμGiγiγμ〉 �

〈
− 1

2m
{Gi,Pi}

〉
0

, (A4)

where G̃4 and Ḡ4,0 are given by Eqs. (23) and (D.17) of [18],

G̃4 = (−4)
∫ �2

0
dλ

∫
d4kF

(k2 − λ)2

1

k2 − 2k · 	 + H

1

1 − k0
m

(A5)
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and

〈
Ḡ4,0

〉
0 = (−4)

∫ �2

0
dλ

∫
d4kF (1,k0/m)

(k2 − λ)2

∞∑
L=0

〈
(L + 1)2 − 1

L + 1
jL+1(ωR)

1

k2 − 2k0	0 + HL + ω2
jL+1(ωR)

+ L2 − 1

L
jL−1(ωR)

1

k2 − 2k0	0 + HL + ω2
jL−1(ωR)

〉
0

, (A6)

respectively. Furthermore,

〈O〉0 = 〈ψ0|O|ψ0〉, (A7)

where ψ0 is the Schrödinger wave function of the hydrogen,

ψ0(�r) = 〈�n|0,0〉〈r|1,0〉, ψ0(μ�r) = 2μ3/2

√
4π

e−μr (A8)

and Hamilton operator H is replaced by the nonrelativistic
limit H0,

H0 = 2m(	0 − m) − �P 2. (A9)

Thus, the G’s appearing on the right members of Eqs. (A1)–
(A4) differ from those appearing on the left members by
the replacement of H by H0 in Eq. (7). Also, the radial
Hamiltonians HL in Eq. (A6) read

HL = 2m(	0 − m) −
(

P 2
R − L(L + 1)

R2

)
. (A10)

By inserting these approximations into Eq. (6), we obtain

〈O〉 � −m
α

2π

〈
G4 + (Zα)2

4
Ḡ4 − 1

2m2
Pi(G4 + G̃4)Pi

+ G̃4
	0 − m

m
+ G0 + (Zα)2

4
Ḡ0 − 1

2m
{Gi,Pi}

〉
0

.

(A11)

2. The matrix elements of the operators between
the ground and continuum states for very large electron

and photon wave numbers

Using the method described in [20] one gets∫
dV

r
(ψ−

�p )∗e−i �q·�rψ0(μ�r)

= μ3/2

√
2

π2
eπ/2p

(
(�q + �p)2 + μ2

(μ − ip)2 + q2

)i/p 

(
1 − i

p

)
μ2 + (�q + �p)2

,

(A12)

where ψ−
�p is the solution of the Schrödinger equation for

hydrogen atom that behaves at infinity as the plane wave with
momentum �p [20]. In the nonrelativistic limit the electron
energy E in Eq. (22) is replaced by the electron mass m. Then
�p is related to �P by

�P = (mZα) �p. (A13)

The eigenvalues of the Hamilton operator (A9) in the basis of
the states ψ−

�p are

H0 = 2m(E − m) − �P 2. (A14)

From the integral (A12) one obtains additional integrals by
parametric differentiation, e.g.,∫

dV ni(ψ
−
�p )∗e−i �q·�rψ0(μ�r)

= i
∂

∂qi

∫
dV

r
(ψ−

�p )∗e−i �q·�rψ0(μ�r), (A15)∫
dV (ψ−

�p )∗e−i �q·�rψ0(μ�r)

= −μ3/2 ∂

∂μ

∫
dV

r
(ψ−

�p )∗e−i �q·�rψ0(μ�r)μ−3/2, (A16)

and so on. For large p and q one has∣∣∣∣
∫

dV

r
(ψ−

�p )∗e−i �q·�rψ0(μ�r)

∣∣∣∣
2

→ 1

(2π )3

∣∣∣∣
∫

dV

r
e−i �p·�re−i �q·�rψ0(μ�r)

∣∣∣∣
2

→ 2

π2

μ3

μ2 + (�q + �p)2
, (A17)∣∣∣∣

∫
dV ni(ψ

−
�p )∗e−i �q·�rψ0(μ�r)

∣∣∣∣
2

→ 1

(2π )3

∣∣∣∣
∫

dV nie
−i �p·�re−i �q·�rψ0(μ�r)

∣∣∣∣
2

→ 23

π2

μ3

μ2 + (�q + �p)2
, (A18)

and

∣∣∣∣
∫

dV (ψ−
�p )∗e−i �q·�rψ0(�r)

∣∣∣∣
2

� 23μ3

π2

∣∣∣∣1 − ( �p + �q)2

( �p2 − �q2)

∣∣∣∣
2 1

( �p + �q)4 . (A19)

Now, it is important to note that while Eqs. (A17) and (A18)
depend for large p and q only on the sum �p + �q and the exact
wave function of the hydrogen ψ−

�p can be for large p and q

replaced by free-particle wave function exp{−i �p · �r}/(2π )3/2,
this is clearly not true for Eq. (A19). This is not surprising at
all. The states ψ−

�p and ψ0 are orthogonal for arbitrarily large
p. Thus, for q = 0 the integral (A19) has to be zero for all p.
This clearly cannot be achieved when the exact wave function
is replaced by the free-particle wave function. Fortunately,
when calculating the contribution of the order α(Zα)5, we do
not have to deal with the integrals (A16) at all. By means of
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identities〈
1

k2 − 2k · 	 + H
(	 − ε)μ

〉
= 1

k2 − 2k · ε
〈(	 − ε)μ〉 + 1

k2 − 2k.ε

〈
2k · (	 − ε)

1

k2 − 2k · 	 + H
(	 − ε)μ

〉
, (A20)

〈
1

k2 − 2k · 	 + H

〉
= 1

k2 − 2k · ε
〈1〉 + 1

(k2 − 2k · ε)2
〈2k · (	 − ε)〉

+ 1

(k2 − 2k · ε)2

〈
2k · (	 − ε)

1

k2 − 2k · 	 + H
2k · (	 − ε)

〉
(A21)

we always transform the integrals (A16) to the integrals (A12) or (A15). These identities follow from the identity

1

k2 − 2k · 	 + H
= 1

k2 − 2k · ε + H
+ 1

k2 − 2k · ε + H
2k · (	 − ε)

1

k2 − 2k · 	 + H

= 1

k2 − 2k · ε + H
+ 1

k2 − 2k · ε + H
2k · (	 − ε)

1

k2 − 2k · ε + H

+ 1

k2 − 2k · ε + H
2k · (	 − ε)

1

k2 − 2k · 	 + H
2k · (	 − ε)

1

k2 − 2k · ε + H

and the fact that H , operating on the reference wave function, yields zero. The first term on the right member of Eq. (A20) and
the first two terms on the right member of Eq. (A21) are either removed by the renormalization of the electron mass or do not
contribute at the order α(Zα)5. Thus, they will not be considered further.

