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Error models in quantum computation: An application of model selection
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Threshold theorems for fault-tolerant quantum computing assume that errors are of certain types. But how
would one detect whether errors of the “wrong” type occur in one’s experiment, especially if one does not even
know what type of error to look for? The problem is that for many qubits a full state description is almost
impossible to analyze due to the exponentially large state space, and a full process description requires even
more resources. As a result, one simply cannot detect all types of errors. Here we show through a quantum state
estimation example (on up to 25 qubits) how to attack this problem using model selection. We use, in particular,
the Akaike information criterion. The example indicates that the number of measurements that one has to perform
before noticing errors of the wrong type scales polynomially both with the number of qubits and with the error size.
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I. INTRODUCTION

In order to develop a quantum computer we need to be able
to coherently control and read out a system of many qubits.
Verifying how a particular experimental implementation of a
quantum computer actually performs will be straightforward
once we can run a computation in a fault tolerant manner: we
just check whether the answer produced by the computation is
correct or not. However, before that time arrives we will need
to employ other less conclusive types of tests.

There are two types of generic tests that provide useful
even if somewhat nonspecific information about many-qubit
systems: multipartite entanglement verification tests [1] and
randomized benchmarking [2,3]. In both cases one may detect
that something is wrong, but one will not find out what exactly
is wrong. Unfortunately, there is no efficient procedure to
figure out what exactly is wrong, simply because we cannot
efficiently simulate a generic multiqubit quantum process on a
classical computer. (For smaller systems quantum tomography
can be used, and even there one has to be careful with
systematic and other errors [4–6].)

For fault tolerant quantum computation [7] one does need
to know not just how large the error probabilities are but also
whether they are of the right type. This is because threshold
theorems [8–12] need to make explicit use of error models.
For example, the calculation of the error threshold may be
based on a “local stochastic” error model (for an introduction,
see [13]). Errors correlated over a long range may then be
disastrous. One mechanism by which such long-range errors
might arise is as follows. A laser field’s phase and intensity
always fluctuate, but, of course, if those fluctuations are always
sufficiently small, the errors they cause will be corrected for by
quantum error correction. But what if the fluctuations, for just
a brief time interval, are large? Then all qubits which happened
to have been accessed during that time interval have a much
larger probability of error. The problem we consider is how
one could notice the presence of such errors.

While there is no systematic and efficient method to solve
this problem completely, there is an efficient and well-tested
method: model selection [14,15]. This term refers to a well-
developed field of (classical) statistics and inference in which
the aim is to rank order different (statistical) models, each
meant to describe some given process. In the present context,

model selection boils down to this: We design a few-parameter
model that describes our predictions of all the processes and
errors that occur in our experiment—it may have a few noise
parameters with a clear physical meaning, for instance—and
compare it with a much larger (but still far from exhaustive)
model that includes many (but not all) possible types of errors.
As long as the large model contains a number of parameters
that scales moderately with the number of qubits, then it still
can be analyzed, even for a few dozen qubits. If that large
model is ranked higher than our few-parameter model, we
conclude that errors occurred that we did not expect.

We are going to discuss an illustrative example of this model
selection procedure. We simulate a quantum state estimation
experiment on N qubits, which is modeled after an actual
experiment performed on 14 ions in an ion trap in which a
14-qubit Greenberger-Horne-Zeilinger (GHZ) state of high
fidelity was generated [16]. We will vary N up to 25 and
assume the goal is to generate a perfect GHZ state. We take a
three-parameter model (with three noise parameters describing
three different noise processes) as our standard error model and
then take a model with O(N3) parameters as the much larger
error model, which includes many types of errors, although,
obviously, not all O(4N ) possible ones. We assume the data
are generated by a “true” state of the form

ρtrue = (1 − q)ρSE + qρGE,

with the subscript SE referring to the standard error model
and GE referring to the more general error model. We
investigate then the following issues: First, does the model
selection procedure recognize that the standard error model
is indeed correct (i.e., ranked higher than the large general
error model) when q = 0? Second, in the case that q �= 0,
how many measurements does one need to take before one
notices that there is in fact an error that lies outside the
standard error model? The last question splits naturally into
two subquestions, namely, how that number scales with the
number of qubits and how it scales with q.

