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Genuine tripartite continuous-variable entanglement with spatial degrees of freedom of photons
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We propose an experimentally feasible scheme to prepare tripartite continuous-variable entanglement with
the spatial degrees of freedom of photons. The scheme relies on postselection upon the state obtained when
one photon of an entangled pair produced by spontaneous parametric down-conversion interferes with a single
photon on a 50:50 beam splitter. We show that the presence of genuine tripartite entanglement can be detected

by the van Loock—Furusawa criterion.
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I. INTRODUCTION

In addition to being a fundamental feature that distinguishes
quantum systems from classical systems [1], quantum entan-
glement is also a promising resource for the transmission and
processing of information. Quantum information protocols
such as quantum teleportation [2], dense coding [3], and
quantum key distribution [4] offer distinct advantages over
classical schemes. Even though it is more difficult to create,
multipartite entanglement provides a direct way to extend
quantum information protocols to an arbitrary number of
parties and enables a richer set of applications such as quantum
secret sharing [5], resolution of the Byzantine agreement
protocol [6], and one-way quantum computation [7]. The
progress of quantum information science is closely connected
to our abilities to generate multipartite entangled states.

Although historically the first proposal of an entangled state
was made in the context of the seminal Einstein-Podolsky-
Rosen paper [8] with position and momentum continuous
variables (CVs) of particles, the subsequent development of
quantum information in discrete variables has progressed
quite rapidly, partly due to the fact that there are a number
of systems more convenient for experimental realization.
Typically, the experimental implementation of CV quantum
information tasks is done with the quadrature operators of
the quantized modes of the electromagnetic field [9] rather
than the position and momentum of particles. In this context,
tripartite entanglement has been created between the pump and
two down-converted fields directly from an optical parametric
oscillator [10] and, previously, by entangling squeezed vacuum
modes on beam splitters [11].

In a different experimental context, the spatial variables
of single photons have some experimental advantages such
as high-quality entanglement available with spontaneous
parametric down-conversion (SPDC) in nonlinear media
and coincidence counting, flexibility and robustness in the
quantum-state engineering by using masks, gratings, and
spatial light modulators [12,13]. Furthermore, many inter-
esting experimental results have been achieved with spatial
CVs such as observation of spatial antibunching [14,15]
and nonlocal optical vortices [16,17], simulation of nonlocal
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Popescu-Rohrlich correlations [18], and detection of EPR
steering correlations [19-23], all of them employing only
bipartite CV entanglement. In most situations, the nonlinear
crystal is pumped with a Gaussian pump beam, and the
entanglement is well characterized by witnesses of Gaussian
entanglement [19,24-26]. However, there has been some
work on producing and characterizing spatially non-Gaussian
entangled states [27].

There has been some effort to produce CV entanglement in
the time and frequency degrees of freedom of three photons
using cascaded SPDC [28], and theoretical studies have shown
that entangled photon triples can be produced by third-order
SPDC [29,30]. Moreover, CV entangled states of three or more
photons have been studied in the context of quantum imaging
[31,32] and genuine tripartite entanglement [33]. This work
has considered three photon states produced from multiphoton
down-conversion in nonlinear media. It has also been shown
that stimulated emission of photon pairs from SPDC produces
four-photon spatial entanglement [34].

In discrete degrees of freedom such as polarization, en-
tanglement of more than two photons is typically created
by producing two or more pairs of entangled photons and
interfering with one photon from each pair on a beam
splitter [35,36]. The multipartite entanglement appears in
the postselection of events where the photons leave different
outputs in the beam splitter. Here we show that the two-photon
interference between one photon of a spatially entangled pair
and a third photon can also be used to produce genuine tripartite
CV entanglement in the spatial degrees of freedom of three
photons. We present a scheme that is feasible with current
technology. The proposal opens new possibilities towards the
realization of more elaborate quantum information processing.

This paper is organized as follows. In Sec. II we propose
a feasible experimental setup to produce tripartite CV entan-
glement with spatial degrees of freedom of SPDC photons.
In Sec. III we introduce the van Loock-Furusawa criteria
based on the variances of position and momentum linear
combinations, which are sufficient conditions to detect genuine
multipartite entanglement. Finally, we present our conclusions
in Sec. IV.