3. Elimination of explicit appearance of �0 − m

In the case of Coulomb potential, the interaction term −2k0(	0 − m) can be eliminated from the electron propagator as
follows:〈

(	 − ε)μ
1

k2 − 2k · ε + u [2k · (	 − ε) + H ]
(	 − ε)ν

〉

=
〈
(	 − ε)μei�k· �R 1

k2 − 2k · ε + u[2k0(	 − ε)0 + H + ω2]
e−i�k· �R(	 − ε)ν

〉

= ξ 2

〈
(	 − ε)μe

i�k· �R
ξ

1

k2 − 2k · ε + u[2(ξ − 1)(m2 − Em) + (ξ − 1)2(m2 − E2) + Hξ 2 + ω2]
e−i�k·( �R/ξ )(	 − ε)ν

〉
ξ

= ξ 2

〈
(	 − ε)μ

1

k2 − 2k · Pu + u�
(	 − ε)ν

〉
ξ

, (A22)

where

ξ = 1 − k0

E
, (A23)

Pu = (mε0, �Puξ ), (A24)

� = 2(ξ − 1)(m2 − Em) + (ξ − 1)2(m2 − E2) + H0ξ
2, (A25)

and

〈O〉ξ =
∫ ∫

d3�r d3�r ′ψ+
( �r

ξ

)
O(�r,�r ′)ψ

( �r ′

ξ

)
. (A26)

The first equality in Eq. (A22) follows from Eq. (13). The second equality follows from Eq. (46) where the substitution r → r/ξ

is made. The last equality follows again from Eq. (13) but this time used in the reversed way. Furthermore, in the second equality
we used an approximation

(	 − ε)0 = 	0 − m � m
(Zα)2

r
. (A27)

Using Eqs. (A17) and (A18), we can write for large P ,

(A22) → ξ 2
∫

d3 �p
〈
(	 − ε)μ

| �p〉〈 �p|
k2 − 2k · Pu + u�( �P )

(	 − ε)ν

〉
ξ

, (A28)
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where from Eqs. (A14) and (A25) we have

�( �P ) = 2(ξ − 1)(m2 − Em) + (ξ − 1)2(m2 − E2) + [2m(E − m) − �P 2]ξ 2 = − �P 2ξ 2 + ξ (Zα)2. (A29)

In the last equality we made an approximation

E

m
� 1 − (Zα)2

2
. (A30)

Armed with Eq. (A22) and Feynman parameters, we can rewrite the last terms on the right members of Eqs. (A20) and (A21):

1

k2 − 2k · ε

〈
2k · (	 − ε)

1

k2 − 2k · 	 + H
(	 − ε)μ

〉
= ξ 2

〈
(	 − ε)ν

∂

∂(Pu)ν

∫ 1

0
du

1

k2 − 2k · Pu + u�
(	 − ε)μ

〉
ξ

(A31)

and

1

(k2 − 2k · ε)2

〈
2k · (	− ε)

1

k2 − 2k · 	+ H
2k · (	− ε)

〉
= ξ 2

〈
(	 − ε)ν

∂2

∂(Pu)ν∂(Pu)μ

∫ 1

0
du

(1 − u)

k2 − 2k · Pu + u�
(	 − ε)μ

〉
ξ

.

(A32)

4. Expansion in time components

As in Eq. (54), the expansion in time component of (	 − ε) is now obtained by expanding the electron propagator in powers
of k0,

ξ 2

〈
(	 − ε)ν

1

k2 − 2k · Pu + u�
(	 − ε)μ

〉
ξ

∣∣∣∣
ξ=1−(k0/E)

=
∑

t

(−2k0

E

)t 1

2t

1

t!

∂t

∂ξ t
ξ 2

〈
(	 − ε)ν

1

k2 − 2k · Pu + u�
(	 − ε)μ

〉
ξ

∣∣∣∣
ξ=1

. (A33)

5. Integration over four-momentum of the virtual photon

As discussed in Appendix D, the integration over four-momentum of the virtual photon yields

(−4)
∫ �2

0
dλ

∫
d4kF (1,kν/m)

(k2 − λ)2

(−2k0/E)t

k2 − 2k · Pu + u�( �P )
=
(

m

E

)t ∫ 1

0
dy

∫ 0

(�2/m2)[(1−y)/y]
dt+1λ(−1)t

∂ t

∂εt
0

(
1, (Pu)ν

m
y
)

Du( �P )

∣∣∣∣∣
ε0=1

,

(A34)

where

Du( �P ) = P 2
u

m2
y − �( �P )

m2
u + λ. (A35)

By inserting Eq. (A34) into Eq. (A33) and setting E � m, we obtain

〈
(	 − ε)ρG4,ν(	 − ε)μ

〉
0 =

∞∑
t=0

∫ 1

0
dy

∫ 0

(�2/m2)[(1−y)/y]
dt+1λ(−1)t

∂ t

∂εt
0

1

2t

1

t!

∂t

∂ξ t
ξ 2

〈
(	 − ε)ρ

(
1, (Pu)ν

m
y
)

Du( �P )
(	 − ε)μ

〉
ξ

∣∣∣∣∣
ε0=ξ=1

.

(A36)

We will show in a moment that as far as the terms of the order (Zα)5 are concerned, the expression ξ 2〈(	 − ε)ρ
(1,

(Pu )ν
m

y)

Du( �P )
(	 − ε)μ〉ξ

is independent of ξ . Thus, the contribution of the order (Zα)5 is determined just by the zeroth term of the sum on the right
member of Eq. (A36).

Further, we leave out the terms contributing to the renormalization of the electron mass. The cutoff � can then be taken to the
infinity. Equation (A36) then acquires the form of

〈(	 − ε)ρG4,ν(	 − ε)μ〉0 � ξ 2
∫ 1

0
dy

∫ 0

∞
dλ

〈
(	 − ε)ρ

(
1, (Pu)ν

m
y
)

Du( �P )
(	 − ε)μ

〉
ξ

. (A37)
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Applying this equation on Eq. (A32), Eq. (A31) for μ = 0 and Eq. (A31) for μ = i, we obtain∫ 1

0
du(1 − u)

〈
(	 − ε)ν

∂2

∂(Pu)ν∂(Pu)μ
G4,0(	 − ε)μ

〉
0

= ξ 2
∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du(1 − u)

〈
(	 − ε)ν

∂2

∂(Pu)ν∂(Pu)μ

(1,ε0y)

Du

(	 − ε)μ

〉
ξ

, (A38)

1

m

∫ 1

0
du

〈
(	0 − m)

∂

∂(Pu)ν
G̃4(	 − ε)ν

〉
0

= ξ

m

∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du

〈
(	0 − m)

