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One approach to the development of quantum search algorithms is the quantum walk. A spatial search can
be effected by the continuous-time evolution of a single quantum particle on a graph containing a marked site.
In many physical implementations, however, one might expect to have multiple particles. In interacting bosonic
systems at zero temperature, the dynamics is well described by a discrete nonlinear Schrödinger equation. We
investigate the role of nonlinearity in determining the efficiency of the spatial search algorithm within the quantum
walk model, for the complete graph. The analytical calculations reveal that the nonlinear search time scales with
the size of the search space N like

√
N , equivalent to the linear case, though with a different overall constant.

The results indicate that interacting Bose-Einstein condensates at zero temperature could be natural systems for
implementation of the quantum search algorithm.
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I. INTRODUCTION

Searching is arguably one of the most important problems
in computer science. The search problem consists of finding
a particular (marked) element in a set containing N items.
The simplest classical approach is to uniformly sample the set
until the marked element is found, which on average occurs in
a time t = O(N ). Though the sampling can be recast into the
framework of Markov chains, the O(N ) scaling of the classical
search time is optimal.

Grover [1,2] constructed an algorithm based on quan-
tum mechanics that can find the marked element of a set
quadratically faster, in a time t = O(

√
N ). This was proven

to be optimal [3]. The quantum search algorithm can be
recast in terms of quantum walks, the quantum mechanical
extension to Markov chains. The origins of the discrete-time
quantum walk can be traced to Meyer [4,5], and the concept
was further developed in 2001 by several others [6–8]. The
continuous-time quantum walk, the quantum analog of a
continuous-time Markov process, was introduced by Farhi and
Gutmann [9] and extended by them and Childs [10]. Numerous
algorithms based on quantum walks were soon developed that
were shown to be more efficient than the best-known classical
algorithms [11–15]. Among these are quantum walk search
algorithms, based both on the discrete-time quantum walk
[16–20] and on the continuous-time quantum walk [21–23].
In these approaches, the set corresponds to the vertices of a
graph, and the marked element is one distinguishable vertex.
While the spatial search time attains the optimal scaling
in most graphs, including the complete graph, complete
bipartite graphs, m-partite graphs [20], the hypercube [16],
the Johnson graph [24], and regular lattices with dimension
�3 [22], it remains at best t = O(

√
N log N ) for quantum

walks in the two-dimensional square lattice despite much
effort [18,22,25,26], and t = O(N ) in one dimension.

Quantum walks have been realized using a variety of
experimental approaches. Some of the earliest experiments
were based on nuclear magnetic resonance [27,28]. Three
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steps in a discrete-time quantum walk were realized with
25Mg+ ions in a linear Paul trap [29]; longer quantum walks
were effected more recently with 40Ca+ ions [30]. Five steps
in a quantum walk were implemented using passive optical
elements [31,32]. Quantum walks have also been implemented
with single neutral 133Cs atoms [33] confined in optical
lattices [34].

Because the behavior of quantum walks is governed by
quantum interference, it is not necessary to restrict physical
systems to single walkers. For example, a quantum walk with
two identical photons was demonstrated using evanescently
coupled wave guides [35,36]. In fact, there are several
indications that quantum walks with multiple indistinguishable
particles have unique properties. Nonclassical correlations
arise between two noninteracting photonic walkers [36–40].
Two-photon quantum walks with conditioned interactions and
strong nonlinearities were recently reported [41]. Quantum
walks have also been realized using Bose-Einstein condensates
(BECs) of 87Rb [42]. Some classically intractable problems,
such as boson sampling, are efficiently solved using quantum
walks with multiple indistinguishable bosons [43,44]. Theo-
retical work suggests that multiple indistinguishable walkers
could help determine if two graphs are isomorphic, with
interactions improving the power of the algorithm [45–47].
For suitably defined graphs, quantum walks with multiple
interacting walkers are able to perform arbitrary quantum
algorithms [48].

Large numbers of indistinguishable bosons at low tem-
peratures can form a BEC. Implementing a continuous-time
quantum walk using BECs is equivalent to allowing the bosons
to evolve under a governing lattice or graph Hamiltonian.
In the presence of weak particle interactions, the resulting
Gross-Pitaevskii (GP) equation of motion in the mean-field
approximation is nonlinear [49]. In principle, the presence
of nonlinearity in quantum dynamics can radically alter the
performance of quantum algorithms [50], even allowing NP-
complete problems to be solved in polynomial time (NP stands
for non-deterministic polynomial time). One might therefore
conjecture that the time scale for the quantum search problem
could be modified by the presence of nonlinearity. That said,
the nonlinearity that appears in the GP equation has its origins
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in ordinary linear quantum mechanics, which would appear
to rule out any improvement in the scaling of the quantum
search time with N (though it could always be worse). In any
case, it is important to know how the presence of nonlinearity
in the governing equations would affect the performance of a
quantum search. The influence of (a physically motivated)
nonlinearity on the time to effect a quantum walk spatial
search is the central question addressed in this work. The
results indicate that interacting BECs can indeed implement a
quantum spatial search algorithm.

We consider the quantum search algorithm in the complete
graph using a continuous-time quantum walk based on the
discrete GP equation. In the complete graph, each site or
vertex is connected to every other; a boson at a given site
can tunnel or hop to any other site with equal probability.
While a physical lattice with the connectivity of the complete
graph has not yet been realized experimentally, a recent
theoretical proposal to simulate the hypercube graph with
ultracold atoms [51] suggests that other graphs with unusual
connectivity properties might be experimentally feasible in the
future. In any case, study of the complete graph offers several
theoretical advantages. The search time obtained in the linear
quantum walk algorithm has previously been shown to be
optimal [21]. The neighborhood of every vertex corresponds
to all other vertices, so that the quantum walk naturally mimics
a uniform sampling of the set elements. Finally, the symmetry
of the complete graph allows the vertex set to be decomposed
into two inequivalent elements: the marked vertex and the set
of unmarked vertices. This allows the N -dimensional Hilbert
space to be reduced to two dimensions, greatly simplifying the
analysis of the nonlinear problem.

