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Negativity and steering: A stronger Peres conjecture
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The violation of a Bell inequality certifies the presence of entanglement even if neither party trusts their
measurement devices. Recently Moroder et al. [T. Moroder, J.-D. Bancal, Y.-C. Liang, M. Hofmann, and
O. Gühne, Phys. Rev. Lett. 111, 030501 (2013)] showed how to make this statement quantitative, using
semidefinite programming to calculate how much entanglement is certified by a given violation. Here I
adapt their techniques to the case in which Bob’s measurement devices are in fact trusted, the setting for
Einstein-Podolsky-Rosen steering inequalities. Interestingly, all of the steering inequalities studied turn out
to require negativity for their violations. This supports a significant strengthening of Peres’s conjecture that
negativity is required to violate a bipartite Bell inequality.
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I. INTRODUCTION

Entanglement [1] seems to lie at the heart of both the mys-
teries and the applications of quantum theory. Its quantification
by various entanglement measures is therefore important.
Suppose that Alice and Bob receive many copies of some
quantum state. If they both have access to suitable trusted
measurement devices, they can perform “local tomography,”
reconstructing the density matrix ρAB . This, in turn, can be
used to calculate entanglement measures, such as the negativity
[2], defined as the total magnitude of the negative eigenvalues
of ρ

TA

AB .
However, Alice and Bob may not trust their measuring

devices and therefore cannot rely on the correctness of any
reconstructed ρAB . Nevertheless, they can still estimate the
probabilities p(a,b|x,y) of getting outcomes (a,b) when
they choose the measurements (x,y). If these probabilities
violate a Bell inequality (and Alice and Bob believe their
measurement devices are unable to communicate), they can be
certain that the state is entangled. Moroder et al. [3] have
recently shown how the magnitude of that Bell violation
can furthermore be used to calculate a lower bound on the
negativity.

Not all entangled states can violate a Bell inequality [4].
Therefore it may be useful to study the intermediate case
in which Alice does not have trusted measuring devices and
yet Bob does. This is known as the Einstein-Podolsky-Rosen
(EPR) steering scenario [5]. In this case Bob can do state
tomography on his system, and the parties can then estimate
σa|x , the collapsed or steered state for Bob that is found
when Alice gets outcome a from measurement x. If the σa|x
violate a “steering inequality,” then their bipartite state is
entangled, and I will show, for the simplest class of steering
inequalities, how to calculate lower bounds on the negativity
for a given violation. The results suggest a strengthening of
the long-standing Peres conjecture [6].
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II. EPR STEERING: RECAP AND NOTATION

Suppose Alice can choose between mA measurement
settings, each of which can result in one of nA outcomes
(all of the following can trivially be adapted to the case in
which different measurement settings have different numbers
of outcomes). Suppose Bob has a dB-dimensional quantum
system. Define an “assemblage” to be a set of dB × dB

Hermitian matrices σa|x where a ranges from 1 to nA and
x ranges from 1 to mA. We require the σa|x to be positive and∑

a σa|x to be independent of x and trace 1. We do not require
the σa|x to be normalized; instead Tr (σa|x) gives the probability
that if Alice performs measurement x she obtains outcome a,
while σa|x/ Tr (σa|x) is the resulting state on Bob’s system.

Does the dependence of Bob’s state on Alice’s measurement
results represent “spooky action at a distance”? Not if there is a
set of normalized states σλ with probability distributions p(λ)
and p(a|λ,x) such that σa|x = ∑

λ p(λ)p(a|λ,x)σλ. In that
case, we can comfort ourselves that Bob’s system was in some
fixed state σλ all along, and Alice’s measurement outcome sim-
ply gave us classical information about λ, causing us to update
our probability distribution for it from p(λ) to p(λ|a,x) =
p(a|λ,x)p(λ)/p(a|x) and therefore assign the state
σa|x/p(a|x) to Bob. This is called a local hidden state (LHS)
model, and the lack of such a model for some assemblages is
called “steering” [5], taken to be the formal definition of an
EPR paradox. See Table I for a comparison of LHS models with
the more common notions of separability and Bell locality.

The classic example is Bohm’s qubit reformulation [7]
of the original EPR [8] setup. This has nA = mA = dB = 2,
with σ1|1 = |0〉 〈0| /2,σ2|1 = |1〉 〈1| /2,σ1|2 = |+〉 〈+| /2 and
σ2|2 = |−〉 〈−| /2. This can trivially be seen to lack an LHS
model, because pure states cannot be decomposed into any
other states.