∂

∂(Pu)ν

1

Du

(	 − ε)ν

〉
ξ

, (A39)

and

− 1

m2

∫ 1

0
du

〈
Pi

∂

∂(Pu)ν
Gi(	 − ε)ν

〉
0

= (−1)
ξ 2

m2

∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du

〈
Pi

∂

∂(Pu)ν

(Pu)iy

Du

(	 − ε)ν

〉
ξ

, (A40)

respectively. Furthermore, for 〈Ḡ4,0〉0 given by Eq. (A6) we have found by numerology

(Zα)2

4
〈Ḡ4,0〉0 = −4ξ 2

m2

∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du(1 − u)

〈
(	0 − m)(1,yε0)

∂

∂ε2
0

1

Du

(	0 − m)

〉
ξ

. (A41)

6. Parametric differentiation

Using equations

∂

∂(Pu)i

1

Du

= (−2)(Pu)i
m2

∂

∂ε2
0

1

Du

(A42)

and

∂2

∂(Pu)i∂(Pu)j

1

Du

= (−2)δij

m2

∂

∂ε2
0

1

Du

+ 4(Pu)i(Pu)j
m4

∂2

∂
(
ε2

0

)2

1

Du

(A43)

following from Eqs. (A24) and (A35) and using further Schrödinger equation

ξ 2 �P 2ψ0

( �r
ξ

)
= ξ2m(	0 − m)ψ0

( �r
ξ

)
, (A44)

we obtain from Eq. (A38) separating explicitly the time and space components.∫ 1

0
du(1 − u)

〈
Pi

∂2

∂(Pu)i∂(Pu)j
G4,0Pj

〉
0

= ξ 2

m2

∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du(1 − u)

〈
−2Pi

∂

∂ε2
0

(1,y)

Du

Pi + 16u2(	0 − m)
∂2

∂
(
ε2

0

)2

(1,y)

Du

(	0 − m)

〉
ξ

, (A45)

2
∫ 1

0
du(1 − u)

〈
(	0 − m)

∂2

∂(Pu)0∂(Pu)i
G4,0Pi

〉
0

= ξ 2

m2

∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du(1 − u)(−8u)

〈
(	0 − m)

∂

∂ε0

[
(1,ε0y)

∂

∂ε2
0

1

Du

]
(	0 − m)

〉
ξ

, (A46)

and ∫ 1

0
du(1 − u)

〈
(	0 − m)

∂2

∂(Pu)0∂(Pu)0
G4,0(	0 − m)

〉
0

= ξ 2

m2

∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du(1 − u)

〈
(	0 − m)

∂2

∂ε2
0

(1,ε0y)

Du

(	0 − m)

〉
ξ

. (A47)

Likewise, by inserting Eq. (A42) into Eq. (A39) and using Eq. (A44) we obtain∫ 1

0
du

1

m

〈
(	0 − m)

∂

∂(Pu)i
G̃4Pi

〉
0

= ξ

m2

∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du(−4u)

〈
(	0 − m)

∂

∂ε2
0

1

Du

(	0 − m)

〉
ξ

(A48)
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and

1

m

∫ 1

0
du

〈
(	0 − m)

∂

∂(Pu)0
G̃4(	0 − m)

〉
0

= ξ

m2

∫ 0

∞
dλ

∫ 1

0
dy

∫ 1

0
du

〈
(	0 − m)

∂

∂ε0

1

Du

(	0 − m)

〉
ξ

. (A49)

Finally, by inserting equation

∂

∂(Pu)j

(Pu)i
Du

= δij

Du

− 2(Pu)i(Pu)j
m2

∂

∂ε2
0

1

Du

(A50)

into Eq. (A40) and using Eq. (A44) we obtain

− 1

m2

∫ 1

0
du

〈
Pi

∂

∂(Pu)j
GiPj

〉
0

= ξ 2

m2

∫ 0

∞
dλ

∫ 1

0
dyy

∫ 1

0
du

〈
−Pi

1

Du

Pi + 8u2(	0 − m)
∂

∂ε2
0

1

Du

(	0 − m)

〉
ξ

(A51)

and

− 1

m2

∫ 1

0
du

〈
Pi

∂

∂(Pu)0
Gi(	0 − m)

〉
0

= − ξ 2

m2

∫ 0

∞
dλ

∫ 1

0
dy y

∫ 1

0
du 2u

〈
(	0 − m)

∂

∂ε0

1

Du

(	0 − m)

〉
ξ

. (A52)

7. Integration over three-momentum of the virtual electron

Using Eqs. (A17), (A18), and (A28) we get

ξ 2

m2

〈
(	0 − m)

1

Du

(	0 − m)

〉
ξ

→ (Zα)2

ξ

2

π2

∫
d3 �p 1

Du( �p)

1

(ξ−2 + �p2)2
(A53)

and

ξ 2

m2

〈
Pi

1

Du

Pi

〉
ξ

→ (Zα)2

ξ 3

23

π2

∫
d3 �p 1

Du( �p)

1

(ξ−2 + �p2)3
,

(A54)

where in Eq. (A53) the approximation (A27) was used. From
Eqs. (A13), (A24), (A29), and (A35) we have

Du( �p) = ε2
0y + �p2(ξZα)2u(1 − yu) + ξu(Zα)2 + λ.

(A55)

Integrating now over the three-momentum of the virtual
electron and keeping only the leading term in (Zα) leads to

(A53) → (Zα)5(−22)
[u(1 − yu)]1/2(

ε2
0y + λ

)3/2 , (A56)

(A54) → (Zα)524 [u(1 − yu)]3/2(
ε2

0y + λ
)5/2

. (A57)

Performing integrations over λ we get

∫ 0

∞
dλ

1(
ε2

0y + λ
)3/2 = −2

(
ε2

0y
)−1/2

,

(A58)∫ 0

∞
dλ

1(
ε2

0y + λ
)5/2

= −2

3

(
ε2

0y
)−3/2

.

By combining this result with Eqs. (A56) and (A57) we obtain

ξ 2

m2

∫ 0

∞
dλ

〈
(	0 − m)

1

Du

(	0 − m)

〉
ξ

→ 23[u(1 − yu)]1/2(
ε2

0y
)1/2 (Zα)5 (A59)

and

ξ 2

m2

∫ 0

∞
dλ

〈
Pi

1

Du

Pi

〉
ξ

→ −25[u(1 − yu)]3/2

3
(
ε2

0y
)3/2 (Zα)5. (A60)

As announced above, the result is independent of ξ . This a
posteriori justifies the replacement of Eq. (A36) by Eq. (A37).

8. The terms contributing at the order α(Zα)5

In the following part the superscript t on Gt
4,ν denotes the

number of expanded powers of 	0 − m.
When comparing Eqs. (7) and (A5), apparently G̃0

4 = G0
4.