II. EXPERIMENTAL PROPOSAL

Figure 1 exhibits the type of experimental setup we
consider. A pulsed pump laser is used to produce two pairs of
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FIG. 1. (Color online) Proposed experiment. SPDC in a nonlinear
crystal produces spatially entangled photon pairs. Photons 2 and 3
are combined on a 50:50 beam splitter. Photon 4 is used as a trigger
to signal a single photon in path 3. A lens F is used to map the
far-field distribution of photon 4 onto the detection plane. Lenses of
focal lengths f, and f, can be used to measure the near-field (x) or
far-field (p) distributions of photons 1, 2, and 3. Lenses f, are used
to map the image of the crystal plane onto the detection planes, while
lenses f, map the Fourier distribution (far field) onto the detection
planes.

~F

photons via SPDC in a BBO crystal in a forward-and-backward
setup [12], creating two pairs of spatially entangled photons.
We consider only the spatial degrees of freedom of the photons.
Experimentally, this corresponds to using spectral filters to
guarantee that the photons are narrow bandwidth and using a
crystal configuration such that the photons are in a separable
polarization state. At each output face of the SPDC crystal, the
down-converted photons are described to good approximation
by the quantum state [12]

V)i = /dqidqjvij(Qi +49)yi(a —q)la)lg;), (1)

where the index ij refers to the entangled pairs, ij = 12 and
ij =34, and q; and q; are the transverse wave vectors of the
down-converted photons i and j, respectively. Assuming that
the pump laser has a Gaussian transverse profile, the angular
spectrum function v;;(q) is

I o)
vij (i +9q;) = JToi P _T]mi talf @
ij

Here o;; is given by the waist of the pump beam and can be
precisely controlled using optical lens systems. The phase-
matching function is y;;(q) o sinc(ag?), where a depends
upon the crystal length and wave number of the pump beam.
For a thin crystal, this function is well approximated by a
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Gaussian function [37]. Thus, we consider

2

1 8ij 2
Yii( Qi —q;) = J_T(SijeXp —Zlﬁb —q;|" |- 3)

The width §;; of the phase-matching function is determined
by the length of the crystal and the wavelength of the pump
beam [12] and can be controlled by changing the crystal length.
Since in this Gaussian approximation state (1) is separable in
Cartesian coordinates, the entanglement is characterized by
the Schmidt number K = K, * K, where K, = K, = (0% +
82)/20 8 refer to the entanglement in x and y transverse spatial
coordinates [38].

Photon 4 is used as a trigger for a single-photon state in
path 3, and we consider fourfold coincidence events at the
four detectors in the four paths. Including the trigger photon
4 in these events essentially removes the events where two
photon pairs are created in either paths 1 and 2 or paths 3 and
4, and zero photons in the other paths. In the path of photon
4 is an optical system consisting of a lens of focal length F,
which implements a Fourier transform from the crystal face
to the detection plane. Detection of photon 4 at position p in
the detection plane projects photon 4 onto momentum state
q =kp/F, where k is the wave number of photon 4 [20].
Thus, using a point detector at p = 0 projects photon 4 onto
q = 0, which postselects the state

(V)34 = /dQ3v34((I3)V34((I3)|(13>- 4

Assuming that 834 << 034, S0 that y34(q3) is constant in the
region where v34(q3) is appreciable, we have

s = [P = f dQs$(@s)]as), 5)

where ¢(q3) o v34(q3).

Photons 2 and 3 are combined at a 50:50 nonpolarizing
beam splitter, with path lengths aligned so that two-photon
Hong-Ou-Mandel interference will occur [39]. We postselect
interference events so that only coincidence detections at
detectors 1, 2, and 3 are considered. After the beam splitter
and with the postselection the total state |\V); reads

W)r = fdQ1dQ2CI3U(Q1 + @)y (qr — q2)¢(q3)
% [191.92.93) — |91.95.95)], (6)

where the prime indicates that the y component has its sign
inverted due to reflection at the beam splitter [40,41].
In transverse wave-vector space, the wave function is

V(q1,92,93)
1 o’ 2 8 2 21 12
= Vq |:CXP <—I|QI + Q" = Z|Q1 —q2|° — €7|qs| >
o2 52 , ,
— exp (—qul +q4° — Tl - qs° — 62|q3|2>] :

(7
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where, for simplicity, we define ¢ = 015,85 = 812, and € = 034.
The normalization constant is

N, =

a3 : 16028%€>
0282¢2 (02 + 82 + 4€2)(0282 + 02€2 + 82¢2) |

®

Now, taking the Fourier transform of the wave function,
(7), we obtain the position-space wave function

