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We show that in device-independent quantum key distribution protocols the privacy of randomness is of
crucial importance. For sublinear test sample sizes even the slightest guessing probability by an eavesdropper
will completely compromise security. We show that a combined attack exploiting test sample and measurement
choices compromises the security even with a linear-size test sample and otherwise device-independent security
considerations. We explicitly derive the sample size needed to retrieve security as a function of the randomness
quality. We demonstrate that exploiting features of genuinely higher-dimensional systems, one can reduce this
weakness and provide device-independent security more robust against weak randomness sources.
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I. INTRODUCTION

Quantum cryptography is one of the most prominent
applications of quantum information theory. It enables a
level of security in key distribution that is unparalleled in
classical information theory, as a successful eavesdropping
would violate fundamental laws of quantum physics. This
is true at least in theoretically perfect settings. Specific
attacks targeted at imperfect technical implementations, such
as low-efficiency detectors, have shown that there is still a lot
of room for improvement until the application is perfected.
The original proposals, however, were still making a lot of
strong assumptions on the systems used for cryptography.
One can group these approaches in two classes. Prepare-and-
measure quantum key distribution (QKD) utilizes the fact that
measurement is not possible without disturbance in quantum
physics (the first protocol was proposed in Ref. [1]). The
strong assumption here is that one is in perfect control of the
source and measurement apparatuses. Indeed it was shown that
security can be compromised if the source of the information
carriers or the measurement apparatuses used for interacting
with them are manipulated [3,4]. In the second type of protocol
entanglement is used to establish a secure key, which due to the
limited shareability of quantum correlations provides security
even if the source of entangled states is in the hands of an
eavesdropper (the first such protocol was proposed in Ref. [2]).
In this case, however, it is also possible to break the security
of the protocols if the eavesdropper also has manipulated the
measurement devices. Fortunately, using device-independent
verification of entanglement, one can overcome this flaw, and
recent works have focused on device-independent quantum
key distribution (DIQKD) (see e.g. Refs. [5–8]).

All device-independent proposals so far have used
assumptions about a perfectly uniform randomness being
readily available. In Ref. [10] it was shown that even a slight
imperfection in randomness generation leads to a possible
loophole and even entanglement-based protocols can be
compromised. This loophole, however, originates in the
sublinear size of the test sample.

The attack of Eve in that paper assumes that Eve is responsi-
ble for the weak randomness and can use her knowledge of the

bias to guess with high probability in which rounds the security
check will be performed and thus remain undetected. However,
this is only one of the points where the randomness enters the
protocol. The other is the choice of the measurement settings.
As we will see, the bad quality of randomness used there has
a big impact on the security. In this paper we generalize the
attack from Ref. [10] and show that the security of the DIQKD
can be compromised, even when using a linear test sample,
if Eve exploits the min-entropy loss in both the choice of the
settings and the test sample.

We show that below a certain threshold of randomness
quality key generation is no longer possible with qubit
protocols. Furthermore we propose a scheme that overcomes
this weakness by considering genuinely high-dimensional
entangled systems, which are readily available in quantum
photonics (see, e.g., Refs. [11–16]).

This paper is structured as follows: First, we present the
scenario that we are working in and the protocol that the
parties are using. Then, we derive the minimal violation of
the Bell inequality used as a security parameter as a function
of min-entropy loss rate. Next, we prove the necessity of a
feature that any QKD protocol must have in the presence of
weak randomness: the linear size of the test sample. Then we
find the sufficient size of the sample for Collins, Gisin, Linden,
Massar, Popescu (CGLMP) inequality [17] testing. We end by
discussing the implications of our work and the open problems.

II. THE SETTING

To start let us first specify the setting. Alice and Bob
want to share a secure key. They implement a protocol
under the following conditions: (1) a potentially compromised
measurement apparatus, (2) a potentially compromised source
of multidimensionally entangled quantum systems, (3) no
preexisting secret key, (4) weak randomness, and (5) an
authenticated classical channel. In condition 1, Alice and
Bob have access to quantum measurement devices, which
they cannot trust. However, following [9], we assume that
the observables measured in the different runs commute.
Condition 3 is very important. If Alice and Bob have some
shared secret bits, they could use them as a randomness source
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with perfect randomness. For condition 4, Alice and Bob
have potentially compromised sources of randomness. Their
min-entropy loss rate is L. We assume that the randomness
generators of Alice and Bob can be correlated.