Then from Eq. (A60) for u = 1 and ε0 = 1 one has

− 1

2m2

〈
Pi

(
G0

4 + G̃0
4

)
Pi

〉
0 � (Zα)5

∫ 1

0
dy

25(1 − y)3/2

3y3/2
.

(A61)

From Eqs. (A41) and (A59)

(Zα)2

4

〈
Ḡ0

4,0

〉
0 � −(Zα)525

∫ 1

0
dy

∫ 1

0
du[u(1 − yu)]1/2

× ∂

∂ε2
0

(1,y)(
ε2

0y
)1/2 . (A62)

It follows from Eqs. (A21) and (A32) that

〈
G0

4,0

〉
0 =

∫ 1

0
du(1 − u)

〈
Pi

∂2

∂(Pu)i∂(Pu)j
G4,0Pj

〉
0

, (A63)

〈
G1

4,0

〉
0 = 2

∫ 1

0
du(1 − u)

〈
(	0 − m)

∂2

∂(Pu)0∂(Pu)i
G4,0Pi

〉
0

,

(A64)
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and

〈
G2

4,0

〉
0 =

∫ 1

0
du(1 − u)

×
〈
(	0 − m)

∂2

∂(Pu)0∂(Pu)0
G4,0(	0 − m)

〉
0

.

(A65)

Inserting successively Eqs. (A45), (A46), and (A47) into
Eqs. (A63), (A64), and (A65) and using Eqs. (A59) and (A60)
one gets

(A63) � (Zα)5
∫ 1

0
dy

∫ 1

0
du

[
26

3

[u(1 − yu)]3/2

y3/2

∂

∂ε2
0

(1,y)

(ε2
0)3/2

+ 27 ∂2

∂
(
ε2

0

)2

[u(1 − uy)]1/2(1,y)(
ε2

0y
)1/2

]
, (A66)

(A64) � (Zα)5
∫ 1

0
dy

∫ 1

0
du(−26u)

∂

∂ε0
(1,ε0y)

× ∂

∂ε2
0

[u(1 − uy)]1/2(
ε2

0y
)1/2 , (A67)

and

(A65) � (Zα)5
∫ 1

0
dy

∫ 1

0
du23 ∂2

∂ε2
0

(1,ε0y)
[u(1 − uy)]1/2(

ε2
0y
)1/2 .

(A68)

Similarly, it follows from Eqs. (A20) and (A31)

1

m

〈
G̃0

4(	0 − m)
〉
0 =

∫ 1

0
du

1

m

〈
(	0 − m)

∂

∂(Pu)i
G̃4Pi

〉
0

,

(A69)

− 1

2m

〈{
G0

i ,Pi

}〉
0 = − 1

m2

∫ 1

0
du

〈
Pi

∂

∂(Pu)j
GiPj

〉
0

, (A70)

and

− 1

2m

〈{
G1

i ,Pi

}〉
0 = − 1

m2

∫ 1

0
du

〈
Pi

∂

∂(Pu)0
Gi(	0 − m)

〉
0

.

(A71)

Inserting successively Eqs. (A48), (A51), and (A52) into
Eqs. (A69), (A70), and (A71) and using further Eqs. (A60)
and (A59) yields

(A69) � −(Zα)5
∫ 1

0
dy

∫ 1

0
du 25u

∂

∂ε2
0

[u(1 − uy)]1/2(
ε2

0y
)1/2 ,

(A72)

(A70) � (Zα)5
∫ 1

0
dy

∫ 1

0
du 25y

[
1

3

[u(1 − yu)]3/2

y3/2

+ 2
∂

∂ε2
0

(1,ε0y)
[u(1 − uy)]1/2u2(

ε2
0y
)1/2

]
, (A73)

and

(A71) � −(Zα)5
∫ 1

0
dy

∫ 1

0
du 24uy

∂

∂ε0

[u(1 − uy)]1/2(
ε2

0y
)1/2 .

(A74)

The sum

− 1

2m2

〈
Pi

(
G̃t

4

)
Pi

〉
0 + 1

m

〈
G̃t

4(	0 − m)
〉
0

is not independent of ξ , but does not contribute at the order
α(Zα)5 for t > 0. The contributions of individual terms
mutually cancel out.

In Eqs. (A61) and (A66) the divergence appears at the lower
bound of the integration over the parameter y. This is merely
a consequence of the approximation (A57), where the term
ξu(Zα)2 in Eq. (A55) has been neglected. Had we included
this term, the integrals over y would be finite at the lower
bound. The integration would produce a term of the order
(Zα)4 that is now of no interest for us. Thus, the divergence
can be safely ignored.

9. Final result and its relation to RME

The remaining integrals over Feynman parameters y and u

are calculated more easily if we make a substitution

y = v

u
(A75)

from y to v. Furthermore, we write

A50 =
∑

Av
50, (A76)

where Av
50 is the contribution of the order (Zα) contained in Fv , Eq. (73). To get this contribution, we have to count

the powers of �P 2 in the equations of the previous section that are not contained in the zeroth order of RME. Such a counting is
provided by the factor yu in parentheses (1 − yu) in the second term on the right member of Eq. (A55). In the following part we
multiply it by δ. Additional powers of �P 2 are supplied by the identities (A20) and (A21).

It follows from Eqs. (A2), (A61), and (A69)

− 1

2m

〈
γμG0

4(	 − ε)μ
〉 → − (Zα)5

2
δ

(∫ 1

0
dy

25

3

(1 − δy)3/2

y3/2
+ δ24

∫ 1

0
du u

∫ u

0
dv

(1 − vδ)1/2

v1/2

)

=
(

8 − 7

4

)
π (Zα)5 = (Zα)5

∑
v

δv
23


(
5
2

)
(−1)v



(

7
2 − v

)

(v)

(
v − 3

2

) (
v + 1

2

) . (A77)

The exact result is obtained by setting δ = 1. The series in δ is obtained by the application of the generalized binomial theorem

(1 − vδ)a =
∞∑

v=0


(a + 1)


(v + 1)
(a − v + 1)
(−vδ)v
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and trivial integrations. In a similar vein, it follows from Eqs. (A1), (A62), and (A66)

−1

2

〈
γ0G

0
4

〉

→ − (Zα)5

2
δ

∫ 1

0
du(1 − u)

∫ u

0
dv

{
−25u2

(
(1 − vδ)3/2

v3/2
− 3δ

(1 − vδ)1/2

v1/2

)
+ 24 (1 − vδ)1/2

v1/2

}
=
(

−121

32
− 5

4

)
π (Zα)5

= (Zα)5
∑

v

δv

{
25


(
5
2

) (
v − 1

2

)
(−1)v−1



(

7
2 − v

)

(v)

(
v − 3

2

) (
v + 3

2

) (
v + 5

2

) + 23

(

3
2

) (
v − 5

2

)
(−1)v−1



(

7
2 − v

)

