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There exist memoryless zero-capacity quantum channels that when used jointly result in a channel with positive
capacity. This phenomenon is called superactivation. Making use of Parrondo’s paradox, we exhibit examples
of the superactivation-like effect for the capacity of classical communication channels as well as quantum and
private capacity of quantum channels with memory. There are several ingredients necessary for superactivation
of quantum capacity to occur in the memoryless case. The first one is the requirement for the quantum channels
which are suitable for superactivation to come from two distinct families: binding entanglement channels and
erasure channels. The second one is the ability to utilize inputs which are entangled across the uses of the
channels. Our construction uses a single family of erasure channels with classical memory to achieve the same
superactivation-like effect for quantum capacity without any of the ingredients above.
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I. INTRODUCTION

When can we achieve reliable communication over an
imperfect channel? Classical information theory, developed
by Shannon, gives a satisfactory answer to this question when
the information that we want to transmit and the underlying
channel are both classical. It characterizes the performance of
every classical channel with a single figure of merit: classical
capacity. However, if we turn to sending quantum information,
it is inadequate because the capacity of quantum channels
also depends on what other resources are available. This
gives rise to the numerous types of capacities of the quantum
channels. In particular, quantum capacity of the quantum
channel characterizes its ability to transmit entanglement
reliably. Private capacity indicates how suitable the channel
is for the task of secret key sharing. The contrast between
classical and quantum channels is especially stark when we
turn to zero-capacity channels. In classical information theory
they are precisely the set of useless channels: the receiver
cannot decode the message reliably from the sender because
of the adverse effects of noise.

In 2008 Smith and Yard [1] showed that this is not the
case for quantum memoryless channels. They provided an
intriguing example of two zero-capacity memoryless quantum
channels, which, when combined, result in reliable transmis-
sion of quantum information reversing the deleterious effects
of noise. This phenomenon is called superactivation. It is
of great interest because it may provide clues about novel
methods of transmitting the frail quantum data in the presence
of the strongly deleterious noise in the channel.

One important aspect of the channels whose capacity
is currently known to be superactivated is the requirement
that they must come from two distinct classes: the first one
comes from the set of binding entanglement channels [2], and
the second one comes either from the set of zero-capacity
erasure channels with the rational erasure probability or
from depolarizing channels in the regime where they become
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antidegradable [3]. The capacity of the channel from each
of those classes cannot be superactivated by another channel
within the same class [4]. Apart from these two families of
channels, it is not known if there exist qualitatively different
zero-capacity channels that give rise to the superactivation of
the quantum capacity. This is in part because proving that a
given channel has zero capacity is hard.

The simplest example of the channel from the latter class
is the 50% erasure channel: half of the time it forwards the
input state to the receiver, and half of the time it erases the
input state, sending Bob the erasure flag. The quantum and
private capacity of erasure channels is well studied in the
regime without feedback. However, despite its simplicity, the
quantum capacity under backward classical communication
assistance is unknown [5,6].

Another crucial ingredient for superactivation which was
implicitly present in all of the protocols is the use of inputs
which are entangled across multiple uses of the channels [1].
This manifestly quantum feature was known to increase the
quantum and classical capacity of quantum channels. It is also
the reason why there is no computationally tractable way of
finding the capacity of a general quantum channel. The extent
to which inputs entangled across the uses of the channel may
help is unknown.

Unlike the situation with the quantum capacity, showing
that the private capacity can be superactivated turned out to be
a much harder question that remained without an answer for
channels both with and without memory, despite many efforts
[7–9]. Private capacity was recently found to be nonadditive:
the sum of the private capacities of individual channels turned
out to be smaller than the private capacity of the joint channel
composed of them [7,8]. Superactivation is the strongest form
of nonadditivity: it occurs when all the individual channel
capacities are zero, but the joint capacity is strictly positive.

Curiously, for all previously known constructions which
exhibit nonadditivity of the private capacity it is also necessary
to make use of the inputs, which are entangled across the use
of the channel.