Now we specify the protocol that they are going to imple-
ment. It is the standard DIQKD setting. Two communicating
parties are going to use the CGLMP [17] inequality violation
as their security parameter. To estimate the violation each party
has to randomly choose one of the settings a = 0,1 for Alice
and b = 0,1 for Bob. To generate the key Bob will use a third
setting b = 2, which gives him outcomes maximally correlated
with Alice’s when she chooses a = 0. The protocol has N runs.
First, Bob randomly chooses a subset of f N runs where the
parties estimate the parameter. In this subset he chooses set-
tings b = 0 or 1 randomly. In the remaining (1 − f )N runs he
uses b = 2. Alice chooses a = 0 or 1 randomly in all the runs.

After the measurements for all the runs are complete Bob
announces the cases which he used for parameter estimation.
The parties announce the settings and outcomes for all of
these runs and use them to estimate the value of the CGLMP
inequality violation. In the remaining (1 − f )N runs Alice
announces when she has chosen a = 1, and the parties discard
these runs. Only the cases when a = 0 and b = 2 are used to
generate the key.

This protocol is quite standard for DIQKD apart from the
fact that usually only a number of runs sublinear in N are
used for the parameter estimation. The reason why we need a
sample of linear size is the weak randomness in the possession
of the parties. From [10] we already know that Alice and Bob
cannot have any secure protocol with a smaller test sample
under these conditions (and we give the explicit proof for the
DIQKD scenario in Sec. A 1).

In order to analyze the protocol we take the same approach
as Ref. [10] in quantifying the imperfection of the randomness
using the min-entropy loss rate. Min-entropy is the measure
of choice because any source generating the bits that has any
type of randomness will also exhibit nonzero min-entropy. This
measure makes our result completely general as it is quite easy
to compute the min-entropy loss rate of any source specified
using a different measure. For example, Santha-Vazirani (S-V)
sources [18] have a min-entropy loss rate of L = 1 + log2( 1

2 −
ε). Therefore our result can, in a straightforward manner, be
applied to S-V sources. The same holds for sources which are
bit fixing, biased, or described by some Renyi entropy [19].
On the other hand, if we would choose any other measure of
randomness, relating it to others would be not possible; e.g.,
bit-fixing sources, which simply fix some fraction of the bits in
advance and choose the rest at random, are indistinguishable
from a fully deterministic source from an S-V point of view.

Let (M,b) denote an imperfect source of randomness
that creates strings of length M , according to a probability
distribution with min-entropy b. We quantify the bias of the
source by the min-entropy loss rate denoted L = M−b

M
.

III. THE MOST GENERAL ATTACK EXPLOITING BAD
RANDOMNESS IN THE SIFTED KEY GENERATION

The protocol described above generates a sifted key, which
can later be turned into the secret key via classical privacy
amplification and error-correction procedures. Although these

procedures also require randomness, their analysis falls outside
the scope of this paper, and we are interested in the most
general attack on the “quantum” part of the protocol. First, let
us focus on the randomness in the choice of the settings.

The min-entropy loss rate L is the resource that the
adversary uses to attack the protocol. It can be directly related
to her probability of guessing the settings in each round of the
protocol. For clarity, we can divide the guessing into two parts.
The first is deciding whether b = 2, or, in other words, whether
this round is used for parameter estimation. The second is
guessing the measurement settings in each round.

Eve’s goal is to learn as much of the sifted key as possible
while remaining undetected. When b = 2, then the adversary
aims to maximize her correlations with Alice. If b < 2, her aim
is to hide her interference. The limits of her resource make it
impossible to know the value of b in every round. Since the
strategy optimal for b = 2 gives her more information about
the key than the one for b < 2, the optimal attack is to use
the strategy for b = 2 even in some rounds used for parameter
estimation provided that she can avoid detection.

The strategy optimal for b = 2 is to prepare a product state
(its details are discussed later), but if L is large enough, we
will see that it also becomes the optimal strategy for b < 2. In
this case we have no hopes for security.

