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Shaping frequency-entangled qudits
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We demonstrate the creation, characterization, and manipulation of frequency-entangled qudits by shaping
the energy spectrum of entangled photons. The generation of maximally entangled qudit states is verified up to
dimension d = 4 through tomographic quantum-state reconstruction. Subsequently, we measure Bell parameters
for qubits and qutrits as a function of their degree of entanglement. In agreement with theoretical predictions, we
observe that for qutrits the Bell parameter is less sensitive to a varying degree of entanglement than for qubits.
For frequency-entangled photons, the dimensionality of a qudit is ultimately limited by the bandwidth of the
pump laser and can be on the order of a few millions.
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I. INTRODUCTION

Entanglement [1] is one of the most intriguing features of
quantum theory and is a fundamental resource for quantum
information processing. It was experimentally revealed by
the observation of correlations with no classical origins.
Through Bell inequalities, the nonlocality of nature was tested
by numerous experiments using entangled two-dimensional
states (qubits) [2]. Both fundamental tests of quantum theory
and applications benefit greatly from entanglement in higher
dimensions. Entangling d-dimensional states denoted as qudits
allows to formulate generalized Bell inequalities, which are
more resistant to noise than their two-dimensional predeces-
sors [3,4]. In loophole-free Bell experiments the detection
efficiency threshold can be lowered [5]. Finally, both the
effective bit rate of quantum key distribution and the robustness
to errors can be increased [6]. These examples, among others,
stimulated research towards different schemes to generate and
manipulate photonic qudits in high dimensions.

Due to their low decoherence rate, photons are used in many
experiments as a robust carrier of entanglement. Photonic
entangled states are usually produced by the nonlinear inter-
action of spontaneous parametric down conversion (SPDC).
The coherence of this process, together with conservation
rules, can generate entanglement in the finite Hilbert space
of polarization modes [7]. Entanglement in infinite spaces can
be realized for transverse (momentum) or orbital angular mo-
mentum (OAM) modes [8–14] and for energy-time states [15].
The amount of entanglement is commonly quantified by the
Schmidt number K . For transverse-wave-vector entanglement,
K is on the order of 10 for perfect SPDC phase-matching
conditions [16], approximately 400 for specific nonperfect
phase-matching conditions [9], and approximately 50 for
OAM entanglement [14]. Similar Schmidt numbers can be
achieved in energy-time entanglement generated by short
pump pulses [15,17], but much larger K numbers are obtained
for a quasimonochromatic pump laser. In practice, the infinite
Hilbert space is projected onto a finite space of, for example,
discrete time or frequency bins. In the time-bin subspace
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two-photon interferences for d = 3,4 have been observed by
interferometers with multiple arms [18,19]. This, however,
requires interferometric stability and becomes very complex
for higher dimensions. In the frequency-bin subspace, inter-
ferences between two entangled photons, each in an effective
two-dimensional space, have been observed by manipulating
the spectra with a combination of narrow-band filters and
electro-optic modulators [20]. Some of the aforementioned
experiments are very useful for quantum key distribution
because frequency is the most suitable degree of freedom of
light to distribute entanglement over a large distance through
optical fibers [21]. However, these experiments do not provide
sufficient control of the phase and amplitude of qudits in
the frequency domain to extensively study the properties of
d-dimensional states with d > 2.

In this article, we demonstrate a methodology that allows
for full control over entangled qudits through coherent modula-
tion of the photon spectra. It is derived from a classical pulse-
shaping arrangement and contains a spatial light modulator
(SLM) as a reconfigurable modulation tool. This technique
is widely used in ultrafast optics [22] and has been adapted
to manipulate the wave function of energy-time entangled
two-photon states [23,24]. The flexibility of the experimental
setup allowed to reconstruct the density matrices of maximally
entangled qudits up to d = 4. Moreover, we demonstrate the
presence of energy-time entanglement by measuring a Bell
parameter above the local variable limit for maximally and
certain nonmaximally entangled qubit and qutrit states.