(v)

(
v − 1

2

) (
v + 1

2

) (
v + 3

2

)
}

, (A78)

from Eqs. (A1) and (A67)

−1

2

〈
γ0G

1
4

〉 → − (Zα)5

2
δ2(−3)25

∫ 1

0
du(1 − u)

∫ u

0
dv u

(1 − vδ)1/2

v1/2

= 25

8
π (Zα)5 = (Zα)5

∑
v

δv
25


(
5
2

)
(−1)v(v − 1)



(

7
2 − v

)

(v)

(
v − 3

2

) (
v + 1

2

) (
v + 3

2

) , (A79)

from Eqs. (A1) and (A68)

−1

2

〈
γ0G

2
4

〉 → − (Zα)5

2
δ224

∫ 1

0
du(1 − u)

∫ u

0
dv

(1 − vδ)1/2

v1/2

= −5

4
π (Zα)5 = (Zα)5

∑
v

δv
23


(
3
2

)
(−1)v−1(v − 1)



(

7
2 − v

)

(v)

(
v − 3

2

) (
v − 1

2

) (
v + 1

2

) , (A80)

from Eqs. (A4) and (A73)

−1

2

〈
γ0G

0
i γiγ0

〉 → − (Zα)5

2
δ

∫ 1

0
du u

∫ u

0
dv

{
25

3

(1 − vδ)3/2

v1/2
− 25δ(1 − vδ)1/2v1/2

}

= −π

4
(Zα)5 = (Zα)5

∑
v

δv
24


(
3
2

)
(−1)v



(

7
2 − v

)

(v)

(
v + 3

2

) , (A81)

from Eqs. (A4) and (A74)

−1

2

〈
γ0G

1
i γiγ0

〉 → − (Zα)5

2
δ224

∫ 1

0
du

∫ u

0
dv(1 − vδ)1/2v1/2

= −π

2
(Zα)5 = (Zα)5

∑
v

δv
23


(
3
2

)
(−1)v−1(v − 1)



(

7
2 − v

)

(v)

(
v − 1

2

) (
v + 1

2

) , (A82)

from Eqs. (A3) and (A66)

−1

2

〈
γ0G

0
0

〉 → − (Zα)5

2
δ

∫ 1

0
du(1 − u)

∫ u

0
dv

{
−25u

(
(1 − vδ)3/2

v1/2
− 3δ(1 − vδ)1/2v1/2

)
+ 24u−1(1 − vδ)1/2v1/2

}

=
(

3

8
+ 1 − 2 ln 2

)
π (Zα)5

= (Zα)5
∑

v

δv

{
25


(
5
2

)
(−1)v−1



(

7
2 − v

)

(v)

(
v + 3

2

) (
v + 5

2

) − 23

(

3
2

)
(−1)v−1(v − 1)



(

7
2 − v

)

(v)

(
v − 3

2

) (
v + 1

2

) (
v + 3

2

)
}

, (A83)

and finally from Eqs. (A3) and (A67)

−1

2

〈
γ0G

1
0

〉 → − (Zα)5

2
δ2(−26)

∫ 1

0
du(1 − u)

∫ u

0
dv(1 − vδ)1/2v1/2

= 5

8
π (Zα)5 = (Zα)5

∑
v

δv
25


(
3
2

)
(−1)v(v − 1)



(

7
2 − v

)

(v)

(
v − 1

2

) (
v + 1

2

) (
v + 3

2

) . (A84)

Equations (77) for A
(v)
50 and (79) for A50 are obtained by collecting the terms of the powers δv from the equations above and

summing the above equations, respectively.
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TABLE VI. The comparison of the exact calculation and nonrelativistic approximation for the terms 〈γ0G
2v,3
4 〉, 〈γ0G

2v,2
0 〉, 〈γ0G

2v,3
0 〉, and

〈γ0G
2v−1,2
i γiγ0〉. The contributions are multiplied by −[2(Zα)4]−1. The relative error of the nonrelativistic approximation with respect to the

exact result is displayed in parentheses.

v
〈
γ0G

2v,3
4

〉 〈
G

2v,3
4

〉
0

v
〈
γ0G

2v,2
0

〉 〈
G

2v,2
0

〉
0

0 −0.140506 × 10−3 −0.140496 × 10−3 (0.71 × 10−4) 1 0.987415 × 10−4 0.987814 × 10−4 (0.40 × 10−3)
1 −0.739838 × 10−5 −0.739063 × 10−5 (0.10 × 10−2) 2 0.998692 × 10−5 0.998068 × 10−5 (0.62 × 10−3)
2 −0.127661 × 10−5 −0.127565 × 10−5 (0.75 × 10−3) 3 0.235166 × 10−5 0.235087 × 10−5 (0.34 × 10−3)
3 −0.376911 × 10−6 −0.376646 × 10−6 (0.70 × 10−3) 4 0.830516 × 10−6 0.830290 × 10−6 (0.27 × 10−3)

v
〈
γ0G

2v,3
0

〉 〈
G

2v,3
0

〉
0

v
〈
γ0G

2v−1,2
i γiγ0

〉 −〈{G2v−1,2
i ,Pi

}〉
0
/(2m)

0 0.640844 × 10−4 0.640770 × 10−4 (0.12 × 10−3) 1 −0.132412 × 10−3 −0.132397 × 10−3 (0.11 × 10−3)
1 0.224290 × 10−5 0.223871 × 10−5 (0.19 × 10−2) 2 −0.114446 × 10−4 −0.114301 × 10−4 (0.12 × 10−2)
2 0.416739 × 10−6 0.416348 × 10−6 (0.94 × 10−3) 3 −0.307593 × 10−5 −0.307365 × 10−5 (0.74 × 10−3)
3 0.129357 × 10−6 0.129288 × 10−6 (0.53 × 10−3) 4 −0.124072 × 10−5 −0.123992 × 10−5 (0.64 × 10−3)

APPENDIX B: NONRELATIVISTIC APPROXIMATION

The nonrelativistic model defined by Eq. (A11) was used in
Appendix A to determine the contribution of the order α(Zα)5.
It can also be used for an estimate of the terms that do not con-
tribute to the order α(Zα)5. These are the terms 〈γ0G

2(v−t),t
4 〉

for t > 2, 〈γ0G
2(v−t),t
0 〉 for t > 1, 〈γ0G

2(v−t)−1,t
i γiγ0〉 for t > 1

and 〈γμG
2(v−t−1),t
4 (	 − ε)μ/m〉 for t > 0. The advantage of

the nonrelativistic model lies in the fact that for integer l0
and l
 (it actually suffices for the difference l
 − l0 to be
an integer) the hypergeometric function in Eq. (49) reduces
to polynomial. This tremendously simplifies the calculation

of the hypergeometric function. This in turn enables us to
make the substitution (66) right at the exact expression (49).
The calculation of the terms like 〈γ0G

2(v−t),t
4,0 〉 for higher t is

then substantially simpler than the one described in Sec. III.
In Tables V and VI, the comparison between the exact and
nonrelativistic results for the terms with higher temporal
multipoles t > 1 is displayed. This is an important check of the
calculation as the exact and nonrelativistic results are obtained
by somewhat different methods. Further, it enables us to
calculate the contributions of higher spatial multipoles for t >

1 by the nonrelativistic approximation with sufficient accuracy.
This leads to a substantial simplification of the calculation.