This paper is organized as follows. In Sec. II we review
the continuous-time quantum walk approach to the spatial
search problem and derive the associated nonlinear equation
of motion for a quantum search based on interacting BECs.
The analytical results are presented in Sec. III, and the criteria
for a complete search (unit output probability on the marked
vertex in the limit of large N ) and an incomplete search are
derived. The performance of the algorithm in the presence of
errors is analyzed numerically in this section. The results are
summarized in Sec. IV.

II. BACKGROUND

A. Continuous-time quantum walk search algorithm

In the continuous-time quantum walk, the state of the
quantum walker |ψ〉 is evolved in time by the action of the
Hamiltonian H0 = −γL, where L is the Laplacian operator
and γ is the transition amplitude. Given an N -dimensional
graph G = (V,E), where V = {1,2, . . . ,N} and E correspond
to the set of vertices and edges, respectively, one can define the
Laplacian as L = A − D, where A = A(G) is the adjacency
matrix associated with graph G and D is a diagonal matrix
whose elements are Dii = ∑

j Aij = deg(i), the degree of
vertex i (inclusion of the diagonal is not needed if the graph is
regular). The adjacency matrix specifies the graph connectivity
and its matrix elements are defined as

Aij =
{

1 if (i,j ) ∈ E,

0 otherwise. (1)

In the continuous-time quantum walk, one associates each
vertex i with a basis vector |i〉; the set of basis vectors spans
the N -dimesional Hilbert space. The state of the quantum
walker is |ψ(t)〉 = ∑

i ai(t)|i〉, where ai(t) are time-dependent
complex coefficients. The quantum walk is then effected by
performing the unitary transformation |ψ(t)〉 = e−iH0t |ψ(0)〉
on the particle state vector (h̄ is set to unity in this work).

In the continuous-time quantum walk search algorithm
of Childs and Goldstone [21], one of the basis vectors |w〉
is treated differently. This is accomplished by introducing a
marking or oracle Hamiltonian:

Hw ≡ −|w〉〈w|. (2)

The quantum state is then evolved according to the total
Hamiltonian H = H0 + Hw, i.e., |ψ(t)〉 = e−iH t |ψ(0)〉. It was
shown that if the initial state is chosen to be the uniform
superposition of all sites

|ψ(0)〉 = |S〉 ≡ 1√
N

N∑
i=1

|i〉, (3)

then there exists a time ts and value of γ for which the
probability at the marked site |〈w|ψ(ts)〉|2 = |ψw(ts)|2 will
attain unity. For the complete graph, ts = π

2

√
N and γ = 1

N
.

For the hypercube and an m-dimensional square lattice for
m > 4, the search time remains ts = O(

√
N ).

B. Discrete Gross-Pitaevskii equation

A convenient starting point for the description of interacting
BECs is the GP equation [49]

i
∂

∂t
�(r,t) =

[
− 1

2m
∇2 + V (r) + U |�(r)|2

]
�(r,t), (4)

where V (r) is some time-independent external potential, U

is the particle interaction strength, and �(r,t) is the BEC
wave function. All of the M bosons are assumed to be in
the same single-particle state, so the normalization condition
is

∫
dr|�(r,t)|2 = M . It is convenient to define the BEC

wave function in terms of a new wave function, �(r,t) =√
Mψ(r,t), so that

∫
dr|ψ(r,t)|2 = 1.

Consider functions V (r) corresponding to a series of
N potential energy wells, each centered at rj with j =
1, . . . ,N . A simple example in one dimension would be
V (x) = V0 cos2(πx/a) in a box of length L, where a is some
arbitrary length scale and 0 � x � L; if L/a is an integer,
the potential minima are found at x/a = (2n + 1)/2 with n

positive integers and nmax = N = L/a. If the confinement
is sufficiently strong, the particles comprising the BEC will
be completely confined to the sites of the potential V (r);
reducing the confinement would allow tunneling between
nearby sites. The BEC wave function can then be expanded
in a basis of Wannier functions w(r − rj ) localized to the
sites, ψ(r) = ∑

j ψjw(r − rj ). Inserting this into Eq. (4),
multiplying on the left by w∗(r − rk), and integrating over
all space give

i
∂

∂t
ψk = −

∑
j

γkjψj + gk|ψk|2ψk, (5)
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where

γkj = −
∫

drw∗(r − rk)

[
− 1

2m
∇2 + V (r)

]
w(r − rj ) (6)

is the amplitude to tunnel between sites centered at rj and rk ,
and

gk = MU

∫
dr|w(r − rk)|4 (7)

is the on-site interaction strength. In deriving Eq. (5), the
Wannier functions are assumed to be orthonormal and to be
so strongly localized that the spatial integrals of four Wannier
functions are insignificant unless all their arguments are the
same.

For all the analytical calculations in this work, we make
the further simplifying assumption that γkj = γ > 0 for all
nearest neighbors (j,k) ∈ E and that the particle interactions
are site independent, gk = g. For mean-field theory to remain
valid, one requires g/γ � 5.8z, where z is the site coordination
number (vertex degree) in the limit z → ∞ [52,53]. For
the complete graph KN with N = |V | vertices investigated
in the present work, each vertex has z = N − 1 neighbors.
Mean-field theory therefore requires g/γ � N , which is easy
to satisfy for large N .