D(p1,p02,03)
1 o+ 027 1o — oo o5l
=N P\ T T2 T 2 42
o o 48 4e

oy + P57 1py — P57 |01
_eXp(_ b a2 )] @

with the normalization constant

N, = 430282
: 16025%€2 (10)
(02 + 82 + 4€2)(028% + 02€? + §%€2) |

For simplicity, let us consider only one spatial dimension,
so we integrate the wave function, (7), in y components of the
transverse direction, resulting in

o1 L o
7%pw=X;LMemx—pT&p)—2Aﬂmm—pTBﬂn
q

+Avexp(—p " Bsp)}, 1)

where the vector p7 = (py, p2, p3) has the wave vector in the
x direction as its components, and

Ay = 72 /20 8€, (12)

83
Ay = . (13
2 \/(02 182 1 4€2)(028% + 02e? + €287) (13)

02482 o2—82

2 2
B = | 2= o*+8 14
1 5 1 0 1. (14)
0 0 2¢?
2482 028> o2-82
2 4 4
2 2 2 2
By=| o ZHie 0 |0 (19
2_ 2 2,92
o 48 0 o 16 + 62
a2 +8% 0282
2 0 2
B; = 0 2 o0 | (16)
28> 0 2482

2 2
We note that matrix By (B3) contains correlations between
photon 1 and photon 2 (photon 1 and photon 3), while matrix
B, describes possible correlations among all three photons.
Doing the same integration in the wave function, (9), we
obtain

- | T o ~ IS
Px) = N—{Al exp(—x T B1X) — 2A; exp(—x T ByX)
o

+ A exp(—x " B3X)}, (17)
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where the vector X7 = (x,x,x3) has the position in the x
direction as its components, and

A, = V27130 8¢, (18)
i 4/ 2713028%¢2 19)
1T 02+ 24 A0 1 02 1 €282)
) JE-R o
Bi=|3(x-% 1(z+5 0 @O
0 0 o
) it i) 1%
B=i(h-d) dEeked) 0|
ME-E) 0 dGrded)
(21)

By = 0 > 0 : (22)
HE-d) 0 3G

Here, again, matrix B, describes the possible tripartite cor-
relations, while the other two matrices describe bipartite
correlations. Figure 2 shows several plots of the marginal prob-
ability distributions corresponding to the tripartite quantum
state, obtained by integrating the tripartite probability distri-
butions, (17) and (11), over one of the variables. Figure 2(a)
shows the distribution P(py, p4), where p+ = 2 & 2. We see
that the state is highly squeezed in these variables, showing
an anticorrelation. There is also an oscillation along the
antidiagonal direction, due to interference of the two wave
packets corresponding to the two coincidence events at the

P2/2+ ps/2

FIG. 2. (Color online) Density plots of marginal probability
distributions of the tripartite quantum state. Here 0 = 1.7, § =
1.7/40, and € = 0.9.
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beam splitter. Figure 2(b) shows the distribution P(p;,p-),
which shows essentially no correlation. Figures 2(c) and 2(d)
show distributions P(x;,x;) and P(x;,x3), respectively. We see
that there is a strong correlation in both of these plots, again,
with oscillations, this time along the diagonal direction. Since
correlations are indeed present between several variables in
both the x and the p representations, we expect that tripartite
entanglement is present. We show this explicitly in the next
section.

III. GENUINE TRIPARTITE ENTANGLEMENT

To identify genuine tripartite entanglement, one can ap-
ply the van Look-Furusawa criterion [42], which furnishes
sufficient conditions for genuine multipartite entanglement.
According to [42], sufficient conditions for genuine multipar-
tite entangled states are obtained by violating, for appropriate
linear combinations of the position X; and momentum p;
operators for each degree of freedom i with [%;,p;] = d;j,
the inequalities of the total variance

(A, + (AD)), = f(hi,ha, .. L8N

(23)

Shy,g1,82, ...

where ((A£)?) = (£2) — (£)2 represents the variance, i =
hiXy+hofa+---+hyin, 0= gi1p1 + &P+ -+ gnDns
and f(---) stands for the boundaries of the total variance
conditions. Here the g;’s and h;’s are arbitrary real num-
bers that define the global variables u# and v. In the case
of our scheme, once the marginal distributions P(p) and
P(X) are determined experimentally, we can optimize over
these parameters for maximal violation of inequality (23).
Appropriate linear combinations are given by those where

15 2
(@)
12 L | 1.95
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0.9 r 1
€ | 1.85
0.6 1 1.8
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FIG. 3. (Color online) Values of o and € that violate the van
Loock—Furusawa criterion for (a) § = o/4 and (b) § = ¢/40.
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f(G-+)#0, [ia,0] = 0. To be practical, one must employ the
following procedure [42]: after selecting a distinct bipartition
(17,1\7 — ;), choose appropriate & and 9, ruling out all possible
separable splittings between this pairing of sets of modes in
the convex sum of the total density operators. Finally, consider
different bipartitions (?,]\7 — 1) in order to negate all partial
separabilities.