But can this assemblage be realized in quantum mechanics?
Yes: Bohm gave an explicit two-qubit entangled state ρAB

and measurements Ea|x for Alice that achieve it, i.e., σa|x =
TrA[(Ea|x ⊗ IB)ρAB]. However, it is not necessary to check
this, because Schrödinger [9] and later Hughston, Jozsa, and
Wootters [10], among others, have shown that any assemblage
satisfying the basic criteria given above has a quantum
realization. However, that result makes use of a pure entangled
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TABLE I. Summary of three scenarios in which bipartite entanglement can be quantified. By choosing POVMs Ea|x for Alice one can turn a
state ρAB into an assemblage σa|x = TrA[(Ea|x ⊗ IB )ρAB ]. By choosing POVMs Eb|y for Bob one can turn an assemblage σa|x into probabilities
p(a,b|x,y) = Tr (Eb|yσa|x). These mappings preserve all the listed properties; in particular, a separable state always provides an LHS model,
which in turn always provides an LHV model. On the other hand, by encoding Bob’s classical data using computational basis states, an LHV
model can always be turned into an LHS model with particular measurements for Bob, which can similarly be turned into a separable state
with particular measurements for Alice. Combining both directions we see that an assemblage can arise from a separable state if and only if it
has an LHS model.

Scenario Tomography Steering Bell nonlocality
Trusted parties Both Bob Neither
Key parameters Dimensions dA,dB Settings mA, outcomes nA, dim. dB Settings mA,mB , outcomes nA,nB

Data ρAB ∈ L(HdAdB ), state σa|x ∈ L(HdB ), “assemblage” p(a,b|x,y) ∈ R, probabilities

Positive ρAB � 0 σa|x � 0 ∀a,x p(a,b|x,y) � 0 ∀a,b,x,y

Normalized Tr (ρAB ) = 1
∑

a Tr (σa|x) = 1 ∀x
∑

a,b p(a,b|x,y) = 1 ∀x,y

No signalling A → B Implicit
∑

a σa|x independent of x
∑

a p(a,b|x,y) independent of x

No signalling B → A Implicit Implicit
∑

b p(a,b|x,y) independent of y

Allowed in QM Whenever above Whenever above It is complicated
is satisfied is satisfied [9,10] (see, e.g., [11])

Creatable using local ρAB = ∑
λ p(λ)ρλ ⊗ σλ σa|x = ∑

λ p(λ)p(a|x,λ)σλ p(a,b|x,y) = ∑
λ p(λ)p(a|x,λ)p(b|y,λ)

operations and shared Satisfies all entanglement Satisfies all steering inequalities, Satisfies all Bell inequalities,
randomness witnesses, is “separable” has “local hidden state has “local hidden variables

(hard to check in general) (LHS) model” (LHV) model”
(checkable with SDP) (checkable with linear program)

state between Alice and Bob. The aim of this paper is explore
to what extent we can get by with less entanglement than
that.

III. STEERING INEQUALITIES:
A SEMIDEFINITE WARMUP

Let X be a Hermitian matrix. A semidefinite program [12]
is the minimization of some linear functional of X subject to
X � 0 and bounds on linear functionals of X. We can easily
generalize this to multiple Xi by constructing a block-diagonal
X containing each one. Semidefinite programs can be solved
in polynomial time using freely available code, e.g., [13,14].

For a given nA,mA,dB , define a “steering functional” F by
a set of dB × dB Hermitian matrices Fa|x where a ranges from
1 to nA and x ranges from 1 to mA. F maps an assemblage
to a real number by

∑
a,x Tr (Fa|xσa|x). [Recall that any linear

map from the Hermitian matrices to the real numbers can be
written Tr (F ·) for some F .]

Since any valid assemblage has a quantum realization, it
is trivial to write down a semidefinite program to find the
quantum maximum Q of F :

maximize
∑
a,x

Tr (Fa|xσa|x)

subject to σa|x � 0,∑
a

σa|1 =
∑

a

σa|x ∀x ∈ {2, . . . ,mA},
∑

a

Tr (σa|1) = 1.

(1)

Now consider the cases when the assemblage has an LHS
model. Notice that by shifting randomness into p(λ) we can
always make Alice’s part of the model deterministic, i.e., let λ :
{1, . . . ,mA} → {1, . . . ,nA} and p(a|x,λ) = δa,λ(x). We can

furthermore combine p(λ) and σλ into subnormalized states
σ̃λ = p(λ)σλ. Hence an assemblage has an LHS model if and
only if there exist nA

mA positive σ̃λ with
∑

λ Tr (σ̃λ) = 1 such
that

σa|x =
∑

λ

δa,λ(x)σ̃λ =
∑

λ

λ(x) = a

σ̃λ. (2)

With the above reformulation in hand, we can now write down
a semidefinite program to find the maximum value L of F over
all LHS models:

maximize
∑

λ

Tr

[(∑
x

Fλ(x)|x

)
σ̃λ

]

subject to σ̃λ � 0,∑
λ

Tr (σ̃λ) = 1.