Our protocol has two important parameters: the amount of
CGLMP violation and the fraction f of the rounds used for
parameter estimation. Now we find the lower bounds for both
of these as functions of L.

IV. BELL INEQUALITY VIOLATION
AS A SECURITY CHECK

In the device-independent protocols the key ingredient is
the parameter estimation phase where the parties estimate
the violation of the Bell inequality. However, to test it
some randomness is required. To our knowledge, in all the
works on device-independent protocols it is assumed that this
randomness is perfect. The attack presented in [10] used only
the fact that weak randomness can let Eve choose a subset
of runs that she knows is not used for parameter estimation.
But weak randomness of the settings leads to an increase of
the local bound, which, in turn, leads to another loophole
in quantum cryptography [20]. Although, in addition to [20],
there have been other works that studied the dependence of the
local bound on the input randomness, either they have been
restricted to Clauser-Horne-Shimony-Holt (CHSH) inequality
[21], or the randomness was measured in terms of conditional
Shannon entropy [22]. Therefore we need to adapt the methods
from [22] to find the local bound on CGLMP as a function of
the min-entropy loss rate.

We start by expressing CGLMP in a “normalized” form,
1
4 [P (A � B|a = 0,b = 0) + P (B � A|a = 0,b = 1)

+P (A � B|a = 1,b = 1)

+P (B < A|a = 1,b = 0)] � 3
4 , (1)

where a and b denote the settings of Alice and Bob,
respectively, and A and B are their outcomes. This is a
normalized variant of CGLMP first introduced in [23].

One approach to Bell inequalities is to treat them as nonlocal
games. We can think of the parties receiving their inputs from
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FIG. 1. (Color online) Here we plot the maximal expectation
value of the normalized CGLMP inequality, with product states that
are distributed by Eve, as a function of the min-entropy loss rate L. For
comparative purposes we also include three exemplary violations by
maximally entangled states of dimension d = 2, d = 4, and d = 32.
It follows directly from this relation that if the min-entropy loss rate
L exceeds ≈0.043, there is no hope of a secure protocol using qubits.

the referee, who assures them that they are chosen according to
uniform probability distribution. He can, however, be wrong or
lying. What happens then is Alice and Bob play the game with
the strategy optimized for the uniform distribution of settings
even though they are not. Effectively, they are trying to violate
inequality:

p00P (A � B|a = 0,b = 0) + p01P (B � A|a = 0,b = 1)

+p10P (A � B|a = 1,b = 1)

+p11P (B < A|a = 1,b = 0) � R, (2)

where pij is the probability of Alice getting setting i and Bob
getting j . Furthermore, these probabilities change each round.
In Sec. A 2 we give the details of the proof that the optimal
violation that can be achieved with product states for a given
min entropy loss rate L is given by

R(L) = 3

4
+ L

2(2 − log2 3)
. (3)

This bound is plotted in Fig. 1, and it becomes the crucial local
bound that Alice and Bob need to violate if they want to have
a chance for security.

V. SECURITY CONSIDERATIONS

However, violating the local bound is only a necessary
condition for the security. It is known [9] that the key rate
in the DIQKD protocol with commuting observables secure
against general attacks is lower bounded by

K � Hmin(A|E) − Npub

Nkey
, (4)

where Hmin(A|E) is the min-entropy rate of Alice’s bit
of the key conditioned on Eve’s information, Npub is the
amount of communication in the error-correction and privacy-
amplification phases, and Nkey is the length of the key. In
Secs. A 3 and A 4 we show that the violation of the local
bound in the CGLMP inequality implies Hmin(A|E) > 0, and
indeed we can even infer a lower bound H∞(A|E) � Robs−R(L)

2 ln 2 ,
where Robs is the average value of the CGLMP measured by
the parties.

Error correction and privacy amplification imply that
whenever a = 0 and b = 2, the correlations are provably
perfect. This forces Eve to use the states that give maximal
correlation between the parties for settings a = 0 and b = 2
as the part of her strategy optimal for b = 2. This is in contrast
to the attack proposed in [10], where in most of the rounds
not used for parameter estimation Eve tries to decrease the
correlations between Alice and Bob. This attack can remain
undetected under the assumption of sublinear sample size.

If the violation of CGLMP is large enough, we know that
we can have a secure protocol, but we still have to find out the
size of the test sample f .