APPENDIX C: ASYMPTOTIC EXPANSION OF THE HYPERGEOMETRIC FUNCTION

The hypergeometric function possesses series

F (a,b,c,z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (C1)

where, for example, (c)n stands for Pochhammer symbol

(c)n = 
(c + n)


(c)
. (C2)

The series (C1) converges for |z| < 1. The hypergeometric function in Eq. (49) goes for large ke to z = 2. To be able to obtain
an asymptotic expansion of the function for large ke, we use the formula (see, e.g., [20])

F

(
i

ke

+ l + 1,l − l0 − p − 1,2l + 2,
2ikex

−1 + ikex

)

=

(2l + 2)


(− l0 − p − 2 − i
ke

)

(l − l0 − p − 1)


(
l + 1 − i

ke

) ( 2ikex

1 − ikex

)−l−1 ( 2ikex

1 + ikex

)−l0−p−2 (1 + ikex

1 − ikex

)−i/ke

×F

(
l0 + p + 2 − l,l0 + p + 3 + l,l0 + p + 3 + i

ke

,
−1 + ikex

2ikex

)
+


(2l + 2)

(
l0 + p + 2 + i

ke

)

(l + l0 + p + 3)


(
l + 1 + i

ke

)

×
(

2ikex

1 − ikex

)−l+l0+p+1

F

(
l − l0 − p − 1, − l0 − l − p − 2, − 1 − l0 − p − i

ke

,
−1 + ikex

2ikex

)
, (C3)

where

x = (l0 + 1)ξ. (C4)
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The argument z of the hypergeometric functions on the right
member of Eq. (C3) goes for large ke to z = 1/2. The needed
asymptotic expansion is thus obtained by first using Eq. (C3)
and then using the expansion (C1) for the functions on the
right member. Finally, in Eqs. (C1) and (C3) the expansion of
the 
 function


(c0 + c1)

= 
(c0)

(
1 + ψ(c0)c1 + c2

1

2

[
ψ(1,c0) + ψ2(c0)

]+ · · ·
)

(C5)

is used.

APPENDIX D: INTEGRATION OVER THE
FOUR-MOMENTUM OF THE VIRTUAL PHOTON

AND THE FUNCTIONS �

1. Derivation of Eqs. (55) and (57)

The integrals (55) and (57) look divergent even for finite
�. As discussed in [16], the integrands are determined up to
an arbitrary polynomial of the (2v + t − 1)-th order in � + σ .
This is enough to make the integrals (55) and (57) convergent
[16]. The integrands in Eqs. (55) and (57) can be written as

(2ω)2v

k2 − 2kε + �
=
∫ �

0
d2vw

d2v

dw2v

(2ω)2v

k2 − 2kε + w

=
∫ �

0
d2vw

(
∂2

∂εi∂εi

)v
1

k2 − 2kε + w

∣∣∣∣
εi=0

(D1)

and

(2ω)2v−1

k2 − 2kε + �

=
∫ �

0
d2v−1w

(
∂2

∂εi∂εi

)v−1 −2ω

(k2 − 2kε + w)2

∣∣∣∣∣
εi=0

. (D2)

Thus the only integrals over four-momentum of the virtual
photon to be performed explicitly are integrals

∫ �2

0
dλ

∫
d4kF

(k2 − λ)2

(1,kν)

k2 − 2k · ε + w

= −1

4

∫ 1

0
dy(1,yεν)

[
ln

(
ε2y − w

m2y

)
− ln

(
�2(1 − y)

m2y

)]
(D3)

and∫ �2

0
dλ

∫
d4kF

(k2 − λ)2

2ω2

(k2 − 2k · ε + w)2

= 1

4

∫ 1

0
dy

∂

∂εi

εiy

[
ln

(
ε2y − w

m2y

)
− ln

(
�2(1 − y)

m2y

)]
.

(D4)

Here the terms proportional to the inverse powers of the cut-off
�2 have been neglected. Equations (D3) and (D4) follow from

the introduction of Feynman parameter y,

1

ab2
=
∫ 1

0
dy

2(1 − y)

[ay + b(1 − y)]3 ,

(D5)
1

(ab)2
=
∫ 1

0
dy

3!y(1 − y)

[ay + b(1 − y)]4 ,

integration over d4k,∫
d4kF (1,kν)

(k2 − 2kεy − L)3
= 1

8

(1,ενy)

(εy)2 + L
, (D6)∫

d4kF kikiy

(k2 − 2kεy − L)4
= − 1

3!

∂

∂εi

∫
d4kF ki

(k2 − 2kεy − L)3

= − 1

3!8

∂

∂εi

εiy

(εy)2 + L
, (D7)

and integration over λ. Equation (D6) can be found, for
example, in the original Feynman papers cited in Ref. [15].
Further, we use formula(

∂2

∂εi∂εi

)v

φ(ε2y + w)

∣∣∣∣
εi=0

= (−1)v(2v + 1)!!2v ∂v

∂(ε2)v
φ(ε2y + w)

= (−1)v(2v + 1)!!2vyv ∂v

∂wv
φ(ε2y + w). (D8)

Particular cases of this formula are given by Eqs. (76) and (78)
of [16]. In a similar way we treat the integrals with powers of
k0,

(−2k0)t

k2 − 2kε + �
=
∫ �

0
dtw

dt

dwt

(−2k0)t

k2 − 2kε + w

=
∫ �

0
dtw

∂t

∂εt
0

1

k2 − 2kε + w

∣∣∣∣
ε0=m

. (D9)

Finally, when integrating over the parameter w, we make the
substitution

w → −m2w.