The discrete GP equation can then be written

i
∂

∂t
ψk = −γAkjψj + g|ψk|2ψk, (8)

where Akj are the matrix elements of the graph adjacency
matrix A defining the connectivity of the sites. For graphs
with constant degree (i.e., site valency) z, the Laplacian is L =
A − D = A − zI . Because a constant energy offset cannot
change the dynamics, the BEC wave function is equivalently
described by the GP Hamiltonian

HGP = −γL + g

N∑
k=1

|ψk|2|k〉〈k|, (9)

which generates time evolution via the usual Schrödinger equa-
tion i∂ψk/∂t = 〈k|HGP|ψ〉, where ψk = 〈k|ψ〉. The nonlinear
quantum walk search Hamiltonian then takes the following
form:

H = HGP − |w〉〈w| = −γL − |w〉〈w| + g

N∑
i=1

|ψi |2|i〉〈i|.

(10)

For example, in ultracold atom experiments an individual
site of an optical lattice could in principle be ‘marked’ by
modifying the local potential using single-site addressing [54].

The simplest (though not the only) way to guarantee that
γjk = γ is to assume that |rj − rk| = constant for all nearest
neighbors (j,k) ∈ E. The dimension dim(G) of a graph G

is defined as the smallest number d for which the graph
satisfying this property can be embedded in d-dimensional
Euclidean space Rd . For the special case d = 2 these graphs
are called unit-distance graphs; examples include cycles,
regular two-dimensional lattices, and hypercubes. Of course,
the three-dimensional regular lattice also has dimension d = 3.
The complete graph KN with N = |V | vertices investigated
in the present work unfortunately has dimension d = N − 1

[55]; the vertices form a d simplex arranged over the d-
dimensional hyperspherical surface of circumradius r with
fixed distance r

√
2(N + 1)/N [56]. This makes the direct

physical realization of the complete graph connectivity via
a potential energy function V (r) challenging unless a three-
dimensional embedding can be found. In principle, this might
be possible by varying the positions of the physical sites
while simultaneously changing the potential barrier heights.
A much simpler approach would likely be to pursue a
photonic implementation employing passive optical elements
such as multiple beam splitters [57]. The complete graph is
nevertheless interesting from a purely theoretical perspective.

III. NONLINEAR QUANTUM WALK SEARCH
IN THE COMPLETE GRAPH

A. Reduction to two dimensions

Consider the action of Hamiltonian (10) for the N -vertex
complete graph KN . The complete graph is associated with
the adjacency matrix with elements Aij = 1 − δij . The vertex
degree is constant z = N − 1 so the Laplacian is L = A −
(N − 1)I = J − NI , where J is the N -dimensional all-1
matrix. In terms of the initial state |S〉 defined in Eq. (3),
the Laplacian is L = N |S〉〈S| − NI . Since −NI corresponds
to a constant energy shift it cannot change the dynamics of the
system. The Hamiltonian for the quantum walk search, (10),
then becomes

H = −γN |S〉〈S| − |w〉〈w| + g

N∑
i=1

|ψi |2|i〉〈i|. (11)

In the absence of the nonlinear term, this Hamiltonian
corresponds to a two-level operator for states |S〉 and
|w〉. The Hamiltonian then rotates |S〉 into |w〉 in time
ts ∼ √

N inversely proportional to the two states’ overlap
〈S|w〉 = 1/

√
N .

It would be desirable to express the nonlinear Hamiltonian,
(11), as a two-level operator. For the complete graph, the initial
condition, (3), can be written as

|ψ(0)〉 = |S〉 = 1√
N

(|w〉 + √
N − 1|α〉), (12)

where

|α〉 ≡ 1√
N − 1

∑
i

′|i〉 (13)

labels the state orthogonal to |w〉 corresponding to the
superposition of all unmarked sites, and the prime on
the sum denotes the exclusion of i = w. The linear part of
the Hamiltonian is therefore a two-level operator in |w〉 and
|α〉. The equation of motion for any site k = w takes the form
iψk = −γ

∑
m ψm + g|ψk|2ψk , where ψk ≡ 〈k|ψ〉. Together

with the fact that the initial amplitudes are the same at all
sites, this means that the amplitudes at all unmarked sites are
identical for all times. The nonlinear term can therefore be
written

HNL = g|ψw|2|w〉〈w| + g|ψv|2
∑

i

′|i〉〈i|, (14)
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where v denotes any vertex such that v = w. Because ψα =√
N − 1ψv , the nonlinear term becomes

HNL = g|ψw|2|w〉〈w| + g|ψα|2
N − 1

∑
i

′|i〉〈i|. (15)

The equations of motion can be found using

〈w|i ∂

∂t
|ψ〉 = 〈w|H |ψ〉, 〈α|i ∂

∂t
|ψ〉 = 〈α|H |ψ〉. (16)

After straightforward algebra, one obtains

i
∂

∂t
ψα = −γ (N − 1)ψα − γ

√
N − 1ψw + g

N − 1
|ψα|2ψα,

(17a)

i
∂

∂t
ψw = −γ

√
N − 1ψα − (1 + γ )ψw + g|ψw|2ψw, (17b)

with the initial state(
ψα(0)
ψw(0)

)
= 1√

N

(√
N − 1

1

)
. (18)

As hoped, the equations of motion for the complete graph have
now been reduced to a two-level operator. For a large search
space (N � 1), Eqs. (17) become

i
∂

∂t
ψα ≈ −γNψα − γ

√
Nψw + g

N
|ψα|2ψα, (19a)

i
∂

∂t
ψw ≈ −γ

√
Nψα − (1 + γ )ψw + g|ψw|2ψw, (19b)

with the initial state(
ψα(0)
ψw(0)

)
≈

(
1
0

)
. (20)

Since ψα and ψw are complex variables, they can be
represented as

ψα ≡
√

Nαeiθα , ψw ≡
√

Nweiθw , (21)

where Nα and Nw are the populations of bosons in states |α〉
and |w〉, respectively. Equations (19) then correspond to four
coupled nonlinear differential equations. To reduce these to
two coupled equations, one can define new variables:

η ≡ |ψw|2 − |ψα|2 = Nw − Nα; (22a)