For many tasks of information processing considering
merely memoryless channels, quantum or classical, is not
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sufficient. For most practical purposes one would like to know
how well the channel performs given finitely many uses. In
this regime the assumption that noise is uncorrelated between
channel uses is no longer justified: the environment may have
memory. This led to explosive research activity in classical
and quantum information theory that quantifies the capacity of
channels with memory.

In this paper, we provide a general construction for super-
activation of the channels with memory. This construction is
in the spirit of Parrondo’s paradox [10], originally discovered
in the context of Brownian ratchets. It occurs when a player
has access to two specific coin-flipping betting games, each
of which is a loss for him. However, contrary to the intuitive
expectation, playing them in an alternating fashion results in a
winning game.

We show that the presence of classical memory leads
to superactivation of the capacity of classical and quantum
channels. This indicates that the performance of both classical
and quantum channels with memory can no longer be
characterized with a single figure of merit, its capacity. For
quantum channels, we demonstrate superactivation without the
above requirements which were necessary for the memoryless
channels. We introduce two simple zero-capacity quantum
channels which make use only of erasure channels: the first one
being a memoryless erasure channel and the second one being
the combination of erasure channels with classical memory.
Their convex combination results in another channel with
shared classical memory (i.e., in which both channels in the
mixture have access to a shared memory register) which has
positive quantum capacity.

Moreover, this effect also holds for the private capacity
of the channels with memory. This is especially interesting
because due to its simple construction it may provide clues
to constructing the long-sought example of superactivation of
the private capacity in the memoryless setting, which despite
many efforts still remains elusive. The main obstacle for this
lies in the difficulty of proving that a given channel has no
private capacity.

For classical channels, we slightly modify the construction
used to demonstrate superactivation of the quantum and private
capacity of the quantum channel.

Quantum channels with classical memory can be much
more powerful when it comes to information transmission.
There have been demonstrations of how memory may benefit
information transmission [11]. In practice, as our construction
will show, supplementing quantum channels with classical
memory offers superior error-correcting capabilities at a very
small price. However, in theory, such channels are hard
to analyze: estimating their properties and computing the
capacity turns out to be a much harder task than for their
memoryless counterparts. In the quantum case this is espe-
cially difficult because for quantum channels with memory
there exists no notion of state-channel duality. Consequently,
one cannot introduce a Choi-Jamiołkowski state to determine
the properties of memoryless channels in the same way as
in [2], so new techniques are required.

This paper is structured as follows: in Sec. II we introduce
the general construction, which gives rise to the Parrondo
effect in the context of communication channels with mem-
ory. In Sec. III we find channels which demonstrate the

superactivation effect for the quantum and private capacity of
quantum channels with memory. Last, in Sec. IV, we provide
the evidence for the superactivation-like effect for classical
channels with memory, followed by a discussion in Sec. V.

II. PARRONDO’S PARADOX
AND GENERAL CONSTRUCTION

It has long been known that noise negatively impacts the
performance of classical and quantum systems. But it does not
always have a deleterious effect [12]. Sometimes, it is possible
to benefit from having noise in the setup [13,14]. There
are several features of the system which make it amenable
to the noise-enhanced performance: the system must have a
certain degree of nonlinearity and asymmetry. The description
of noise-enhanced effects in classical or quantum systems
is generally very unintuitive and complex, with only a few
examples in the quantum case [15]. In 1996, Parrondo devised
his eponymous paradox: an example which in its unrivalled
simplicity demonstrates how noise can increase the odds of
winning in a series of the coin-flipping games [10,16]. This
paradox has been explored in connection with a variety of areas
and systems [17–19]. To introduce the paradox, we closely
follow Ref. [20] and describe it in terms of Parrondo’s games.
The setup consists of two coin-flipping games. We say that the
player gets one pound (i.e., a winning event occurs) if the coin
lands heads up (H), and the player loses one pound when the
coin lands tails (T). Game A involves a simple coin with the
following distribution:

Pr(H ) = p1 − ε, Pr(T ) = 1 − p1 + ε, (1)

where ε > 0 and pi = 0.5. The second game, game B, makes
use of two biased coins each with Pr(H ) = pi , i = 2,3. Game
B keeps track of the current amount of money the player has
or owns M and is defined as follows:

Pr(H |M mod n = 0) = p2 − ε,

Pr(T |M mod n = 0) = 1 − p2 + ε,
(2)

Pr(H |M mod n �= 0) = p3 − ε,

Pr(T |M mod n �= 0) = 1 − p3 + ε,

with probabilities p2 = 0.1 and p3 = 0.75 and n = 3.
The analysis of both of the games can be performed

using elementary probability and properties of Markov chains.
Game A is clearly a losing game, as it is biased against the
player. Game B can be conveniently represented as a Markov
chain having three states, s0,s1, and s2, each corresponding
to the possible values of the remainder M mod 3 with the
respective transition probabilities. This game also turns out to
be losing in the stationary distribution of the chain.

Now, consider a new game, game C, which consists of
alternating between the two losing games A and B. At every
round of the game, the player chooses whether to play game
A or B at random and depending on the outcome of the game,
whether he wins or loses, updates his payoff. One observation
which is relevant for the subsequent discussion is that both
of the games update the payoff. One may think of it as a
shared memory register, which records the status of the player’s
earnings. Unexpectedly, game C turns out to be a winning
game.
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This paradox has inspired a construction of the simplest
possible quantum channels, which gives rise to superactivation
phenomenon below.

We now consider three channels, AMA
, BMB

, and CMC
,

where the subscript Mi ∈ Z,i = A,B,C denotes the memory
register of each channel. At this point, these channels may be
classical or quantum, and they encapsulate the channels which
give rise to Parrondo’s paradox. They will differ depending on
the type of capacity for which we demonstrate superactivation
and also on the type of channel, quantum or classical, we
are investigating. The channel Cλ

MC
consists of the convex

combination of the former two channels with the shared
memory:

Cλ
MC

= λAMC
+ (1 − λ)BMC

. (3)

In a nutshell, the general form of Parrondo’s paradox for
communication channels with memory works as follows. Upon
sufficiently large number N of individual uses of each of the
channels AMA

and BMB
, the state of the memory registers MN

A

and MN
B , respectively, has the property

E
[
MN

A

]
< M0

A, E
[
MN

B

]
< M0

B, (4)

where M0
i for i = A,B denote the initial state of the memory.

However, for Cλ
MC

one has

E
[
MN

C

]
> M0

C. (5)

We will further omit the subscript of the memory register
M when it does not cause confusion regarding the channel
it belongs to. It is rather counterintuitive to expect that the
expected value of the memory of the joint channel can increase
if the memory of an individual channel decreases with the
number of its applications. Previously, this effect has been
demonstrated to occur in a variety of physical systems [10],
but it has never been considered in the context of information
theory.

The gist of the Parrondo’s paradox for communication
channels consists of constructing channels which take advan-
tage of this unexpected reversal in the growth of the value of
the memory register.

III. SUPERACTIVATION OF THE QUANTUM
AND PRIVATE CAPACITY

We now turn to the explicit construction of quantum
channels with memory which demonstrate the superactivation-
like effect with independent inputs across the channel while
utilizing only erasure channels. Each of the channels is an
erasure channel Np defined as

Np(ρ) = (1 − p)ρ + p|e〉〈e|. (6)

This channel is arguably one of the simplest nontrivial quantum
channels. It is known that for p ∈ [ 1

2 ,1] the channel has zero
quantum and private capacity [5], and it has strictly positive
capacity for all values of p ∈ [0, 1

2 ).
We consider two channels with memoryAM andBM , where

M denotes a classical memory subsystem. We show below
that each of the channels has zero capacity, but their convex
combination results in a channel with positive capacity.