II. EXPERIMENTAL SETUP

Figure 1 depicts a schematic of the experimental setup. The
entangled photons are generated in a type-0 SPDC process
where all involved photons, the pump, the created idler (i),
and signal (s), are identically polarized [25]. For this purpose
we pump a 11.5-mm-long positive uniaxial and periodically
poled nonlinear KTiOPO4 (PPKTP) crystal with a poling
periodicity of 9 μm by means of a quasimonochromatic
Nd:YVO4 (Coherent Verdi V5) laser centered at 532 nm
featuring a narrow spectral bandwidth of about 5 MHz. The
collinear pump beam is focused into the middle of the PPKTP
crystal with a power of 5 W. To compensate for group-velocity
dispersion in the setup and to allow for coherent shaping of the
spectra, the idler and signal photon are imaged through a prism
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FIG. 1. (Color online) Schematic of the experimental setup
and frequency-bin structure. L0, pump beam focusing lens (f =
150 mm); PPKTP, nonlinear crystal; BD, beam dump; SLM, spatial
light modulator; L1 and L2, two-lens symmetric imaging arrangement
(f = 100 mm) to enhance the spectral resolution with a magnification
of 1:6 at the symmetry axis of the four-prisms compressor; BF,
bandpass filter; SPCM, single-photon counting module with a
two-lens (L3, L4) imaging system. The inset shows the measured
down-converted spectrum overlaid with a schematic illustration of
the frequency bins for a ququart. Each of the gray shaded areas
represents a single bin whose amplitude and phase can be manipulated
individually.

compressor arrangement composed of four N-SF 11 equilateral
prisms, where the first prism deflects the residue of the pump
into a beam dump. At the symmetry axis between the second
and the third prism a SLM (Jenoptik, SLM-S640d) is aligned
along the spatially dispersed down-converted spectrum. This
device consists of two similar nematic liquid-crystal arrays of
640 pixels, each with a width of 100 μm and separated by a gap
of 3 μm. The orientation of the liquid-crystal molecules within
a pixel can be controlled by the applied voltage. Together with
a linearly polarized input beam and a polarization-dependent
detection scheme, the phase and amplitude of the transmitted
frequencies at each pixel can be modulated. Coincidences of
the entangled photon pairs are detected within a time window
of about 100 fs through up conversion in a second PPKTP
crystal [23]. The up-converted 532 nm photons are then imaged
onto the active area of a single-photon counting module
(SPCM, ID Quantique, id100-50-uln) whereas the residual
photons around 1064 nm are suppressed by a bandpass filter
(4 mm BG18). In principle, sum frequency generation between
one photon and a femtosecond laser pulse would realize a fast
optical gating, allowing to perform a fast coincidence detection
on spatially separated photons.

III. THEORY

Restricting the configuration of the three photons to the case
where they are mutually collinear, the entangled two-photon
state can be written as

|ψ〉 =
∫ ∞

−∞

∫ ∞

−∞
dωidωs�(ωi,ωs)â

†
i (ωi)â

†
s (ωs)|0〉i |0〉s , (1)

where �(ωi,ωs) = α(ωi,ωs)�(ωi,ωs). It depends on the pump
envelope function α(ωi,ωs) and on �(ωi,ωs) which describes

the joint spectral amplitude of SPDC filtered by the phase-
matching properties of the detection crystal. Idler and signal
photons with corresponding relative frequency ωi,s are created
by the operators â

†
i,s(ωi,s), acting on the combined vacuum

state |0〉i |0〉s . We have calculated the entropy of entanglement
[26] E of �(ωi,ωs) to be E = (21.1 ± 0.2) ebits for a pump
bandwidth of 5 MHz and experimental parameters of the
SPDC and the detection crystal by means of a numerical
approximation method [27]. This amount of entropy is the
same as in a maximally entangled qudit state with d = 2E ≈
2.2 × 106. As a further quantification of entanglement, the
Schmidt number K has been computed numerically to be K ≈
1.3 × 106. In order to use this large resource of entanglement
for quantum information processing, we encode qudits in the
frequency domain by projecting the state |ψ〉 into a discrete
d2-dimensional subspace spanned by the states |j 〉i |k〉s with
|j 〉i,s ≡ ∫ ∞