(3)

F � L is called a (linear) steering inequality. If L < Q then
the inequality is nontrivial, i.e., can be violated by quantum
theory (QM). More general (nonlinear) steering inequalities
have also been found, but I will not consider them here as they
do not appear to be amenable to the techniques below. This
restriction is not too onerous since every assemblage without
an LHS model violates some linear steering inequality [15].

IV. BOUNDING NEGATIVITY

If one observes an assemblage σa|x that lacks an LHS
model then one can conclude that it must have arisen from
Alice measuring her half of some entangled state ρAB . We
would now like to make that statement quantitative, i.e., find a
lower bound on the amount of entanglement in ρAB . A lower
bound is the best we can hope for, since Alice might “waste”
entanglement by choosing suboptimal measurements. If we
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quantify entanglement by the negativity N then we are trying
to

minimize N (ρAB)

subject to TrA[(Ea|x ⊗ IB)ρAB] = σa|x,
ρAB,Ea|x � 0,∑

a

Ea|x = IA ∀x.

(4)

(We do not need to require that ρAB has unit trace since this
follows from the normalization of σa|x .) This would appear
to be a difficult problem, first because we need to consider all
possible dimensions dA for Alice’s system and second because
(Ea|x ⊗ IB)ρAB contains the products of two unknowns, Ea|x
and ρAB .

Adapting the techniques of Moroder et al. [3] (which are
based on the “Navascués-Pironio-Acı́n hierarchy” [11]), we
can relax Eq. (4) in a way that removes both difficulties. First
notice that without loss of generality we can take the Ea|x to be
projective measurements, possibly by increasing dA. Adopt the
shorthand A0 = IA, A1 = E1|1, A2 = E2|1, up to A(nA−1)mA

=
EnA−1|mA

; i.e., {Ai} consists of the identity plus all except the
last Ea|x for each setting x. Define a completely positive map
on Alice’s system χ (ρAB) = ∑

n(Kn ⊗ IB)ρAB(K†
n ⊗ IB) by

Kn = ∑
i |i〉 〈n| Ai . (The key difference from [3] is that here

an analogous map is not applied by Bob.) Then

χ (ρAB) =
∑
ij

|i〉 〈j | TrA[(A†
jAi ⊗ IB)ρAB]. (5)

In fact there is an infinite hierarchy of relaxations, with
the above being used at level l = 1. In general, χ maps
Alice’s system to l qudits, with d = (na − 1)mA + 1, using
Kn = ∑

i1,... ,il
|i1, . . . ,il〉 〈n| Ai1Ai2 . . . Ail .

The basic idea is to optimize over possible χ (ρAB ) instead of
ρAB itself. Hence we need to translate each condition in Eq. (4).
The first condition can be enforced using |i,0, . . . ,0〉 〈0, . . . ,0|
blocks of χ (ρAB), which should be equal to TrA[(Ai ⊗
IB)ρAB]. Since χ is completely positive we can relax ρAB � 0
to χ (ρAB) � 0. The positivity of the measurement outcome
is enforced by taking them to be projectors, and the final
requirement of summing to identity has become implicit by
not including the last outcome of each measurement in the Ai .

The form of the map χ also puts several (linear) restrictions
on χ (ρAB), the satisfaction of which I will call “χ validity.”
First, since A0 = IA any blocks whose indices are the same
when ignoring zeros must have identical contents. There are
further constraints from the fact that the Ai are Hermitian,
squares to themselves, and orthogonal to other Aj with the
same setting. For example, if nA = 3, mA = 2, and l = 1 then
we have the block-matrix form:

χ (ρAB) =

⎛
⎜⎜⎜⎜⎜⎜⎝

σr σ1|1 σ2|1 σ1|2 σ2|2
σ1|1 σ1|1 0 X1 X2

σ2|1 0 σ2|1 X3 X4

σ1|2 X
†
1 X

†
3 σ1|2 0

σ2|2 X
†
2 X

†
4 0 σ2|2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6)

where σr is Bob’s reduced state
∑

a σa|x and Xi are arbitrary
matrices, for example, X1 = TrA[(E1|2E1|1)ρAB], which is not

an observable quantity. The reader may find it helpful to
compare Eq. (6) with Eq. (7) of [3].