The first channel, AM , operates as follows:
(1) Npa

with pa = 0.5 acts on the input state ρ.
(2) If erasure takes place, the value of M becomes M̃ =

M − 1. Otherwise, M̃ = M + 1.
The second one, BM = T M0

M ◦ PM , is the composition of
two channels PM and T M0

M acting sequentially. The channel
PM acts on the input state ρ with one of the erasure channels
Npb

or Npc
depending on the state of the classical memory M:

(1) Depending on the value of M , PM acts as follows:

PM (ρ) =
{
Npb

(ρ), if M mod 3 = 0,

Npc
(ρ), otherwise.

(7)

(2) If the application of Npb
or Npc

results in erasure, then the
value of M becomes M̃ = M − 1. Otherwise, M̃ = M + 1.

The channel T M0
M acts as follows:

T M0
M (ρ) =

{
N0(ρ), if M > M0,

N1(ρ), if M � M0,
(8)

where N0(ρ) = ρ, N1(ρ) = |e〉〈e|. Then, BM = PM ◦ T M0
M

and acts on the input state ρ as follows:
(1) PM acts on the input state ρ.
(2) Its output is forwarded to T M0

M .
(3) T M0

M reads out the value of M , and if M � M0, then N0

acts on the state. Otherwise, the N1 acts.
(4) The output of T M0

M is forwarded to the receiver.
We note that BM is a Markov-type channel in the sense

that its action depends only on what happened in the previous
step. It is also known to be a forgetful channel. Forgetful
channels received a significant amount of attention in recent
years due to their tractable properties and simple yet powerful
structure: an arbitrary quantum channel with memory can be
approximated by a sequence of forgetful channels [21]. Being
one of the simplest models of the channels with memory,
they admit explicit bounds for their classical and quantum
capacity [22,23]. In addition to being forgetful it is easy to
see that they are also indecomposable channels [22]: their
operation does not depend on the input state, but only on the
internal state of the memory.

The following lemma shows that for certain values of pb,pc

channelBM has zero quantum capacity. The proof of the lemma
uses the notion of degradable channels with memory defined
below. The notion of degradable channel, first introduced
by [24], was only considered in the context of memoryless
channels, and what follows is the natural generalization of this
notion for the class of quantum channels with memory. For
such channels, one cannot talk about the Choi-Jamiołkowski
state of the channel, and therefore, the generalization of
degradability (and antidegradability) relies on the properties of
the output of the channel with memory after the finite number
of its uses.

Definition 1. Channel NM with memory register M is
degradable if

∀ n ∃ CPTP map D(n) : N c,(n)
M = D(n) ◦ N (n)

M , (9)

where N (n)
M and N c,(n)

M represent n uses of NM and its
complementary channel, respectively. Similarly, one defines
antidegradable channel with memory as follows.
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Definition 2. Channel NM with memory M is antidegrad-
able if

∀ n ∃ CPTP map D(n) : N (n)
M = D(n) ◦ N c,(n)

M . (10)

Analogous to the memoryless case, the antidegradable
channel with memory has zero quantum capacity.

Observation 1. Let NM be the antidegradable channel with
memory and N (n)

M denote its use n times. Then for all inputs σ

the following is true:
(1) Ic(σ,N (n)

M ) � 0.
(2) Q(N (n)

M ) = 0.
(3) Q(NM ) = 0.
The proof of the above observation is identical to the proof

of Proposition 1 in [25].
Now we are ready to prove the statement of the lemma.
Lemma 1. Consider channel PM , which uses erasure

channels Npb
,Npc

with erasure probabilities pb = 0.9 + ε,
pc = 0.25 + ε, ε = 0.01. The classical memory register M is
initialized with 0. Then channel BM , whose action is defined
in steps 1–4, above has

Q(BM ) = 0. (11)

Proof. As we will show below the effect of BM on the input
will be that of an erasure channel with extremely high erasure
probability, and for each block of output states of finite length
which arrive for Bob, Eve can degrade her output to match his.
This amounts to establishing that channelBM is antidegradable
and thus has zero capacity.