−∞ dωf
i,s
j (ω)â†

i,s(ω)|0〉i,s and j = 0, . . . ,d − 1. The
projected state is then expressed by

|ψ〉(d) =
d−1∑
j=0

d−1∑
k=0

cjk|j 〉i |k〉s , (2)

with cjk = ∫ ∞
−∞

∫ ∞
−∞ dωidωsf

i∗
j (ωi)f s∗

k (ωs)�(ωi,ωs) and the

orthogonality condition
∫ ∞
−∞ dωf

i,s∗
j (ω)f i,s

k (ω) = δjk . For the
experiments presented here, we specifically define frequency
bins according to

f
i,s
j (ω) =

{
1/

√
�ωj for |ω − ωj | < �ωj ,

0 otherwise.
(3)

Imposing |ωj − ωk| > (�ωj + �ωk)/2 for all j,k ensures that
adjacent bins do not overlap. For simplicity, we assume in the
following a continuous-wave pump by α(ωi,ωs) ∝ δ(ωi + ωs)
and therefore |ψ〉(d) becomes restricted to its diagonal form,

|ψ〉(d) =
d−1∑
j=0

cj |j 〉i |j 〉s . (4)

Experimentally, the amplitude and phase of each spectral
component of the idler and signal photon can be adjusted with
the SLM (Fig. 1). The effect on each photon is described by a
complex transfer function Mi,s(ω). A frequency-bin structure
according to Eq. (3) is then implemented through

Mi,s(ω) =
d−1∑
j=0

u
i,s
j f

i,s
j (ω) =

d−1∑
j=0

∣∣ui,s
j

∣∣eiφ
i,s
j f

i,s
j (ω), (5)

where |ui,s
j | and φ

i,s
j are controlled independently. Since in

our experiment there is no spatial separation between idler
and signal modes, we address each photon individually by
assigning Mi(ω) to the lower-frequency part and Ms(ω) to the
higher-frequency part of the spectrum. The measured signal
after shaping and the up conversion stage then reads S =
| ∫ ∞

−∞ dω�(ω)Mi(ω)Ms(−ω)|2 for a continuous-wave pump
and is equivalent to

S = |〈χ |ψ〉(d)|2 =
∣∣∣∣∣

d−1∑
l=0

ui
lu

s
l cl

∣∣∣∣∣
2

(6)

for |χ〉 = (
∑d−1

j=0 ui∗
j |j 〉i)(

∑d−1
j ′=0 us∗

j ′ |j ′〉s) with |ψ〉(d) of
Eq. (4). The combination of the SLM together with an up
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conversion coincidence detection therefore realizes a projec-
tive measurement. Different quantum information protocols
can thus be implemented through a judicious choice of |χ〉
together with Eq. (5).

IV. RESULTS

A. Quantum state tomography

At first, maximally entangled states are generated from
Eq. (4) by Procrustean filtering [26]. Due to the characteristic
shape of the SPDC spectrum (Fig. 1) a frequency-bin dis-
cretization entails unequal distributed probability amplitudes
cl . In order to equate the cl and thus maximize the entanglement
we discard photon combinations with high probabilities by
adjusting the amplitudes |ui,s

j | in Eq. (5). Quantum-state
tomography [28] then allows us to retrieve the density matrix
ρ̂d of these states by performing projective measurements
[12] and using maximum likelihood estimation [29]. The
reconstructed density matrices up to dimension d = 4 are
shown in Fig. 2. The computed fidelities [30] Fd between
the reconstructed state ρ̂d and a maximally entangled state are
F2 = 0.928 ± 0.010, F3 = 0.855 ± 0.010, and F4 = 0.781 ±
0.018. We estimated the statistical 2σ uncertainties with a
Monte Carlo method by randomly adding normally distributed
noise to each measurement outcome and recomputing the
fidelity. With increasing dimension we have to implement more
frequency bins within the same spectral range. Because of the
finite spectral resolution of the setup, the increasing overlap
between adjacent bins leads to a decrease of the fidelity.