φ ≡ θw − θα, (22b)

Equations (19) then become

η̇ = 2γ
√

N
√

1 − η2 sin(φ), (23a)

φ̇ = δ − g

2
η − 2γ

√
N

η√
1 − η2

cos(φ), (23b)

where δ is

δ ≡ 1 − Nγ − g

2
. (24)

Equations (23) are almost identical to those describing the
Josephson dynamics of two weakly coupled BECs; see, for
example, Eq. (2.6) in Ref. [60]. Note that taking the large-N
limit is not necessary; the general-N case is recovered simply
by replacing N → N − 1. The initial conditions for these
variables are

(η(0),φ(0)) =
(

−N − 2

N
,0

)
=

(
−1 + 2

N
,0

)
. (25)

B. Complete search: δ = 0

The complete search corresponds to the evolution of the
state from the initial state, (18), where {|ψα(0)|2,|ψw(0)|2} =
{1 − 1

N
, 1
N

}, corresponding to the maximum probability of the
superposition of all unmarked sites, to the state with maximum
probability at the marked site, i.e., {|ψα|2,|ψw|2} = { 1

N
,1 −

1
N

}. In other words, the search is complete when |η(ts)| =
|η(0)|. To determine if this is possible, it is convenient to
interpret Eqs. (23) as Hamilton’s equations of motion,

η̇ = −∂HC

∂φ
, φ̇ = ∂HC

∂η
, (26)

for some classical Hamiltonian HC . It is straightforward
to verify that a Hamiltonian satisfying both Eq. (26) and
Eq. (23) is

HC = δη − g

4
η2 + 2γ

√
N

√
1 − η2 cos(φ). (27)

This has the same form as the classical Josephson Hamiltonian
[61]. Since ∂H

∂t
= 0, this Hamiltonian is a constant of motion.

The value of HC for a trajectory starting at the initial point
{η(0),φ(0)} = {−1 + 2

N
,0} must therefore be the same for

the desired output {η(ts),φ(ts)} = {1 − 2
N

,0}. This is only
possible if 2δ(1 − 2

N
) = 0 or δ = 0, which corresponds to

the homogeneous case. Setting δ = 0 for a complete search
specifies a critical value for γ :

γ ∗ = 2 − g

2N
. (28)

Note that the hopping coefficient must be positive, which
requires g < 2.

1. Fixed points

The fixed points are obtained by setting Eqs. (23) to 0.
These are

φ1 = 2mπ, m ∈ Z; η0 = 0; (29)

and

φ2 = (2m + 1)π,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η+ = +
√

1 − 4(g−2)2

g2N
,

η0 = 0,

η− = −
√

1 − 4(g−2)2

g2N
.

(30)

As shown in Fig. 1, η+ and η− approach 0 as g decreases and
they both vanish at g = g∗, where

g∗ = 4

2 + √
N

. (31)

To make further progress, one must identify the nature of
the fixed points; a brief review of these concepts is given in the
Appendix. From Eqs. (23) with δ = 0, the functions appearing
in the Jacobian, (A5), are

a(η,φ) = 2γ ∗√N
√

1 − η2 sin(φ), (32a)

b(η,φ) = −g

2
η − 2γ ∗√N

η√
1 − η2

cos(φ). (32b)
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η
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− 0.5

0.5

1.0

FIG. 1. (Color online) Second set of fixed points as a function of
g for N = 1024. The dashed line represents η+; the solid line, η−;
and the thick horizontal line, η0.

The Jacobian is therefore

J = 2γ ∗√N√
1 − η2

⎛
⎝ −η sin(φ) (1 − η2) cos(φ)

− g
√

1−η2

4γ ∗√N
− cos(φ)

1−η2 η sin(φ)

⎞
⎠ . (33)

For the first set of fixed points (η,φ) = (0,2mπ ), the Jacobian
matrix becomes

J(0,2mπ) =
(

0 2−g√
N

− g

2 − 2−g√
N

0

)
, (34)

where the condition γ ∗ = (2 − g)/2N has been applied. The
eigenvalues are

λ± = ±i

√
(2 − g)[4 + g(

√
N − 2)]

2N
. (35)

Because N � 1 and γ ∗ > 0, the eigenvalues are strictly
imaginary. The fixed points are therefore marginally stable,
or centers. The orbit in the vicinity of the fixed point at
(η,φ) = (0,0) is counterclockwise, as shown in the center
(black) filled and dashed circles in Fig. 2.

The second set of fixed points corresponds to (η,φ) =
({η±,0},(2m + 1)π ). Consider first the case (η,φ) = (0,(2m +
1)π ). The eigenvalues of the Jacobian matrix are then

λ± = ±
√

(2 − g)[−4 + g(
√

N + 2)]

2N
. (36)

If g > 4
2+√

N
, these eigenvalues are both real. One is negative

and the other positive, yielding an unstable saddle fixed
point. The trajectories in the vicinity of these fixed points
are depicted as (dark-blue) vectors in Fig. 3. If g < 4

2+√
N

,
then both eigenvalues are imaginary, yielding a marginally
stable fixed point or center. The orbits in the vicinity of the
fixed points (η,φ) = (0, ± π ) are clockwise, as shown iby the
center (black) filled and dashed circles in Fig. 2.

Consider next the fixed points (η,φ) = (η±,(2m + 1)π ).
For both cases, the eigenvalues of the Jacobian matrix are

λ± = ±1

2

√
4(2 − g)2

N
− g2. (37)

η

φ
π

− 1.0 − 0.5 0.5 1.0

− 1.0

− 0.5

0.5

1.0

FIG. 2. (Color online) Trajectory in phase space for N = 1024,
g = g∗, γ = γ ∗ = 2−g∗

2N
. The center (black) and left and right (dark

blue) filled circles are marginally stable fixed points (η,φ) = (0,0)
and (0, ± π ), respectively. Dashed circles are the orbits around these
fixed points. The (light-blue) curve corresponds to the trajectory taken
for a complete search.