From the considerations presented earlier we know that the
optimal strategy for Eve is to use the strategy optimal for b < 2
in kN rounds with k � f and the strategy optimal for b = 2 in
the rest of them. The strategy optimal for b < 2 is, obviously,
to send the state that violates CGLMP the most for the given
number of outcomes. The strategy optimal for b = 2 is to send
the product state |ψ〉. Of course, the closer Eve wants to bring
k to f , the more min-entropy loss L she has to induce:

LN =
log2

(
N

f N

) − log2

( (1−k)N
(1−f )N

)
log2

(
N

f N

) , (5)

which for large N approaches

L(k,f ) = lim
N→∞

LN = −f log2(f ) − (1 − k) log2(1 − k) + (f − k) log2(f − k)

h(f )
, (6)

where h(·) is Shannon’s binary entropy function.
At the same time the closer k is to f , the larger the Bell

inequality violation that the parties can observe is. In k
f

of
the rounds used to estimate CGLMP the state that violates it
maximally for the given number of outcomes is distributed.
Let us denote this violation by RQ(L,d). In the remaining f −k

k

rounds the state distributed is |ψ〉, and since it is a product

state, the maximal violation is R(L). Therefore the violation
observed can be at most

Robs � k

f
RQ(L,d) + f − k

f
R(L), (7)
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which implies

k � f
Robs − R(L)

RQ(L,d) − R(L)
. (8)

RQ(L,d) is the maximal quantum violation of the CGLMP
inequality with d outcomes and the min-entropy loss rate of
the randomness of the settings L. There are no known methods
of finding this value. However, we can always bound it by the
algebraic bound: RQ(L,d) � 1, which implies

k � f
Robs − R(L)

1 − R(L)
= k(Robs,L). (9)

Plugging this into (6), we obtain

L � L(k(Robs,L),f ), (10)

which can be solved for any value of L giving a lower and
an upper bound on the fraction f of the rounds used for
parameter estimation (Fig. 2). There is an upper bound due
to the fact that f is the fraction of rounds to be tested
with the CGLMP inequality. Here Eve needs to make sure
that she restricts most of them to a sample space that she
knows with certainty. Counterintuitively, if f is chosen to be
too large, this task actually gets easier for Eve, aiding her
attack.

Now we also need to discuss another lower bound for f . For
N → ∞ it will also be arbitrarily small due to infinite precision
in the measurement of Robs. But in every practical scenario we
have to face the fact that we only have a limited number of
runs and Robs will always carry experimental error bars from
its statistical deduction. So depending on the statistical fidelity
which we aim for in a finite number of runs, we will have to
choose a large enough fraction of N runs to guarantee that such
precision is possible to attain in f N runs. This lower bound is
easy to calculate for any specific implementation, but because
it also depends on the experimental settings and errors, we
do not present a detailed analysis of this lower bound. We

FIG. 2. (Color online) Here we depict the lower bound on the
observed violation Robs for different linear fractions f and for a fixed
value of min-entropy loss rate L = 0.03. As in this case R(L) =
0.786141, we know we need to observe a strictly larger violation to
provide security, and we see that if the violation is high enough, we
can indeed choose any f . For qubits d = 2 the fundamental limit
is Robs � 0.801777, which fundamentally constrains f � 0.723026,
whereas with d = 4 one can already reach f � 0.999416.

want to point out, however, that it can, in a realistic setting, be
significantly larger than the upper bound on f for qubits.

VI. CONCLUSION AND OUTLOOK

In conclusion we have shown that even in DIQKD settings
security can be compromised if the local randomness is not
uniform. We explicitly derive the fundamental bounds on
the randomness quality in this setting and, consequently,
demonstrate that high-dimensional entanglement is indeed
more powerful than mere qubit entanglement. Thus not
only have we shed light on the role of randomness in the
security of DIQKD protocols, but at the same time we have
provided a clear example where the generation of high-order
entanglement opens up new paths in quantum cryptography.