B. Bell inequalities

More generally, we obtain nonmaximally entangled states
by varying the amplitudes in |ψ〉(d). These states are then stud-
ied with regard to their nonlocal properties. Collins et al. (here-
after referred to as CGLMP) generalized Bell inequalities to
arbitrary d-dimensional bipartite quantum systems by defining
a dimensional-dependent Bell parameter Id [3]. If correlations
between two separated systems can be explained through local
realism, then Id � 2 holds for all d � 2. Despite a left-open
locality loophole in our detection method, the violation of the
precedent inequality indicates the existence of nonclassical
correlations due to entanglement. A counterintuitive property
of the CGLMP inequality is that for dimensions d � 3 the
inequality is more strongly violated by certain nonmaximally
entangled states than by maximally entangled states [4]. In
order to compare the sensitivity of the Bell parameters I2(γ )
and I3(γ ) to an entanglement parameter γ ∈ [0,1], we consider
the following bipartite qubit and qutrit states:

|ψ(γ )〉(2) = 1√
1 + γ 2

(|0〉i |0〉s + γ |1〉i |1〉s), (7)

|ψ(γ )〉(3) = 1√
2 + γ 2

(|0〉i |0〉s + γ |1〉i |1〉s + |2〉i |2〉s). (8)

The Bell parameter itself is a combination of projection
measurements and specific detection settings both explicitly
given in Ref. [3]. It has been shown [4] for qutrits that
the Bell inequality I3 � 2 is maximally violated for
γmax = (

√
11 − √

3)/2 ≈ 0.792. We measured the Bell
parameters I

expt.
2 and I

expt.
3 for qubits and qutrits as a function

FIG. 2. (Color online) Reconstructed density matrices ρ̂d . From
top to bottom: ρ̂d of a qubit, qutrit, and a ququart, based on
background-subtracted coincidence counts. Shown are the real and
the imaginary parts. The small, residual imaginary values are due to
remaining dispersion between the frequency bins.

of γ (Fig. 3). The reduced entanglement, i.e., γ < 1, is
obtained by decreasing the transmission amplitudes of the
bins associated with |1〉i |1〉s using the SLM. The experiment
reveals a higher sensitivity to γ of the Bell parameter for
qubits compared to qutrits, which is in accordance with
theoretical predictions. The theoretical curves are scaled
to the experimental data using the symmetric noise model
ρ̂sn

d (γ ) = λd |ψ(γ )〉(d) (d)〈ψ(γ )| + (1 − λd )1d2/d2 in which
deviations from a pure state due to white noise are quantified
by a mixing parameter λd and 1d2 denotes the d2-dimensional
identity operator. The value of the Bell parameter for ρ̂sn

d (γ )
then scales as λdId (γ ). Note that the specific detection
settings are not optimal for d = 2. In Fig. 3, we therefore
additionally depict values of the Bell parameter for optimal
settings given by Horodecki’s theorem [31]. Similar to the
measured I2(γ ) and in contrast to I3(γ ), the Horodecki curve
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FIG. 3. (Color online) Bell parameter Id in dependence of
the entanglement parameter γ . The experimental Bell parameter
I

expt.
2 is depicted with blue dots and I

expt.
3 with red diamonds.

The 2σ uncertainties are calculated assuming Poisson statistics on
background-subtracted coincidence counts. The theoretically pre-
dicted Bell parameters I2(γ ) (dotted-dashed blue line), I2(γ ) using the
Horodecki theorem (dashed blue line), and I3(γ ) (solid red line) are
scaled with their corresponding mixing parameter. The (horizontal)
dashed black line indicates the local variable limit. We experimentally
determine the mixing parameters to be λ

expt.
2 = 0.920 ± 0.013 and

λ
expt.
3 = 0.807 ± 0.008 with 2σ uncertainties.

is monotonically decreasing for γ < 1. In the d = 3 case the
optimal settings were only determined for γ = 1 and γmax [4].

V. CONCLUSION AND OUTLOOK

In conclusion, we have demonstrated coherent control of
high-dimensional entanglement by performing quantum-state
tomography for qudits up to d = 4 and Bell-test measurements
for qubits and qutrits with a varying degree of entanglement.
Since a broad class of transfer functions can be applied to the
SLM, other qudit encoding schemes, such as time bins and
realizations based on Schmidt modes, can be implemented.
In our actual experiment, the available dimension to encode
qudits in the frequency domain is limited by the setup’s spectral
resolution, the pixel size of the SLM, and the bandwidth of
the pump laser in descending order. Improving the spectral
resolution to match the pixel size of the SLM would allow
for qudits with dimensions as high as a few hundred. Further,
adapting the spectral resolution and the SLM pixel size to
the bandwidth of the pump laser would allow for dimensions
as high as a few million. Thus, this methodology provides
a vast potential to test the fundamental aspects of quantum
mechanics and is of great importance for many aspects of
quantum information science.
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