By inserting Eqs. (D1), (D3), (D8), and (D9) into the left
member of Eq. (55), we obtain the right member of that
equation. The second terms in the square brackets on the
right members of Eqs. (D3) and (D4) contribute to the
electromagnetic mass of the electron. Their contribution is
canceled by the counterterm −�m in Eq. (2). Likewise, from
Eqs. (D2), (D4), and

d

dw
2εiy ln(ε2y − w) = ∂

∂εi

ln(ε2y − w) (D10)

one arrives at∫ �2

0
dλ

∫
d4kF

(k2 − λ)2

(2ω)2v−1ω

k2 − 2k.ε + �

= 1

2

∫ 1

0
dy

∫ �

0
d2v−1w

(
∂2

∂εi∂εi

)v−1
∂

∂εj

2εjy

×
[

ln

(
ε2y − w

m2y

)
− ln

(
�2(1 − y)

m2y

)] ∣∣∣∣
εi=εj =0
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= 1

2

∫ 1

0
dy

∫ �

0
d2vw

(
∂2

∂εi∂εi

)v[
ln

(
ε2y − w

m2y

)

− ln

(
�2(1 − y)

m2y

)]∣∣∣∣
εi=0

. (D11)

Equation (57) follows from the last equation and Eqs. (D8)
and (55).

2. Derivation of Eq. (A34)

A slightly different procedure is used for the evaluation
of the integrals on the left member of Eq. (A34). Using the
Feynman parametrization (D5), we get

(−4)
∫ �2

0
dλ

∫
d4kF (1,kν/m)

(k2 − λ)2

(−2k0/E)t

k2 − 2k · Pu + u�( �P )

= (−8)
∫ 1

0
dy(1 − y)

∫ �2

0
dλ

×
∫

d4kF (1,kν/m)(−2k0/E)t

[k2 − 2k · Puy + yu�( �P ) − λ(1 − y)]3
. (D12)

Now
∂

∂λ
f (D) = −(1 − y)

∂

∂D
f (D) (D13)

and
∂

∂(Pu)0
f (D) = −2k0y

∂

∂D
f (D), (D14)

where

D = k2 − 2k · Puy + yu�( �P ) − λ(1 − y). (D15)

Thus

(D12) = (−8)
∫ 1

0
dy

(1 − y)t+1

yt

1

Et

∂t

∂(Pu)t0

∫ �2

0
dt+1λ

×
∫

d4kF (1,kν/m)

[k2 − 2k · Puy + yu�( �P ) − λ(1 − y)]3
.

(D16)

The integration over four-momentum k according to
Eq. (D6) yields∫

d4kF (1,kν/m)

[k2 − 2k · Puy + yu�( �P ) − λ(1 − y)]3
=
(
1, (Pu)ν

m
y
)

Du( �P )
,

(D17)

where Du( �P ) is given by Eq. (A35). By inserting the last
equation into Eq. (D16) and making the substitution λ′ =
λ
m2

1−y

y
, we obtain the right member of Eq. (A34).

3. The functions �

Had we been able to calculate the right member of Eq. (59)
exactly, we could use the form of the functions � given by
Eq. (56) in the actual calculation. Since we calculate the right
member of Eq. (59) numerically, that is, approximately, the
actual form of the functions � presents the balance between
two opposite requirements. On the one hand, the integrals over
the electron wave numbers ke have to be finite. On the other
hand, the functions � are multiplied by the inverse powers of

(Zα) [see Eqs. (42) and (43)]. This enhances the contribution
of the terms with small powers of �. In principle �’s are
determined up to a polynomial of the (2v + t − 1) order in �.
This polynomial has to cancel out in the complete expressions,
Eqs. (42) and (43). However, such a cancellation is always
imperfect in numerical calculations. Thus, the functions �

should contain the smallest number of the power terms in � in
order to keep the integrals over ke convergent. The functions
� meeting such a requirement follow.

We rewrite Eq. (56) into the form

�
2v,t
4,0 (� + σ ) = 2v(−1)t

∂ t

∂(ε0)t

∫ 1

0
dy yv(1,yε0)

×φ

(
−� + σ

m2
,y

) ∣∣∣∣
ε0=1

. (D18)

In the case we calculate 〈γ0G4〉 and 〈γμG4O
0
μ〉, we set

φ(x,y) =
∫ x

0
dv+tw ln

(
ε2

0y + w

y

)
(D19)

for t = 2, or for v = 0, t = 0; v = 0, t = 1; and v = 1, t = 0,

φ(x,y) =
∫ x

0
dv+tw ln

(
ε2

0y + w

ε2
0y

)
(D20)

for t = 1 except for v = 0,

φ(x,y) =
∫ x

0
dv+t+1w

[
1

ε2
0y + w

− 1

ε2
0y

]
(D21)

for t = 0 except for v = 1,

φ(x,y) =
∫ x

0
dv+t−1w

(
ε2

0y + w
) [

ln
(
ε2

0y + w
)− 1

]
(D22)

for t = 3, and

φ(x,y) =
∫ x

0
dv+t−1w 2ε0y ln

(
ε2

0y + w
)

(D23)

for t = 4. In the case we calculate 〈γμG4O
−1
μ 〉 and 〈γ0Giγiγ0〉,

we use Eq. (D19) for t < 3 and Eq. (D22) for t = 3. In all these
cases we use the functions �

2v,t
4 . When we calculate 〈γ0G0〉

we use the functions �
2v,t
0 . In such a case we use Eq. (D19) for

t = 2 or for v = 0, t = 1; v = 1, t = 0, Eq. (D20) for t = 1
except for v = 0, and Eq. (D21) for t = 0 except for v = 1.
Furthermore, we set

φ(x,y) =
∫ x

0
dv+tw ln

(
ε2

0y + w
)

(D24)

for t = 3 and

φ(x,y) =
∫ x

0
dv+t−1w

(
3ε0y + wε−1

0

)
ln
(
ε2

0y + w
)

(D25)

for t = 4.
In the case we apply nonrelativistic approximation, we use

Eqs. (D20) and (D24) when calculating 〈G2v,2
4,0 〉0 and 〈G2v,3

4 〉0,

respectively. When calculating 〈G2v,3
0 〉0 and 〈{G2v−1,2

i ,Pi}〉0,
we use the same functions as when calculating the exact
expressions 〈G2v,3

0 〉 and 〈γ0G
2v−1,2
i γiγ0〉, respectively.
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APPENDIX E: DERIVATION OF EQ. (68)

After substituting into Eq. (62) for a = L + 2q and b = L + 2(p − q) + c [see Eq. (44)] one gets

P
L+2q,L+2(p−q)+c

l
,∞ (ke,ξ ) = A
L+2q,L+2(p−q)+c

l


(
k2
e

1 + k2
e

)l
+1 (
1 + ike

1 − ike

)p−2q (
1 + k2

e

)−l0−2−L−p
(1 − ike)−c

×
(

1 + c1,0 + c1,1ξ

ke

+ c2,0 + c2,1ξ + c2,2ξ
2

k2
e

+ · · ·
)

. (E1)

From Eq. (56) we get

dv−p−L

dσ v−p−L
�

2v,t
4,0

∣∣∣∣
σ=0

= m−2(v−L−p)2v(−1)t
∂ t

∂(ε0)t

∫ 1

0
dy yv(1,yε0)