For g < 4
2+√

N
the solutions η± do not exist. For g > 4

2+√
N

,
both eigenvalues become imaginary, yielding a marginally sta-
ble fixed point or center. The only difference between the two
cases is that trajectories near the η+ flow counterclockwise,
opposite to the clockwise direction for those near η−; these
are shown as the top (green) and bottom (red) rows of three
orbits in Fig. 3.

Figure 2 clearly shows that all of the fixed points in the
g � g∗ regime are marginally stable or centers. Hence in this
regime the trajectory starts from the initial point (η(0),φ(0)) =
(−1 + 2

N
,0), rotates around the origin, and reaches the final

point of the search (η(ts),φ(ts)) = (1 − 2
N

,0). This behavior is
depicted as the light-blue curve in Fig. 2. Thus, a complete
search is attainable in this regime.

In the other regime g > g∗ there is a saddle fixed point
(η,φ) = (η−,π ) near the initial point (−1,0). The trajectory

η

φ
π

− 1 1 2 3

− 1.0

− 0.5

0.5

1.0

FIG. 3. (Color online) Trajectory in phase space with N = 1024,
g = 2g∗, and γ = γ ∗ = (2 − g∗)/2N [lower (light-blue) curve]. The
bottom row of three (red) filled circles represents η−; the top row of
three (green) filled circles, η+; and the middle row of two (black)
filled circles, η0. The (dark-blue) vectors are the eigenvectors of the
Jacobian matrix at (0,(2m + 1)π ).
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will continue along the positive φ and η will remain close to η−,
so that it would never reach η = +1. As shown in Fig. 3, it is
not likely to have a complete search in this regime. In principle,
one might still have a complete search for g � g∗ because the
linearization procedure is strictly valid only right at the fixed
points, but the range would likely not be extensive. In any case,
for any g ∈ [0,g∗] a complete search is attainable. The value
g = g∗ is chosen for the remainder of the calculations.

2. Search time

Now that the nonlinear quantum search of the complete
graph has been shown to be successful for a range of interaction
strengths g, it is important to determine the scaling of the
search time ts with the number of sites for large N . As
shown in Fig. 2, the trajectory closely resembles a rectangle.
Consider the dynamical equations, (23), with δ = 0 and the
large-N values of g = g∗ ≈ 4/

√
N and γ = γ ∗ = (2 − g)/

2N ≈ 1/N :

η̇ = 2√
N

√
1 − η2 sin(φ), (38a)

φ̇ = − 2√
N

η

[
1 + 1√

1 − η2
cos(φ)

]
. (38b)

For N � 1, the right-hand sides of Eq. (38) approach 0, and the
trajectories are approximated by η(t) ≈ k1 and φ ≈ k2, with
k1 and k2 constants. These can be approximately decomposed
into the following steps.

(I) Constant η: The initial point, (η,φ) ≈ (−1,0) →
(−1,φc), where φc is the intersection of the trajectory with
the φ axis.

(II) Constant φ: (η,φ) ≈ (−1,φc) → (1,φc).
(III) Constant η: (η,φ) ≈ (1,φc) → (1,0).

The search time ts can be written as

ts =
∫

(I)
dt +

∫
(II)

dt +
∫

(III)
dt. (39)

For the first and third steps η is approximately constant, just
as φ is approximately constant for the second step, so

ts ≈
∫ φc

0

dφ

φ̇
+

∫ 1

−1

dη

η̇
+

∫ 0

φc

dφ

φ̇
. (40)

The initial condition, (25), gives a trajectory η(t) ≈ −1
and φ̇ → ∞ so that the first and third integrals make an
insignificant contribution to ts . As shown in Fig. 4, the
η ≈ k1 transition φ = 0 → φc is much faster than the φ ≈ k2

transition η = −1 → 1 (during which the phase hovers in the
vicinity of φc). This system is an example of a relaxation
oscillator [62]. Therefore one can express ts as

ts ≈
∫ 1

−1

dη

η̇
≈

√
N

2 sin(φc)

∫ 1

−1

dη√
1 − η2

= π

2

(
1

sin(φc)

) √
N (41)

for large N . Besides the factor of 1/ sin(φc), this is the usual
expression for the spatial search time.

φ
π

t20 40 60 80 100 120 140

0.6

0.4

0.2

0.2

0.4

0.6

FIG. 4. (Color online) Phase φ as a function of time, when δ = 0,
g = g∗ = 4√

N
, and N = 1024.

Setting δ = 0, g = g∗, and γ = γ ∗, the classical
Hamiltonian HC in Eq. (27) takes the form

HC = 2
√

1 − η2 cos(φ) − η2

2 + √
N

. (42)

For the initial condition η(0) = −1 + 2
N

≈ −1 for N � 1, the
classical Hamiltonian becomes HC ≈ − 1√

N
and this value is

preserved during the evolution. When the trajectory depicted
in Fig. 2 crosses the φ axis at the point (η,φ) = (0,φc), the
Hamiltonian is approximately HC ≈ 2 cos(φc)/

√
N . The

value of the phase at this point is therefore φc =
cos−1(−1/2) = 2π/3. This is consistent with the time evo-
lution of the phase shown in Fig. 4. The time for the nonlinear
search in the large-N limit, Eq. (41), is therefore

ts = π

2

2√
3

√
N = π√

3

√
N, (43)

slower than the linear search by a constant factor
of 2/

√
3 ≈ 1.155.