For the fundamental introduction of the protocol we have
looked at an idealized scenario. We can, however, also apply
the same reasoning without assuming perfect correlations (dis-
cussed in Sec. A 5) and even deal with attacks exploiting weak
randomness in the error-correction and privacy-amplification
phases (see Sec. A 6) and also considering different types of
entropy loss in the randomness generators. The basis for the
improvement of the protocol remains the same, however. A
higher violation of Bell inequalities through higher dimensions
increases the randomness of the outcomes and strengthens the
protocols, while a higher number of outcomes increases the key
rate. A full analysis of different scenarios is under preparation.

It should also be noted that this protocol is not necessarily
only usable in situations where the randomness quality exceeds
a bound for qubits. If the min-entropy loss rate assumed
is small enough that the protocol would also potentially be
achievable using qubit systems, it still pays off greatly to
use the high-order entanglement due to the fact that with
every measurement multiple bits of the key are generated
[i.e., log2(d) bits], and there is no downside once such
high-dimensional entanglement is readily available. That is
proven by numerous recent experimental results that achieve
high-order entanglement up to d ≈ 50 in Ref. [16], which
provides more than five bits per measurement outcome. Also
there exist different possibilities for implementing such high
dimensions in photonic systems, e.g., in path (Ref. [12]) or
a large family of orbital angular momentum modes (e.g.,
Ref [13]).
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APPENDIX

1. Impossibility of sublinear sample size

In the protocol we use a linear size of the test sample
for both CGLMP correlations and the ones for a = 0 and
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b = 2. One could ask if this is indeed necessary. Because
the conditions on Eve’s attack and the setting of our protocol
are substantially different from the one presented in [10], we
cannot use the attack presented there to prove the insecurity
of the protocol. However, we can find an attack which works,
with slight modifications in both settings. Let us start with the
device-independent one.

If the test sample is of the size N1−α , then Eve can choose
a number k such that kN > N1−α . Because we are interested
in the limit of large N ’s, k can be chosen arbitrarily small.
Eve exploits the weak randomness of the parties to make sure
that the N1−α rounds for CGLMP inequality testing are taken
from kN predetermined rounds. In these rounds Eve sends the
state that Alice and Bob hope to have in all of them. In the rest
of the rounds she prepares product state |ψ〉 = |x〉a=0|x〉b=2,
where the indices denote the bases.

In this case the CGLMP inequality violation is estimated
only in the rounds where the state is entangled and, at the same
time, the correlations for a = 0 and b = 2 are perfect in all the
cases. This means that the parties will not detect Eve, while
H∞(A|E) < k can be made arbitrarily small for large N .

The min-entropy loss rate in this case can also be made
arbitrarily small since

lim
N→∞

log2

(
N

N1−α

) − log2

(
kN

N1−α

)
log2

(
N

N1−α

) = 0. (A1)

The version of this attack for the prepare-and-measure
scenario involves Eve not interacting in the kN rounds used
to check the correlations and measuring the system in the
(1 − k)N rounds in a random basis and sending the state that
she got to Bob. It also leads to arbitrarily low min-entropy with
arbitrarily good randomness.

2. Bell inequality violation as a security check

From [22] we know that the local bound for the CGLMP
game played with imperfect randomness is 1 − r , where

r = mina,b P (a,b). The lowest amount of min-entropy for
a particular value of r is attained by the distribution
(r, 1−r

3 , 1−r
3 , 1−r

3 ). This leads to the local bound in the terms of
min-entropy,

R � min{3 × 2−H∞(a,b),1}. (A2)

As soon as this value reaches the quantum bound, there is no
possibility of the experimental verification that the measured
state is not classical and no hopes for secure QKD. The
quantum bound, however, depends on the dimension of the
measurement system and approaches 1 as d → ∞ [24]. This
value is obtained by a min-entropy of log2 3 ≈ 1.585; however,
the critical value is smaller for any state of finite dimension.
The quantum bound on the normalized CGLMP inequality
[Eq. (1)] is 0.8177 for d = 2 and 0.8516 for d = 5 [23],
which translates to critical min-entropies of 1.875 and 1.817,
respectively.