It will suffice to establish the statement of Lemma 1 for
the tensor power inputs ρ⊗n

AA
′ to the channel because, as

will become evident later, neither entangled nor classically
correlated inputs across the uses of the channel will provide
any advantage.

The state of the memory M changes only upon the action
of the Markov channel PM , and despite the unbounded range
of integer values that M can take, its state may be con-
cisely represented by three principal states {|i〉〈i|}2

i=0, which
correspond to those values of M for which M mod 3 = i.
Because our channel is Markov, after a large number n of uses
ofPM the state of the memory will approach its stationary state
Mst = π0|0〉〈0| + π1|1〉〈1| + π2|2〉〈2|, where {πi}2

i=0 are the
probabilities of being in state |i〉〈i|. From the Markov property
of the channel it also follows that

‖M − Mst‖1 � δ(n), (12)

where δ(n) vanishes exponentially quickly in the limit n → ∞.
By choosing a large enough M0 we ensure that the state of

the underlying Markov chain of PM is arbitrary close to the
stationary state before any state will get transmitted to Bob via
T M0

M . Therefore, we will limit the analysis of BM to this case.
We find {πi}2

i=0 from the system of equations for the
stationary distribution of the Markov chain:

(1 − pc)π2 + pcπ1 = π0, (1 − pb)π0 + pcπ2 = π1,
(13)

(1 − pc)π1 + pbπ0 = π2, π0 + π1 + π2 = 1.

This gives π0 ≈ 0.3844. The success probability of Alice
transmitting state ρ through PM when the memory is in the

stationary state is

Pr(x = ρ) = (1 − pb)π0 + (1 − pc)(π1 + π2)

= (1 − pb)π0 + (1 − pc)(1 − π0)

≈ 0.49914,

where x denotes the state that was output byPM . Now, consider
channel BM in its entirety. In order for any state from PM to
be communicated to Bob, the value of M must exceed M0. To
understand the behavior of M we consider a random walk on
Z starting at zero and moving left (decreasing the value of M

by 1) with probability p and right (increasing the value of M

by 1) with probability q = 1 − p, where

p = Pr(x = ρ) = 0.49914, q = Pr(x = |e〉〈e|) = 0.50086.

The value of M after n steps is described as the random
walk Sn = ∑n

i=1 Xi of n random variables {Xi}ni=1, each
of which takes values +1 with probability p and −1 with
probability q. Note that E [Sn] = nE [X1] = −2αn, where
α = 0.009, and it linearly decreases with each subsequent
transmission.

We are now ready to show that the effect of BM on
the input state is that of an erasure channel Ns , with the
probability of erasure s � 1

2 . Consider the probability of Bob
getting a block Lr

k = l1 · · · lk of fixed length k through BM

on steps n,n + 1, . . . ,n + k − 1 of transmission. Each li is
either the erasure flag or a faithfully transmitted state. More
formally, let li1 = · · · = lir = ρ, with i1 � · · · � ir , r � 1, and
lj = |e〉〈e| for j ∈ {1, . . . ,k} \ {i1, . . . ,ir}, r � k. BecauseBM

is the composition of channels T M0
M and PM , the probability

of transmitting a sequence of states Lk via BM factorizes as
follows:

Pr(Lk is sent to Bob) = Pr(PM outputs Lk)

× Pr
(
Si1 � M0, . . . ,Sir � M0

)
.

We can upper bound the right-hand side above as

Pr(Bob receives Lk) � Pr
(
Si1 � M0, . . . ,Sir � M0

)
� Pr(Sn � M0).