The model selection method we use here is based on
the Akaike information criterion (AIC) [17]. This method is
widely used outside of physics and by now has been applied
on various occasions within quantum information theory as
well [6,18–21]. Most model selection criteria compare the
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goodness of fit of each model while penalizing the number
of parameters, thus possibly favoring simpler models. The
AIC in particular has a clear meaning since it is derived
purely from the principles of information (see Sec. II). It
has been found to perform better than the related Bayesian
information criterion [15] in quantum state and entanglement
estimation [19].

II. PRELIMINARIES

A. Model selection and AIC

Suppose we have taken data and now wish to model the
underlying process that generated the data. Our data contain
some amount of information about the underlying process, but
also statistical fluctuations. How can we determine whether a
model is a good description of the underlying process rather
than of the statistical fluctuations? In general, models with
more parameters will fit the data better but are also more
likely to fit to the fluctuations, and models with too many
parameters are over fitting. One method to find a compromise
between under- and overfitting was proposed by Akaike [17].
He derived an expression for the estimated Kullback-Leibler
divergence between one’s model and the true underlying
process. The Kullback-Leibler divergence is expressed in
terms of two probability distributions for the data, the “true
distribution” {pi} and the distribution generated by our model,
{si}, as follows:

DKL(p||s) =
∑

i

pi ln
pi

si

. (1)

This is a measure for the distance between the two probability
distributions {pi} and {si}. It is also called the relative entropy
and can be understood as the information that is lost if the
model {si} is used instead of the “real” distribution {pi}.

Of course, we do not know the true underlying distribution,
but, nonetheless, the Kullback-Leibler divergence can be
estimated, as was shown by Akaike, using the observed
frequencies. Namely, up to a constant that is the same for
all models, he found the divergence to approximately equal

AIC = −2Lmax + 2K. (2)

Here K is the number of parameters of the model, and Lmax is
its maximum ln likelihood:

Lmax = max
{pk}

∑
k

fk ln pk, (3)

with fk being the number of times outcome k was observed and
pk being the probability according to the model of obtaining
outcome k. Model selection now consists of calculating the
AIC for different candidate models, with the lowest score
corresponding to the best model. In our context this procedure
can distinguish between models that accurately describe the
relevant physical (error) processes and models that spend too
many parameters on fitting statistical noise. We thereby gain
insights into the actual physical processes that cause errors,
and we can tell whether or not errors outside our simple model
are significant.

B. A three-parameter model for noisy GHZ states

We will simulate an experiment on a noisy GHZ state [22]
of N qubits. The ideal GHZ state is a coherent superposition
of all qubits in state |0〉 or all in state |1〉:

|GHZ〉 = 1√
2

(|00...0〉 + |11...1〉). (4)

A high-fidelity version of this state was created in a
trapped ion system for 14 ions [16]. The density ma-
trix ρGHZ = |GHZ〉〈GHZ|, written in the standard basis
|00...0〉,|00...1〉,...|11...1〉, has only four nonzero elements
which all equal 1

2 . This state is maximally entangled and pure.
However, a real quantum system in the laboratory will not be
in this perfect state. There might be several effects that act
on the qubits during the state preparation and/or storage. As a
simple and not unreasonable model we assume just three noise
processes, described by three parameters: a small imbalance
ε between the populations of |00..0〉 and |11..1〉, a systematic
phase shift ϕ of the relative phase between |00..0〉 and |11..1〉,
and δ, which quantifies the loss of coherence between |00..0〉
and |11..1〉 due to random-phase fluctuations. These three
processes will create a mixed state with density matrix

ρ3P = 1

2

⎛
⎜⎜⎝

1 + ε ... δ
√

1 − ε2eiϕ

...
...