The final step is to translate the objective function
N (ρAB). Similarly to [3], write N (ρAB) = min{Tr (ρ−)|ρAB =
ρ+ − ρ−,ρ

TB± � 0} and relax this to min{t(χ (ρ−))|χ (ρAB) =
χ (ρ+) − χ (ρ−),χ (ρ±)TB � 0}. t(χ (ρ)) indicates the trace of
the |0, . . . ,0〉 〈0, . . . ,0| block of χ (ρAB), such that t(χ (ρ)) =
Tr [TrA(ρ)] = Tr (ρ). Also, χ (ρ)TB = χ (ρTB ) since χ is local
to Alice’s system.

So the final form is

minimize t(χ−)

subject to χ+ − χ− matches assemblage,

χ+ − χ− � 0,

χ
TB± � 0,

χ± are χ valid,

(7)

whose solution, as argued above, lower bounds the solution
of Eq. (4). If one is not interested in specific assemblage but
rather a given value v of a steering functional F , then one
should

minimize t(χ−)

subject to f (χ+ − χ−) = v,

t(χ+ − χ−) = 1,

χ+ − χ− � 0,

χ
TB± � 0,

χ± are χ valid,

(8)

where f (·) is defined as the evaluation of F using the
appropriate blocks of χ , i.e., f (χ (ρ)) = F (ρ). Finally, if
one wants to upper bound the value of F on states with no
negativity [called positive partial transpose (PPT) states], then
one should

maximize f (χ )

subject to t(χ ) = 1,

χ � 0,

χTB � 0,

χ is χ valid.

(9)

V. RESULTS: STRONGER PERES CONJECTURE?

I implemented Eqs. (1), (3), and (7)–(9) in MATLAB using
the YALMIP [16] modeling system. The scripts are available
in [17]. One of the simplest steering inequalities is Eq. (63)
in [15], which applies in the case nA = mA = dB = 2 and in
the present notation is proportional to F1|1 = X, F2|1 = −X,
F1|2 = Y , and F2|2 = −Y , where X and Y are the Pauli
matrices. LHS models satisfy F �

√
2 while the quantum

maximum is F = 2. The results of Eq. (8) are shown in Fig. 1.
Focusing on

√
2 � F � 2 we see that at l = 3 we have

convergence to the bound N � F−√
2

4−2
√

2
. This bound is tight

because F = √
2 can be achieved with a separable state (N =

0), while F = 2 can be achieved with a maximally entangled
two-qubit state (N = 1

2 ). The points between can therefore
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FIG. 1. (Color online) The results of Eq. (8) applied to a simple
steering inequality. The lowest (red) curve is l = 1, the next (blue) is
l = 2, and the highest (black) is l = 3.

be achieved by convex mixtures of the two, by the reasoning
spelled out in the Appendix of [3].

A slightly more involved steering inequality, with mA = 3,
is Eq. (66) of [15], which is obtained by adding F1|3 = Z

and F2|3 = −Z to the previous case. Now F �
√

3 for LHS
models while the quantum maximum is F = 3. The results
of Eq. (8) for this inequality are shown in Fig. 2. Notice
that the Werner state ρ0.6 = 0.6 |ψ−〉 〈ψ−| + 0.1I [where
|ψ−〉 = (|0〉 |1〉 − |1〉 |0〉)/√2] gives F = 1.8 >

√
3. Hence

the presence of negativity in that state can be certified,
even though ρ0.6 has an LHV model [18], and therefore no
entanglement could be certified if neither party were trusted.

A common feature of both examples is that any F outside
the range of LHS models signifies the presence of negativity.
This is somewhat surprising, since there are PPT (i.e., zero neg-
ativity) states that are nonetheless entangled [19]. It is prima
facie possible for such states to violate a steering inequality.

In the Bell scenario, Peres has conjectured [6] that the
probabilities from measuring PPT states always have an
LHV model, a conjecture supported by the results of [3].
Although a multipartite version of this conjecture has been
disproved [20], the bipartite case remains open. Based on the
above observation, one might tentatively conjecture that PPT
states cannot violate steering inequalities; i.e., the assemblages
obtained by measuring them always have LHS models. Since
an LHS model implies an LHV model, but not vice versa,
this statement is strictly stronger than the original Peres
conjecture. Hence, if the original Peres conjecture is false,
this strengthened conjecture may be a good starting point to
seek counterexamples.