To estimate Pr(Sn � M0) we make use of Hoeffding’s inequal-
ity [26,27]:

Pr(Sn � M0) = Pr(Sn − E [Sn] � M0 − E [Sn])

= Pr(Sn + 2αn � M0 + 2αn)

� exp

(
−2(M0 + 2αn)2

4n

)
. (14)

Therefore,

Pr(Bob receives Lk) � exp(−2α2n). (15)

To ensure that entangled inputs do not help, it is enough to
show that the effect of BM on the input is that of a memoryless
erasure channel. Instead of the fixed block Lk , we consider
the general form of the block transmitted to Bob of length
k, SB

k = s1 · · · sk and show that for each i the port si was
obtained by some erasure channel with a probability of erasure
greater than 0.5. The ith position in SB

k contains the mixture
sB
i = rρ + (1 − r)|e〉〈e|, where from the above analysis we

get r = exp [−(n − k + i)C] for some constant C > 0, which
depends only on pb and pc. Picking large enough M0, we can
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guarantee r � 0.5 for all k, and the action of BM on the input
state is that of N1−r with r → 0 when n → ∞.

One can understand this as follows: with each step,
the expectation of the random walk E [Sn] travels towards
−∞ with a speed which is linear in n, i.e., the difference
|M0 − Sn| grows linearly. The law of large numbers states that
after n steps Sn ∈ (−√

n + E [Sn] ;E [Sn] + √
n) with high

probability, but this is not enough because we need to guarantee
that deviating from the average linearly is highly unlikely. A
large deviation bound confirms this intuition: the probability of
being polynomially far from this region after n steps vanishes
exponentially.

Having established that regardless of input the total
effect of BM on each of the ports of SB

k is tantamount
to that of a particular erasure channel with probability of
erasure (1 − r) → 1, the optimal coding for BM must be
the same as the optimal coding for the erasure channel Ns .
We know that its capacity is achieved on tensor product
inputs [5].

Last, what remains to be proved is that BM has zero
capacity. It suffices to show that the complementary channel
Bc

M is degradable, which implies that BM is antidegradable
and thus has zero quantum capacity. This amounts to showing
that for each output block SB

k of length k in Bob’s possession
there exists degrading map Dk which can degrade Eve’s
output SE

k to match Bob’s. Again, we will consider the
stationary case (number of uses of the channel n � 1)
because in the nonstationary case the probabilities of getting
the state or the erasure flag will be weighted by δ(n) from
(12), which can be made arbitrarily small. Also, we consider
the nontrivial regime when M > M0 and the channel T M0

M

becomes N0. The ith position of SE
k contains the mixture

sE
i = (1 − r)ρ + r|e〉〈e|. Showing that Eve can degrade

every position of SE
k to match SB

k is sufficient to establish
degradability of the whole block. Let Dk,i be the degrading
map that acts on the ith position of the block. Then, it can be
seen as performing the coin flip, with probability t returning sE

i

and with probability 1 − t returning |e〉〈e|, i.e., performing the
map (1 − r)ρ + r|e〉〈e| → t[(1 − r)ρ + r|e〉〈e|] + (1 − t)
|e〉〈e| = t(1 − r)ρ + [1 − t(1 − r)]|e〉〈e|. This yields t = r/

(1 − r), and the degrading map for SE
k has the form

Dk = Dk,1 ◦ · · · ◦ Dk,k . �
Remarkably, transmitting quantum states using the convex

mixture of two zero-capacity channels, AM and BM , in which
both of the channels have access to the shared memory
register M enables the sender to convey quantum information
reliably.

More precisely, consider the channel Cλ
M = λAM + (1 −

λ)BM , with λ ∈ (0,1) and the classical memory M shared
between the channels. Lemma 2 below shows that the quantum
capacity of such a convex mixture for λ = 0.5 is strictly
positive: the capacity of Cλ

M experiences a superactivation-like
effect. Note that this is qualitatively different from establishing
the nonconvexity condition for the quantum capacity which
states that the capacity of the channels in the mixture is larger
than the mixture of individual capacities of the respective
channels. Nonconvexity is merely the necessary condition
for superactivation, which presents the strongest violation of
additivity, because the channels in the mixture need not have
zero capacity.

We now show that for λ = 0.5 such a convex mixture
of zero-capacity erasure channels with memory has positive
capacity.