It is important to check that the linear search time is
recovered in the case g → 0. In this case one has γ ∗ = 1/N

(valid for all N ). The trajectories will then cross the η axis at the
initial condition (η(0),φ(0)) = (−1 + 2

N
,0) when the classical

Hamiltonian, (27), takes the value HC ≈ 2
√

2
N

, valid for N � 1.
When the trajectory crosses the φ axis at (η,φ) = (0,φc), the
classical Hamiltonian becomes HC = 2√

N
cos(φc). Because

the Hamiltonian is a constant of the motion, one obtains φc ≈
cos−1(

√
2
N

) ≈ π/2. The search time for the linear problem,

Eq. (41), is then ts = (π/2)
√

N , consistent with expectations.

3. Errors

In the foregoing analysis, it has been assumed that the
initial amplitudes at all sites are always identical, as are
the amplitudes to hop from site to site. The derivation of
the nonlinear Hamiltonian, (14), is only valid under these
conditions. Relaxing these assumptions prevents the reduction
of the N -vertex system to a two-dimensional problem. Instead,
one must solve N simultaneous coupled nonlinear differential
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FIG. 5. Probability of obtaining the marked site |ψw(ts)|2 at the
search time ts = π

√
N/3 as a function of the maximum error εmax

in the initial state, (45), for g = 4/
√

N , γij = γ ∗ = (2 − g)/2N , and
N = 600. Inset: Success probability under the same conditions but
assuming that the initial state has a constant phase.

equations of the form

i
∂

∂t
ψj = −

N∑
k=1

γjkψk − ψwδjw + g|ψj |2ψj , (44)

where j = 1, . . . ,N including the marked site j = w.
Consider first the possibility that the initial state is not the

uniform superposition of all sites but, instead, some arbitrary
input. Let the initial state be

|ψ(0)〉 = 1√
N + ∑

j εj

N∑
j=1

√
1 + εj e

iπεj |j 〉, (45)

where the uniform amplitudes of Eq. (3) at each site have
now been deformed by a random real number |εj | � εmax as
well as phases in the range {−εmaxπ,εmaxπ}. Equations (44)
were solved numerically in Mathematica with g = g∗ =
4/

√
N , γij = γ ∗ = (2 − g)/2N , and t = ts = π

√
N/3, and

the resulting probability of finding the marked site |ψw(ts)|2
is plotted in Fig. 5 for the particular case N = 600. While
the data show some fluctuations due to the randomization,
the results clearly indicate that the marked site can be found
with a probability exceeding 90% for errors εmax � 0.15.
Surprisingly, if the initial state is assumed to possess phase
coherence (i.e., no randomized phases are included), then the
marked site can be obtained with a probability exceeding
90% for εmax � 0.8, as shown in the inset in Fig. 5. Note
that the εmax = 1.0 case corresponds to a completely random
(but constant-phase) initial state. These results indicate that
the nonlinear quantum search is robust against initialization
noise.

Consider second the possibility that the hopping amplitudes
γij can vary while the initial state is assumed to be uniform.
The simplest case is to consider the effect of randomly deleting
edges, i.e., to suppose that γij = γ ∗ for some fraction 1 − εmin

of the edges and is 0 otherwise. Given a random variable
εij ∈ {0,1}, then one can define

γij =
{
γ ∗ if εij > εmin,

0 otherwise, (46)

which produces an Erdös-Rényi random graph [58] with
approximately (1 − εmin) N (N − 1)/2 edges. Figure 6 depicts

FIG. 6. Probability of obtaining the marked site |ψw(ts)|2 at the
search time ts = π

√
N/3 as a function of the number of zero-weight

edges εmin, assuming a uniform initial state, g = 4/
√

N , γij =
γ ∗ = (2 − g)/2N for nonzero edges, and N = 300. Inset: Success
probability under the same conditions but assuming that the nonzero
edges now have random amplitudes γij > 2γ ∗εmin.

the results for g = g∗ = 4/
√

N and N = 300, assuming a
uniform initial condition. The data show that the quantum
search success probability drops precipitously as a function of
the fraction of 0 edges εmin; to ensure 90% or better probability
at the marked site requires εmin � 0.02. The output probability
does not decrease monotonically with εmin but, in fact,
increases again slightly as the number of zero-weight edges
increases beyond approximately 10%. Similar observations
of enhanced quantum search with increased connectivity have
been reported in the context of the linear discrete-time quantum
walk [59].

Another model for including error in the structure of the
graph is to assume that the values of the hopping amplitudes
are not constant. Consider for concreteness the case γij =
(1 + εij )γ ∗ with the random variable |εij | � 1. The numerics
yield the surprising result that the probability of finding the
marked site |ψw(ts)|2 → 1 as N → ∞ (not shown). For large
graphs, the success of the algorithm is therefore not affected
by the randomization of the hopping amplitudes, as long as
their average is γ ∗ and the initial state is assumed to be
uniform. To make contact with the results in Erdös-Rényi
graphs, suppose that, in addition to the randomization of the
hopping amplitudes, one adds the supplementary condition
that γij = 0 if 1 + εij < 2εmin (recall that 0 � γij � 2γ ∗).
In this case εmin again reflects the fraction of edges that
have zero weight, while the remaining edges have random
amplitudes γij > 2γ ∗εmin. The results, depicted in the inset in
Fig. 6, indicate that randomizing the hopping amplitudes in
this way in fact improves the algorithm’s success probability
under edge deletion relative to the unweighted case. Under
these conditions, an output probability exceeding 90% can
be obtained with approximately 12% of the complete graph’s
edges deleted, compared with only approximately 2% in the
unweighted case.