δ
√

1 − ε2e−iϕ ... 1 − ε

⎞
⎟⎟⎠ . (5)

C. A large model: permutationally invariant states

For the comparison with our three-parameter model, we
try to find a model that will describe many possible errors
and deviations from this simple model. However, we can’t
model all possible errors that may occur. Our goal is therefore
to design a model with a fairly large (but still polynomial)
number of fitting parameters. If an arbitrary error is affecting
our experiment, it will most likely be partially contained in
this large model and we will detect it. Of course, this leaves
out certain errors that are exactly orthogonal to the large
model. To increase the chance of detecting small errors, for an
actual experiment several such fairly large models should be
considered and compared to each other. There is no systematic
way to find good models for this purpose, but any model with
a large number of parameters can be used. For simplicity, we
only regard one such model in this paper. This suffices for our
purpose of determining how many measurements are needed
as a function of both N and q.

The ideal GHZ state is permutationally invariant, in the
sense that any permutation of its subsystems leaves the overall
state unchanged. Mathematically, this can be expressed as

ρGHZ = 1

N !

∑
πk∈SN

V (πk)ρGHZV (πk)†, (6)

where the sum is over all N ! permutations πk of the N qubits
and V (πk) is the unitary representation of the operator that
permutes the subsystems according to the permutation πk .
Since our simple three-parameter model is also permutation-
ally invariant, it makes sense to use as the large model the set
of all permutationally invariant (PI) states. This set has been
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shown to be very convenient for quantum state reconstruction
and entanglement detection [23–25]. Many experiments aim at
generating GHZ states, W states, or Dicke states, all of which
are PI. Moreover, if the PI part of a state ρ is entangled, then
so is ρ.

(Note that this choice does not imply that we think the
actual state is permutationally invariant, nor does it imply that
we think the error process is permutationally invariant. All
that matters is that our model will include the permutationally
invariant part of the actual error process. As long as that part
does not vanish, we will detect it. Recall that we cannot analyze
all possible error models.)

As shown in Ref. [25], any permutationally invariant state
can be represented as a block-diagonal matrix:

ρPI =
N/2⊕

j=jmin

Pjρj ⊗ 1

Kj

, (7)

where ρj is a spin-j matrix of dimension 2j + 1, {Pj } is a
probability distribution over the spin values j , and Kj is the
dimension of the non-PI part of the spin-j state, given by

Kj =
(

N

N/2 − j

)
−

(
N

N/2 − j − 1

)
. (8)

The dimension of the permutationally invariant subspace
grows as ∝N3 with the number of qubits N . This model fits
our purposes very well. For a dozen or more qubits the model
contains a substantial number of parameters, but not so many
that we cannot analyze it.

It was shown in Refs. [24,25] that the necessary and
sufficient number of different measurements needed to gain
full information about a permutationally invariant state is

DN =
(

N + 2

N

)
. (9)

In particular, we can choose to measure observables of the form
Â⊗N ; that is, we can measure the same single-qubit observable
on each qubit. We just have to pick DN different single-qubit
observables, the outcomes of which ought to be more or less
uniformly distributed on the Bloch sphere [24,25].

III. NUMERICAL RESULTS

We simulate an experiment on N qubits. The “true” state
that generates the data is chosen to be an unequal mixture of a
noisy GHZ state ρ3P (contained in the three-parameter model)
and a randomly picked permutationally invariant state ρPI

orthogonal to the three-parameter states (just to make sure the
overlap of the actual state with the three-parameter subspace
does not vary with N ). We write

ρtrue = (1 − q) ρ3P + q ρPI. (10)

The parameter q determines the probability of “wrong” types
of errors, namely, those outside our standard error model. We
simulate a certain number of measurements, where each single
measurement consists of measuring N times the same single-
qubit observable, where the latter is chosen from the set of DN

single-qubit observables. Thus, a single measurement yields N
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FIG. 1. (Color online) The differences in AIC values �AIC
for a state of N = 5 qubits plotted against the total number of
measurements. There are 21 measurements settings in this case, and
the PI model contains 55 parameters. The simulation was run 100
times and the average �AIC is plotted. Error bars refer to the spread
of �AIC over the 100 runs.