∫ −�/m2

0
dL+p+tw ln

(
ε2

0y + w

y

)∣∣∣∣∣
ε0=1

. (E2)

Performing now the parametric differentiation with respect to ε0, we get [recall the definition (69)]

∂t

∂(ε0)t
(1,yε0) ln(ε2

0y + w)

∣∣∣∣
ε0=1

� (1,y)([t] − 1)!!(2y)[t]/2 ∂ [t]/2

∂w[t]/2
ln(y + w) + · · · . (E3)

For large ke, the other terms on the right member of Eq. (E3) are negligible, compared to the first one. From Eqs. (E2) and (E3)
we have

dv−p−L

dσ v−p−L
�

2v,t
4,0

∣∣∣∣
σ=0

� m−2(v−L−p)2v+[t]/2(−1)t
∫ 1

0
dyyv+[t]/2(1,y)

∫ −�(ke,ξ )/m2

0
dL+p+t−[t]/2w ln (y + w) . (E4)

Every differentiation of Eq. (E4) with respect to ξ produces an extra factor of (Zα)2 and lowers the number of integration
with respect to the parameter w. This in turn supplies the factor k−2

e for large ke. Thus, the dominant contribution from the
differentiations of the product of Eqs. (E1) and (E4) with respect to ξ in Eq. (67) comes from the differentiation of Eq. (E1). The
differentiation of Eq. (E1) with respect to ξ yields for large ke,

dt

t!dξ t
P

L+2q,L+2(p−q)+c

l
,∞ (ke,ξ )

∣∣∣∣
ξ=1

� A
L+2q,L+2(p−q)+c

l


(
k2
e

1 + k2
e

)l
+1 (
1 + ike

1 − ike

)p−2q (
1 + k2

e

)−l0−2−L−p
(1 − ike)−c ct,t

kt
e

. (E5)

By the substitution w → w(−�(ke,ξ=1)
m2 ), the integral over the parameter w on the right member of Eq. (E4) can be rewritten into

the form∫ −�(ke,ξ=1)/m2

0
dL+p+t−[t]/2w ln (y + w) =

(
−�(ke,ξ = 1)

m2

)L+p+t−[t]/2 ∫ 1

0
dL+p+t−[t]/2w ln

(
y − w

�(ke,ξ = 1)

m2

)
. (E6)

Here we substitute from Eq. (47)

−�(ke,ξ = 1)

m2
= (Zα)2

[
k2
e + 1

]
. (E7)

From Eqs. (E4)–(E7) we finally get Eq. (68).

[1] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys.
80, 633 (2008); P. J. Mohr, in Springer Handbook of Atomic,
Molecular and Optical Physics, edited by G. W. F. Drake
(Springer, New York, 2006).

[2] M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 63
(2001).

[3] S. G. Karshenboim, Phys. Rep. 422, 1 (2005).
[4] Quantum Electrodynamics, edited by T. Kinoshita (World

Scientific, Singapore, 1990). Both perturbative and nonperturba-
tive approaches to the self-energy calculations as well as recoil
corrections are summarized in the article by J. Sapirstein and
D. Yennie.

[5] H. A. Bethe, Phys. Rev. 72, 339 (1947); See also G. W.
F. Drake and R. A. Swainson, Phys. Rev. A 41, 1243
(1990).

[6] J. B. French and V. F. Weisskopf, Phys. Rev. 75, 1240 (1949);
N. M. Kroll and W. E. Lamb, ibid. 75, 388 (1949).

[7] M. Baranger, H. A. Bethe, and R. P. Feynman, Phys. Rev. 92,
482 (1953).

[8] R. Karplus, A. Klein, and J. Schwinger, Phys. Rev. 86, 288
(1952).

[9] G. W. Erickson and D. R. Yennie, Ann. Phys. (NY) 35, 271
(1965); 35, 447 (1965); see also A. J. Layzer, J. Math. Phys. 2,
292 (1961); 2, 308 (1961).

[10] K. Pachucki, Ann. Phys. (NY) 226, 1 (1993); see also
W. Erickson, Phys. Rev. Lett. 27, 780 (1971); J. Sapirstein, ibid.
47, 1723 (1981).

[11] S. G. Karshenboim, Z. Phys. D 39, 109 (1997).
[12] P. J. Mohr, Phys. Rev. A 46, 4421 (1992); the method is reviewed

in P. J. Mohr, G. Plunien, and G. Soff, Phys. Rep. 293, 227
(1998).

[13] U. D. Jentschura, P. J. Mohr and G. Soff, Phys. Rev. A 63,
042512 (2001); see also U. D. Jentschura and P. J. Mohr, ibid.
69, 064103 (2004).

032501-23

http://dx.doi.org/10.1103/RevModPhys.80.633
http://dx.doi.org/10.1103/RevModPhys.80.633
http://dx.doi.org/10.1016/S0370-1573(00)00077-6
http://dx.doi.org/10.1016/S0370-1573(00)00077-6
http://dx.doi.org/10.1016/j.physrep.2005.08.008
http://dx.doi.org/10.1103/PhysRev.72.339
http://dx.doi.org/10.1103/PhysRevA.41.1243
http://dx.doi.org/10.1103/PhysRevA.41.1243
http://dx.doi.org/10.1103/PhysRev.75.1240
http://dx.doi.org/10.1103/PhysRev.75.388
http://dx.doi.org/10.1103/PhysRev.92.482
http://dx.doi.org/10.1103/PhysRev.92.482
http://dx.doi.org/10.1103/PhysRev.86.288
http://dx.doi.org/10.1103/PhysRev.86.288
http://dx.doi.org/10.1016/0003-4916(65)90081-3
http://dx.doi.org/10.1016/0003-4916(65)90081-3
http://dx.doi.org/10.1016/0003-4916(65)90250-2
http://dx.doi.org/10.1063/1.1703713
http://dx.doi.org/10.1063/1.1703713
http://dx.doi.org/10.1063/1.1703714
http://dx.doi.org/10.1006/aphy.1993.1063
http://dx.doi.org/10.1103/PhysRevLett.27.780
http://dx.doi.org/10.1103/PhysRevLett.47.1723
http://dx.doi.org/10.1103/PhysRevLett.47.1723
http://dx.doi.org/10.1007/s004600050116
http://dx.doi.org/10.1103/PhysRevA.46.4421
http://dx.doi.org/10.1016/S0370-1573(97)00046-X
http://dx.doi.org/10.1016/S0370-1573(97)00046-X
http://dx.doi.org/10.1103/PhysRevA.63.042512
http://dx.doi.org/10.1103/PhysRevA.63.042512
http://dx.doi.org/10.1103/PhysRevA.69.064103
http://dx.doi.org/10.1103/PhysRevA.69.064103
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