C. Incomplete search: δ �= 0

As discussed at the beginning of Sec. III B, a complete
search is equivalent to finding a trajectory that makes the
transition η = −1 + 2

N
→ 1 − 2

N
possible. Because HC is a

constant of the motion, however, a complete search requires
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δ = 0. That said, it is conceivable that setting δ = 0 could
yield a time ts where the relative occupation of the marked site
would instead be η � 1 − 2

N
. Consider again the fixed points of

Eqs. (23). Evidently φ = mπ ensures that the right-hand side
of Eq. (23a) is 0, but η = 0 no longer accomplishes this for the
right-hand side of Eq. (23b) because δ = 1 − Nγ − g/2 = 0
by assumption. Now that the search cannot be complete, it is
not necessary to keep the exact expressions for finite N , and
one can work entirely in the limit N � 1. If one again sets
γ = γ ∗ = 1/N , then δ = −g/2. Choosing g = α/Nβ , where
α and β are both positive real numbers, gives δ ∼ N−β , which
vanishes for large N . Equations (23) then become

η̇ = 2
√

1 − η2

√
N

sin(φ), (47a)

φ̇ = −α(1 + η)

2Nβ
− 2η√

N
√

1 − η2
cos(φ). (47b)

To determine the maximum value reached by η, consider
the classical Hamiltonian, (27), which now has the form

HC = −αη(2 + η)

4Nβ
+ 2

√
1 − η2

√
N

cos(φ). (48)

At the initial conditon (η,φ) ≈ (−1,0), the classical
Hamiltonian is HC(0) = α/4Nβ , which is a constant of the
motion. Note that for the incomplete search, the classical
Hamiltonian is now positive. The accessible values of (η,φ) are
found by setting HC = HC(0). The N dependence disappears
if β = 1/2 (i.e., g = α/

√
N ), and the only two real solutions

correspond to η1 = −1 and

η2 = −1 + 4(3x)1/3

3α2
− 16 cos2(φ)

(3x)1/3
, (49)

where

x = α3 cos2(φ)
√

3
√

27α2 + 64 cos2(φ) + 9α4 cos2(φ). (50)

Though the solution, (49), is a bit unwieldy, a few observations
can immediately be made. For small and large α, one obtains,
respectively,

η2(α � 1) ≈ 1 − α2

8
sec2(φ); (51)

η2(α � 1) ≈ −1 + 4

(
2 cos2(φ)

α2

)1/3

. (52)

Note that only even powers of α appear in these expansions,
indicating that the dynamics is unaffected by the sign of the
nonlinearity. Equation (51) shows that a complete search is
only possible for the noninteracting case α = 0, which is
consistent with δ = 0. For any finite interaction strength in
this δ = 0 regime, a complete search is not possible. The
relative fraction at the marked site decreases with α, and
Eq. (52) reveals that it is asymptotically 0 for very large
nonlinearities (though one still requires g < 2). Physically, the
large interaction between atoms favors the initial state which
is the superposition of occupying all sites in the graph. This is
the dynamical self-trapping which has been noted previously
for interacting BECs [63,64].

Interestingly, η
(max)
2 is independent of the size of the search

problem (keep in mind, however, that g = α/
√

N so that

the strength of the nonlinearity decreases with N ). Note
also that the maximum probability is reached for φ = 0. For
example, η

(max)
2 = 0.99 requires α ≈ 0.28. The case η2 = 0

can be obtained directly from Eq. (49), and one obtains
α = ±8 cos(φ). At this value of α, the probability of occupying
the marked site is exactly 1/2; for any smaller α it is higher.

It remains to calculate the time for the incomplete search
ts . As in the δ = 0 case, the right-hand sides of Eqs. (47)
approach 0, which means that the trajectories are approximated
by constant lines. Again, the φ evolution is much faster than
the η evolution for the η ≈ η1 = −1 trajectory. The η ≈ η2

trajectory is not going to be as fast because the
√

1 − η2 term
in Eq. (47b) is no longer almost 0. The search time is then
approximately

ts ≈
∫ 1

−1

dη

η̇
+

∫ 0

φc

dφ

φ̇

= π
√

N

2 sin(φc)
+

∫ 0

φc

dφ
√

N

−α(1+η)
2 − 2η√

1−η2
cos(φ)

. (53)

The critical angle φc is obtained by equating the classical
Hamiltonian, (48), for (η,φ) = (0,φc) with HC(0); this gives
α/4

√
N = 2 cos(φc)/

√
N or

φc = cos−1
(α

8

)
≈ π

2
− α

8
(54)

for small α. For the linear case (α = 0), the critical angle coin-
cides with that found in the previous section for the complete
search. The first term in Eq. (53) is therefore π

√
N/2 sin(φc) ≈

(π
√

N/2)/
√

1 − α2/64, which restricts the strength of the
nonlinearity to |α| < 8 (recall that for |α| > 8 the probability
at the marked site is < 1

2 ).
The second term can be simplified by assuming that the

value of η, given in Eq. (49), remains approximately constant
over the range of integration {−φc,0}. In fact, plotting η for
a range of α shows that it varies from 0 to its maximum
value, Eq. (51), but this increase occurs only over a very small
region in the vicinity of φ = φc. For small α, the time for the
incomplete search, given by Eq. (53), can be approximated as

ts ≈ π

2

√
N

(
1 + α2

128

)
−

√
N

∫ 0

−φc

dφ

α + 4 cos(φ)/α

≈ π

2

√
N

[
1 + α

2π
ln

( α

16

)
+ α2

128

]
. (55)

Because the α-dependent correction terms are negative in
the regime 0 < α < 8, the time for the incomplete search is
generally shorter than that for the complete search by a small
factor dependent on the strength of the nonlinearity.

IV. CONCLUSIONS

In this work we considered the spatial search algorithm on
a lattice with the topology of the complete graph, under the
assumption that the continuous-time quantum walk is effected
by a zero-temperature BEC. In the mean-field approximation,
the equations of motion become nonlinear and correspond to
the discrete GP equation. The analytical results, using methods
in nonlinear dynamics and numerical calculations, indicate that
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a complete spatial search remains possible even in the presence
of nonlinearity.