In the particular case of a tripartite system, the van Loock—
Furusawa criteria imply that genuine tripartite entanglement is
identified if any pair of the following inequalities is violated
simultaneously:

A = ([AR — )1 + (AP + po + &5 P = 2,
Axy = ([Adr — 817 + ([Ag p1 + po + p)IP) = 2,
Az = ([AG — 81 + ([AD1 + &7 br + P3P = 2,

(24)

where gi™', g5"', and g5"" are optimized parameters.
Using Eqgs. (11) and (17) and the definition of variance we
have

(Ad)*) = / dx(3" D, X)P(X)

b ——"

v det Bz

281 w(DBY) - w(DBY)
- . L/ 24
2NP detBl
+A]tr(Du1§§1) ’
\/detB3

[ dp(p" D,p)P(p)

(25)

(AD)%)
w23 Atr(DvBl_l) 5
TN, | JdetBy
tr(DyB;")
J/det B3

where the matrices D, and D,, defining the appropriate
combinations, are given by

tr(D,B;")

: /det By

(26)

h*  hihy hihs
D.=|mhy B hhs 27)
hihs hyhs  h3

and

g% 8182 8183
D,=|zg18 & ]| (28)
2183 88 &

Inequalities (24) are obtained setting hy =1,h; =
~1,h3=0,g1=1,g =1,g =gy for App, h; =0,hy =
1,h3 = —l,gl = g?pl,gg = 1,g3 =1 for A23, and h1 =
1,]’[2 = O, h3 = —l,gl = l,gz = g;pt’ 83 = 1 for A13, re-
spectively. Aj, = A3 are violated for colored regions of
parameters shown in Fig. 3 as a function of o and €. In all cases,
g?pt is optimized for maximum violation. We present results
for § = 0/4 and § = 0/40, corresponding to initial bipartite
entanglement quantified by Schmidt numbers K, = 2.125 and
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FIG. 4. (Color online) Values of o and € that violate the van Loock—Furusawa criterion for (a) § = ¢/2.5, (b) § = ¢/2.6, (c) § = ¢/2.8,

and (d) 8 = 6 /(2 + /3).

K, ~ 20, respectively. The color scale shows the value of
A1, = A3, which is less than the lower bound of 2 for a range
of parameters that grows with the entanglement K.

Figure 4 shows the violation of inequalities (24) near the
region of no violation. For o > §, violation begins when § ~
0/2.49, which corresponds to a Schmidt number of K, ~
1.45. The region of parameters for violation increases with the
ratio 0/8. For § = 0/(2 + +/3), we have a Schmidt number
K. = 2, which is equal to a pure maximally entangled state of
two-qubits, or one ebit of entanglement.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, in this paper we propose a scheme to generate
genuine tripartite CV entangled states based on the spatial
degrees of freedom of photons produced by SPDC. The
genuine tripartite entanglement can be verified experimentally
via the van Loock—Furusawa entanglement criteria [42]. Our
proposal should be realizable with current technology, as
four-photon experiments using SPDC have been reported in the
literature for roughly 15 years. The correlations in position and
wave vector can be measured by using optical lens systems to
map the near-field and far-field distributions onto the detector
planes [19,20,25], as illustrated in Fig. 1. The wave-vector

distribution corresponds to the far-field distribution of the
source and is typically mapped using a 2 f optical system,
which implements the optical Fourier transform. The position
distributions correspond to the near-field distributions of the
source and can be mapped onto the detection planes using
imaging systems. We note that the longitudinal positioning
of these lenses is somewhat critical, so that the proper field
distribution is mapped onto the detection planes. This is
particularly true for optical systems with small-focal-length
lenses. In this regard, it is advantageous to employ lenses with
larger values of f (>100 cm), as has been done in recent work
[19,20,25]. Once the appropriate field distribution is mapped
onto the detection plane, the fourfold intensity correlations
can be measured by scanning the detectors in the transverse
plane [19,20,25] or using recently available EMCCD or ICCD
cameras [43], which can register photon coincidence events.
The present proposal opens new perspectives in CV quantum
information processing.
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