For an experiment repeated many times, in the ith run
the bound is Ri = min{3 × 2−Hi

∞ ,1}, where Hi
∞ is the min-

entropy of the settings in the ith round conditioned on the
events from the setting generation for the previous rounds. Let

us see how big the average R = 1
M

∑M
i=1 Ri can be for a given

sum of the entropies H� = ∑M
i=1 Hi

∞. Clearly, it is pointless
for the adversary to set Hi

∞ lower than log2 3 of any i as it
does not increase the bound. In region H∞ ∈ [log2 3,2] R is
convex, so the optimal strategy is to use m instances of settings
with entropy log2 3 and M − m instances with entropy 2,
where

log2 3m + 2(M − m) = H�, (A3)

which gives m = 2M−H�

2−log2 3 . This will give the local bound

R � 1

M

(
m + 3

4
(M − m)

)
= 3

4
+ 1 − H�

2M

2(2 − log2 3)
. (A4)

Because the total min-entropy of the source is

H∞ = − log2 max
a1,...,aM ,b1,...,bM

P (a1, . . . ,aM,b1, . . . ,bM ) = − log2 max
a1,...,aM ,b1,...,bM

M∏
i=1

P (ai,bi |ai−1, . . . ,aM,bi−1, . . . ,bM )

� − log2

M∏
i=1

max
ai ,bi

P (ai,bi |ai−1, . . . ,aM,bi−1, . . . ,bM ) = H� (A5)

and

L = 2M − H∞
2M

= 1 − H∞
2M

, (A6)

we get

R � 3

4
+ L

2(2 − log2 3)
= R(L). (A7)

3. The sufficiency of the violation of the CGLMP inequality

Lemma 1. The violation of the local bound in the CGLMP
inequality implies Hmin(A|E) > 0.

Proof. Let us assume that there exists a setting of Alice, say
a = 0, such that maxA P (A|a = 0) = 1, which corresponds
to zero min-entropy. In such a case, instead of measuring
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with the setting a = 0, Alice can always just return to the
outcome which is certain without making any measurement
at all. In other words, she can measure observable 1. In
[25] it was shown that if all the observables for one party
are compatible (can be measured simultaneously), then the
no-signaling, quantum, and local bounds are the same. But 1
and any observable that is measured for a = 1 are compatible,
so the local bound cannot be violated even by no-signaling
theory. QED.

4. Lower bounding min-entropy of Eve

Theorem 1. In the scenario presented above H∞(A|E) �
Robs−R(L)

2 ln 2 , where Robs is the average value of the CGLMP
measured by the parties.

Proof. Let us take a setting of Alice, say a = 0, such that
maxA P (A|a = 0) = p and consider a procedure similar to
the one in Lemma 1 but with the outcome of the identity
measurement set to the A for which this maximum is
reached. From Lemma 1 we know that in this case the bound
R cannot be violated. However, it still could be violated
if for the a = 0 measurement an A0 different than 1 is
used.

If the value of CGLMP for the strategy with A0 is

p00P (A � B|a = 0,b = 0) + p01P (B � A|a = 0,b = 1)

+p10P (A � B|a = 1,b = 1)

+p11P (B < A|a = 1,b = 0) = Q, (A8)

then the value for the strategy with 1 is at least

p(p00P (A � B|a = 0,b = 0)

+p01P (B � A|a = 0,b = 1))

+p10P (A � B|a = 1,b = 1)

+p11P (B < A|a = 1,b = 0)

= Q − (1 − p)[p00P (A � B|a = 0,b = 0)

+p01P (B � A|a = 0,b = 1)], (A9)

and this has to be less than or equal to R. Because the outcome
probabilities are bounded by 1 and the setting probabilities are
bounded by the exponent of min-entropy, we get

Q � R + (1 − p)21−H∞ (A10)

or

p � 1 − 2H∞−1(Q − R). (A11)

In an experiment repeated M times the min-entropy rate of
Eve is

H∞(A|E) = − 1

M
log2

M∏
i=1

pi = − 1

M

M∑
i=1

log2 pi

� 1

M2 ln 2

M∑
i=1

2Hi
∞ (Qi − Ri)

� 1

M2 ln 2

M∑
i=1

Qi − Ri

� Robs − R(L)

2 ln 2
= H (L), (A12)

where in the last three inequalities we have used, respectively,
the logarithm’s power series expansion, the positivity of the
min-entropy, and formula (A7). Bound H (L) is far from
optimal since the approximations made are pretty coarse. For a
specific outcome alphabet much better bounds probably exist.