Lemma 2. Consider the channel C0.5
M = 0.5AM + 0.5BM ,

where the underlying erasure channels ofBM (which formPM )
are Npb

,Npc
with erasure probabilities pb = 0.9 + ε, pc =

0.25 + ε, ε = 0.01 and M0 is large. The state of the memory
register M is initially zero. Then,

Q
(
C0.5

M

)
> 0. (16)

Proof. It is sufficient to restrict ourselves to the tensor product
inputs and the stationary state of the memory Mst by picking
a large enough M0 as in the proof of Lemma 1. The value
of M after n steps of transmission will be determined by
the random walk Sn = ∑n

i=1 Xi , where each of the random
variables {Xi}ni=1 takes values +1 with probability p and −1
with probability q = 1 − p, with p and q computed below.
Unlike the case with BM , the memory register of C0.5

M can
change in two distinct ways: when M mod 3 = 0, then half
of the time PM has acted on the input with Npb

transmitting
the input perfectly with probabilities 1 − pb and half of the
time with Npa

, which sent the state intact with probability
1 − pa . Similarly, in other cases, half of the time Npc

acted on
the input state transmitting the input perfectly with probability
1 − pc, and half of the time Npa

sent the state perfectly with
probability 1 − pa . This results in new probabilities rb, rc of
successfully sending the state when the memory is divisible
by 3 and when it is not, respectively:

rb = 1
2 (1 − pa) + 1

2 (1 − pb), (17)

rc = 1
2 (1 − pa) + 1

2 (1 − pc). (18)

Then, solving system (13) with new probabilities of success
(1 − pb) = rb and (1 − pc) = rc, we find π̃0 = 0.345 and

p = Pr(xk = ρ) = rbπ̃0 + rc(1 − π̃0) ≈ 0.5078,

q = 1 − p ≈ 0.4922.

ThenE [Sn] = nE [X1] = 2αn, where α = 0.0078. Unlike the
random walk, which underpins BM in Lemma 1, this random
walk is biased in the positive direction, and for a sufficiently
large number n of uses of C0.5

M the value of M will be larger than
any fixed constant M0. To formalize this intuition, define xi =
ρ, i = 1, . . . ,n to be Alice’s input to C0.5

M and yi , i = 1, . . . ,n

to be Bob’s output. The probability of Alice transmitting the
input state ρ to Bob successfully on the nth use of the channel
is given by

Pr(yn = ρ)

= Pr(xn = ρ)[1 − Pr(Sn � M0)]

= p[1 − Pr(S̃n � −M0)]

= p[1 − Pr(S̃n − E[S̃n] � −M0 − E[S̃n])]

= p[1 − Pr(S̃n + 2βn � −M0 + 2βn)]

= p

[
1 − exp

(
− (−M0 + 2βn)2

4n

)]
, (19)

where S̃n = ∑n
i=1 X̃i is the symmetric reflection of the random

walk Sn, with Xi being +1 with probability q and −1
with probability p and ES̃n = 2βn, β = −α. We applied
Hoeffding’s inequality in Eq. (19).
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After some finite number of steps n0 channel T M0
M

starts acting as the identity channel, and the probability of
sending state ρ to Bob is given by Pr(yn = ρ). Note that
limn→∞ Pr(yn = ρ) = limn→∞ p[1− exp (− (−M0+2βn)2

4n
)] = p.

For large (finite) n the effect of C0.5
M is that of an erasure

channel Ns with s < 0.5, which has positive capacity. �
The simple structure of the underlying channels in the

construction of A, BM , and C0.5
M makes it possible to make a

similar statement about their private capacity. From the proofs
of Lemmas 1 and 2 it immediately follows that the private
capacity of the two channels and their convex combination
can be superactivated.

Corollary 1. For the quantum channels A, BM , and C0.5
M we

have

P(AM ) = 0, P(BM ) = 0, P
(
C0.5

M

)
> 0. (20)

IV. SUPERACTIVATION OF THE CAPACITY
OF A CLASSICAL CHANNEL WITH MEMORY

The purpose of this section is to show that using Parrondo’s
paradox, one can construct classical channels with memory
for which one can demonstrate superactivation of the capacity.