The methods provided in this paper can be used to search for
counterexamples to this stronger conjecture. In that direction,
I have used Eq. (9) to upper bound the PPT violations of
various steering inequalities. In all but one of the cases I have

0.5

M
in

im
u
m

N

√
3 3

F

FIG. 2. (Color online) The results of Eq. (8) applied to another
steering inequality. The lowest (red) curve is l = 1, the next (blue) is
l = 2, and the highest (black) is l = 3.

TABLE II. List of steering inequalities for which I have compared
the ranges obtained by LHS models to the ranges obtained by PPT
states. dB is the dimension of Bob’s system, and mA and nA are the
number of settings and outcomes for Alice. The two ranges agree
within numerical precision at level l of the hierarchy of bounds on
the PPT range.

Inequality dB mA nA l

Eq. (63) of [15] 2 2 2 1
Eq. (66) of [15] 2 3 2 1
Eq. (67) of [15], j = 1 3 3 3 1
Eq. (67) of [15], j = 3/2 4 3 4 1
Eq. (67) of [15], j = 2 5 3 5 1
Eq. (67) of [15], j = 5/2 6 3 6 1
Eq. (67) of [15], j = 3 7 3 7 1
Eq. (67) of [15], j = 7/2 8 3 8 1
Eq. (67) of [15], j = 4 9 3 9 1
Eq. (14) of [22] 2 2 2 1
Eq. (1) of [21], n = 4 2 4 2 1
Eq. (1) of [21], n = 6 2 6 2 2
Eq. (1) of [21], n = 10 2 10 2 See text
Eq. (7) of [23], n = 4 2 4 2 2
Eq. (7) of [23], n = 5 2 5 2 2

tried, an upper bound agreeing (within numerical precision) to
the LHS bound is always found, supporting the strengthened
conjecture (see Table II for details). The exception was Eq.
(1) of [21] with n = 10. At the first level the PPT bound is
approximately 0.0537 above the LHS bound. At the second
level the difference is approximately 0.0012. Unfortunately
the third level is not tractable on my hardware, so the results
for this inequality are inconclusive.

All the steering inequalities in Table II are fairly “natural”
or “symmetric,” and this might be a problem when searching
for a counterexample to the strengthened Peres conjecture.
Therefore I have also tried a different strategy of randomly
generating operators Fa|x , using Eq. (3) to bound their values

TABLE III. List of parameter regimes for which I have generated
4000 random steering inequalities and checked for counterexamples
to the stronger Peres conjecture. The final column shows the level
of the hierarchy at which agreement between Eqs. (3) and (9) was
achieved to within numerical precision for the “hardest” inequality in
that regime.

dB mA nA l dB mA nA l dB mA nA l

2 2 2 1 3 2 4 1 4 3 2 1
2 2 3 1 3 2 5 1 4 3 3 1
2 2 4 1 3 2 6 1 4 4 2 1
2 2 5 1 3 3 2 1 5 2 2 1
2 2 6 1 3 3 3 1 5 2 3 1
2 3 2 2 3 3 4 1 5 2 4 1
2 3 3 1 3 4 2 2 5 2 5 1
2 3 4 1 3 4 3 1 5 2 6 1
2 3 5 2 4 2 2 1 5 3 2 1
2 4 2 1 4 2 3 1 5 3 3 1
2 4 3 2 4 2 4 1 5 4 2 1
3 2 2 1 4 2 5 1 5 5 2 1
3 2 3 1 4 2 6 1 6 2 2 1
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on LHS models and then comparing that with the bounds from
Eq. (9). The limiting factor on increasing the parameters dA,
nA, nB appears to be Eq. (3). In Table III, I list the cases in
which I was able to generate 4000 random sets of operators
and check for counterexamples. None were found.

VI. CONCLUSIONS

The EPR steering scenario is an interesting middle ground
in which to study entanglement. The entanglement of some
states, invisible in the fully device independent scenario due
to the existence of an LHV model, can be quantified using
the techniques described above. On the other hand, there are
certainly entangled states that have LHS models [5], so some
entanglement can only be quantified when both parties are
trusted. It appears to be possible that all PPT entangled states

are in the latter category. This is a stronger version of the Peres
conjecture and is the main open question posed here.

A more technical question I have not addressed is whether
the methods here can be proven to always converge to a tight
bound, as was shown for [3].

Finally, a more conceptual open question is whether the
EPR steering scenario allows for the quantification of anything
other than negativity. It would be particularly interesting if that
were possible for a quantity that is completely unavailable in
the fully device independent scenario.
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