5. Nonperfect correlations

In the case where one does not assume perfect correlations
of the measurement outcomes in the rounds where Alice uses
basis 0 and Bob uses basis 2, due to noise in the system, the
situation becomes a little more involved. Alice’s basic strategy,
as well as the improvement from higher dimensions, remains
the same.

In this case Eve’s resource is still L. If it is larger than
zero, it means that some choices of the rounds where the
correlations are tested are more probable than the others. Her
choice of strategy for each is a pair of numbers: the guessing
probability p and the Bell expression expectation value I . They
are connected by the relation pG � f (I ). It follows directly
from (A11) that

p � f (I ) = 1 − 2H∞−1[I − R(L)]. (A13)

These numbers for each round have to be chosen in advance,
and this choice depends on the probability distribution of the
tested rounds. Whatever strategy Eve chooses, there is a choice
for the test sample which is optimal, from Eve’s point of view,
for this strategy, and for each choice of the test sample there is
an optimal strategy.

There are two factors that Eve has to consider when
choosing her strategy: the observed Bell inequality violation
and her average guessing probability of the bit of the key. Eve’s
target is to maximize the latter while keeping the former above
a certain threshold. If L < 1, then there is some uncertainty
in the choice of the test sample, and Eve cannot be sure that
the choice will be optimal for her strategy. For every strategy
we can list all the choices of the sample according to the
value of Eve’s target function in decreasing order. Her guessing
probability is their weighted average, and the only constraint
on the weights (which are the probabilities of choosing them
as a sample) is that the largest is pmax2H∞ = 2M(1−L), where
M is the number of bits necessary for the description of
the test sample. This means that the best distribution of the
probabilities is (M,pmax) flat.

Because Eve’s strategy is product, i.e., the numbers I and
pG are chosen in advance for each round and do not depend on
the actual numbers produced by the generators, it is optimal for
her to concentrate her knowledge of the choice of the sample
on the information about particular rounds rather than on the
relations between them. In other words, it is better for her to
know that the sample will certainly be tested in round 1 and
have a 50% probability of being tested in round 2 rather than
knowing that the sample will certainly be tested in exactly one
of these rounds, although the min-entropy is the same in both
cases.

Therefore the most general strategy for Eve is to know a
fraction a of all the rounds when the Bell inequality is definitely
tested and a fraction b when it is definitely not tested. If the
tested fraction is f , then, obviously, a � f and b � 1 − f .
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The min-entropy loss is

L =
log2

(
N

f N

) − log2

((1−a−b)N
(f −a)N

)
log2

(
N

f N

) , (A14)

the observed Bell inequality violation is

Robs � a

f
βQM (L) + f − a

f
I, (A15)

and Eve’s average guessing probability is

pav = b

1 − f
+ 1 − f − b

1 − f
pG. (A16)

βQM is the maximal quantum violation of CGLMP with
min-entropy loss rate L. It comes from the rounds when Eve
is sure that the testing takes place. In the rounds when she
knows nothing she uses pG and I related by (A13). These
equations can again be numerically solved for any given
pair of L and Robs to optimize the strategy and calculate
the lower and upper bounds for security considerations. The
basic mechanism behind the advantage of higher-dimensional
systems, however, remains the same. We plan to extensively
survey these generalized scenarios, also including other types
of randomness loss in future publications.

6. Error correction and privacy amplification

The final stages of every key distribution protocol are
error correction (EC) and privacy amplification (PA). Their
purpose is to provide Alice and Bob with a key whose
copies are identical for both parties and completely unknown
to Eve. These stages also require randomness, and so far
in all the works it has been assumed that this randomness
is perfect. If weak randomness is used, it opens another
avenue for the eavesdropper’s attacks. In the main text we
mention this possibility and state that since EC and PA
are purely classical procedures, they lie out of the scope
of this paper. However, in a forthcoming work we plan
to include them in our analysis and prove the following
conjecture.

Conjecture 1. In the scenario discussed in this paper EC
and PA are possible if

H (L) − H (A|B) > L, (A17)

where H (L) is given by formula (A12), H (A|B) is the
conditional Shannon entropy rate of Alice’s key conditioned
on Bob’s, and L is the min-entropy loss rate of their
source.
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