Consider AMA
(x) to be the natural generalization of the

binary symmetric channel with memory and probability p of
confusing the input x ∈ {0,1}:
AMA

(0) = 0 with p = 0.5 and M̃A = MA + 1,

AMA
(0) = 1 with p = 0.5 and M̃A = MA − 1,

(21)
AMA

(1) = 1 with p = 0.5 and M̃A = MA + 1,

AMA
(1) = 0 with p = 0.5 and M̃A = MA − 1.

The capacity of AMA
is

C(AMA
) = 1 − H (0.5) = 0, (22)

where H (p) is the binary entropy function.
The second channel, BMB

, has an identical construction
to the one described in Sec. III with the only difference
being that instead of quantum states the channel takes input
x ∈ {0,1}. Following the proof of Lemma 1 up to the step
where we prove degradability amounts to establishing that the
probability of successful decoding for the rate R > 0 decays
exponentially. This implies that BMB

has vanishing capacity
and limn→∞ C(B(n)

MB
) = 0, where the superscript indicates the

number of uses ofBMB
. Now, consider channel C0.5

MC
, composed

of channelsAMC
andBMC

as in Eq. (3). After sufficiently many
uses of the channel, the memory of the channel Cλ

MC
becomes

MC � M0, and we are left with the mixture of

C̃0.5
MC

= 0.5AMC
+ 0.5PMC

. (23)

Following the calculation of Lemma 2, it is straightforward to
see that C(C0.5

MC
) > 0.

V. DISCUSSION

In our paper we have shown how Parrondo’s paradox
naturally leads to constructions which demonstrate the su-
peractivation of the capacity for classical and quantum
channels with memory. We constructed two quantum zero-
capacity channels which consist of the combination of the

simplest erasure channels. Adding classical memory to the
construction made it possible to superactivate the capacity of
the mixture of those channels. This is especially surprising
in light of the fact that the quantum capacity of erasure
channels cannot be superactivated by one or more memoryless
erasure channels with zero capacity. Adding classical memory
lifts this necessary requirement, which manifests itself for
the known examples of superactivation in the memoryless
case.

We have also shown the analogous construction for classical
communication channels with memory, demonstrating super-
activation of their classical capacity. The effect which was only
known to exist for the quantum capacity of the memoryless
quantum channel now becomes possible for other types of
capacities of quantum as well as classical communication
channels once we allow classical memory.

There were two distinct kinds of erasure channels Np used
in the construction of the quantum channels with memory:
degradable (p < 0.5) and antidegradable (p � 0.5). Despite
similar descriptions, their properties are significantly different.
The former class of channels does not have a tractable
analytical characterization. Channels of this kind do not
even form a closed set. On the other hand, the class of all
antidegradable channels, being closed and convex, admits
tractable characterization. For many practical applications one
may send quantum information through the channel which may
be either degradable or antidegradable without full knowledge
of which of the two classes it belongs to. The natural example
is sending quantum information through the erasure channel
when there is some uncertainty about its erasure probability
or when erasure probability varies. The open question is to
find the capacity when the transmission is performed using
channels which belong to one of the classes above.

In the context of memoryless quantum channels, it is
known that the quantum capacity can be superactivated. It
is plausible that the private capacity can be superactivated
as well, but this question is still open despite attempts to
resolve it [7,8]. Finding a suitable way of approximating
the channels with memory in our construction with their
memoryless counterparts will lead to the resolution of this
question.

The nontrivial channel in our construction, BMB
, consists of

the composition of two channels, PM and T M0
M . However, the

use ofT M0
M is rather artificial. It was necessitated by the fact that

it was not possible to show that channel PM alone has zero
capacity. It makes the construction insensitive to the nature
of the underlying channels, quantum or classical, used for
superactivation. Therefore, an open question is whether there
exists a way to achieve the genuine quantum superactivation
effect for quantum channels with memory, which is impossible
for the classical channels with memory.
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