outcomes 0 or 1. We assume for simplicity that each of the DN

observables is measured the same number of times. We then
find numerically the maximum likelihood state for the three-
parameter model as well as for the large PI model. This is easy
for the three-parameter model since the minimization is over
just three parameters. For the PI model we apply an iterative
algorithm described in [25] for which the required computation
time increases only polynomially in the number of qubits.
Using the two maximum likelihoods thus obtained, we can
calculate the respective AIC values for the three-parameter and
PI models and plot the difference, which we denote by �AIC.
Negative values of �AIC correspond to the three-parameter
model being favored, whereas positive values indicate that the
PI model is better.

Figure 1 shows �AIC for two different “true” states,
one with q = 0 and the other with q = 0.02. For q = 0
the Akaike information criterion correctly always prefers the
three-parameter model. This is not as trivial (since the data
are generated from a three-parameter state) as it may seem,
because the statistical fluctuations are substantial (note that
each observable is measured just a few dozen times for the
smallest total number of measurements in the plot). For q =
0.02 we see that a relatively small number of measurements
suffices to start favoring the PI model over the three-parameter
model, and the more measurements one performs the firmer
that conclusion gets. For very small numbers of measurements,
a nonzero q cannot be detected yet, and we may interpret the
point where �AIC crosses zero as the point where sufficiently
many measurements have been taken to detect the presence of
errors outside our standard (three-parameter) error model.

Let us consider how that crossing point changes with the
number of qubits. A range of results for different N is plotted in
Fig. 2(a). With increasing N the crossing point clearly moves
toward larger numbers of measurements. We plot the crossing
point as a function of N in Fig. 2(b). We see that the necessary
total number of measurements to detect a fixed perturbation
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FIG. 2. (Color online) Plots for q = 0.02. (a) The differences in
AIC for several different numbers of qubits, plotted against the total
number of measurements. Note that a single measurement on N qubits
yields N binary outcomes. For very small numbers of measurements,
�AIC approaches twice the difference in the number of parameters of
the two models (≈N3/3). (b) The average number of measurements
required to reach the point where both models are rated equally. Small
even and odd numbers of qubits behave slightly differently.

q increases only linearly in the number of qubits N , which
shows that this can be measured very efficiently. (The number
of single-qubit measurements needed grows as N2.)

It is also useful to investigate how the number of measure-
ments needed to detect a nonzero value of q depends on that
value.

The plots of Fig. 3 show that the total number of
measurements needed increases only moderately with 1/q.
This dependence becomes more favorable with increasing N ,
presumably because there are more ways to detect errors that
occur with a given probability.

IV. CONCLUSIONS

We showed by example how to use the Akaike information
criterion (AIC) to select between different error models in the
context of quantum computing. Thanks to the AIC one does not
need exponentially many parameters to describe an experiment
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FIG. 3. (Color online) (a) �AIC as a function of the number of
measurements performed, for four different values of q and N = 5
qubits. (b) The minimum number of measurements M needed to
detect a perturbation of strength q, for both N = 5 and 10 qubits.

on multiple qubits. Instead, we compared a small model (with
three parameters) with an intermediate-sized model [with
O(N3) parameters]. The former stands for a standard error
model in the context of fault tolerant quantum computing, and
the larger model stands for other (undesired) types of errors.
Since it is crucial to know whether one’s implementation
satisfies the condition for the fault tolerance error threshold
theorems to apply, our method, which works for dozens of
qubits, should be quite useful here. In our specific example
the number of (unentangled) N -qubit measurements needed
to detect errors of the wrong type turned out to scale linearly
with the number of qubits and less than quadratically with the
inverse of the wrong error probability. The latter scaling even
improves with increasing number of qubits.
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