For a successful search, the nonlinear coupling constant
must decrease with the system size as N−1/2 and the intersite
hopping amplitude decreases as N−1, where N is the number
of sites. The latter condition coincides with the criterion
for a complete search found for the linear search problem
in the complete graph [21]. Under these circumstances, the
search time is found to scale as ts ∝ √

N , with an overall
constant factor that depends weakly on the strength of the
nonlinearity. The probability of success generically decreases
with the strength of the nonlinearity, but there are particular
choices of parameters where the success probability can
be made unity in the limit of large N . The numerical
results further indicate that random errors in the input state
amplitudes and the hopping amplitudes are not deleterious
for the performance of the algorithm but that the inclusion
of phase errors in the input state or edge deletions quickly
erode the probability of finding the marked site. Overall,
the quantum search is found to be robust to error under a
variety of conditions. It would be interesting to explore the
influence of nonunitary (thermal) noise on the performance
of the nonlinear search. In the limit of zero nonlinearity,
the present results in the absence of error completely recover
those of Ref. [21].

The dynamics of the nonlinear system agree closely
with those of the linear quantum walk. This indicates that
nonlinearity, as long as its strength is kept bounded for a
given system size, is no impediment to the implementation
of a quantum spatial search. The results suggest that BECs
consisting of huge numbers of particles could be candidates
for the implementation of useful quantum algorithms. The
hopping amplitude and the strength of the nonlinearity need
to be adjusted for a given size of the search space. In ultracold
atomic gases, for example, in principle the former could be
accomplished by adjusting the depth or spacing of a lattice
[34], and the latter through the use of Feshbach resonances
[65], though constructing a lattice with the connectivity of the
complete graph is not currently feasible in these systems.

It would be preferable in practice to conduct the spatial
search on a regular lattice, for example, a square lattice in three
or lower dimensions. Unfortunately, continuous-time quantum
walks based on the ordinary discrete Schrödinger equation do
not provide useful quantum speedups on these lattices over the
classical search time, though discrete-time quantum walks that
do can be constructed [18]. That said, if the particle dispersion
relation is linear rather than quadratic, full quantum speedup
is achievable on a three-dimensional square lattice [22]. One
practical strategy to achieve this is to artificially induce
Dirac fermions by suitably preparing an optical lattice [66].
More directly, the excitations of a zero-temperature weakly
interacting BEC on a lattice are characterized by a linear
dispersion relation, which is a hallmark of the underlying
superfluidity in these systems [49]. It is therefore conceivable
that the nonlinear mean-field dynamics of the BEC on a
cubic lattice would yield the full quantum speedup for the
continuous-time spatial search problem. This possibility will
be explored in future work.

Note added in proof. Recently we became aware of another
work that investigates the system addressed in the present

study [67]. While the results are consistent with ours when
there is overlap, in that work the strength of the nonlinear
coupling is assumed to vary with time. Their methods and
conclusions are therefore complementary to ours.
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APPENDIX: CHARACTERIZING FIXED POINTS

This discussion follows Ref. [62]. Consider a general two-
dimensional nonlinear system of equations:

u̇ = a(u,v), v̇ = b(u,v).

A fixed point or equilibrium point is defined by

ẇ ≡
(

u̇

v̇

)
≡ 0. (A1)

Suppose (u∗,v∗) is a fixed point for this system, satisfying
a(u∗,v∗) = b(u∗,v∗) = 0. Let u′ = u − u∗ and v′ = v − v∗.
For small u′ and v′

u̇′ ≈ a(u∗,v∗) + ∂a

∂u
(u∗,v∗)u′ + ∂a

∂v
(u∗,v∗)v′; (A2a)

v̇′ ≈ b(u∗,v∗) + ∂b

∂u
(u∗,v∗)u′ + ∂b

∂v
(u∗,v∗)v′. (A2b)

Since (u∗,v∗) is a fixed point, a(u∗,v∗) = b(u∗,v∗) = 0.
Close to the fixed points (u′ � 1,v′ � 1), Eqs. (A2) can be
written as

ẇ′ ≈ Jw′, (A3)

where

w′ =
(

u′
v′

)
, (A4)

and J is the Jacobian matrix

J =
(

∂a
∂u

∂a
∂v

∂b
∂u

∂b
∂v

)
(u∗,v∗)

. (A5)

The general solution of Eq. (A3) when J is nondegenerate
and invertible is

w(t) = c1z1e
λ1t + c2z2e

λ2t , (A6)

where λi and zi are the eigenvalues and eigenvectors of
the Jacobian matrix J , respectively; c1 and c2 are constants
which are determined by the initial conditions. There are four
possibilities for the stability of the fixed points.

(1) λ1 and λ2 both real:
(a) Stable fixed point. If λ1 < 0 and λ2 < 0, then w′ → 0

as t → ∞.
(b) Unstable fixed point. If λ1 > 0 and λ2 > 0, then w′ →

∞ as t → ∞.
(c) Unstable saddle point. If λ1 < 0 < λ2, then if w′(0) is

a multiple of z1, w′ → 0 as t → ∞ (stable along the direction
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of z1); alternatively, if w′(0) is a multiple of z2, then w′ → ∞
as t → ∞ (unstable along the direction of z2).

Marginally stable fixed point or center: λ1 and λ2 are
both complex. If Re(λi) = 0, then |w′| → const. as t → ∞.
Trajectories circulate around the fixed point and eventually
return to the initial point; these are closed orbits.

The Hartman-Grobman theorem states that the dynamics
of the linearized system in the vicinity of hyperbolic fixed

points, where Re(λi) = 0, will be similar to that of the original
nonlinear system. If one or both eigenvalues do not satisfy this
condition, the fixed point is nonhyperbolic and therefore the
dynamics are fragile to the inclusion of nonlinearity. That said,
suppose that (u∗,v∗) is an isolated fixed point that is marginally
stable, and there exists a conserved quantity HC(u,v). If
(u∗,v∗) is a local minimum of HC(u,v), then all trajectories
sufficiently close to (u∗,v∗) are closed.
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