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We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually
unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mu-
tually unbiased measurements in a classically simulated prepare-and-measure scheme and on a pair of entangled
photons for dimensions ranging from d = 2 to 5. In our analysis, we pay attention to the detection efficiency and
photon pair creation probability. As security measures, we determine from experimental data the average error rate,
the mutual information shared between the sender and receiver, and the secret key generation rate per photon. We
demonstrate that increasing the dimension leads to an increased information capacity as well as higher key gener-
ation rates per photon. However, we find that the benefit of increasing the dimension is limited by practical imple-
mentation considerations, which in our case results in deleterious effects observed beyond a dimension of d = 4.
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I. INTRODUCTION

Quantum key distribution (QKD) establishes a secure key
between two parties, Alice and Bob, in which they can encode
a secret message [1-3]. Protocols for QKD are classified as
either prepare-and-measure (P&M) schemes or entanglement-
based (EB) schemes. Examples of P&M schemes are BB84 [3],
B92 [4], six-state [5], and SARGO04 [6]. In general, P&M
schemes can be translated into EB schemes, as discussed in [7]
where the connection between the BB84 protocol and an EB
protocol similar to E91 is made.

Mutually unbiased bases (MUBs) [8-10] have found
many applications, for example in quantum state tomography
[10-13] and quantum error correction codes [14,15], and are
convenient in drawing up efficient QKD protocols. This is
because projective measurements in one basis provides no
knowledge of the state in any of the other bases [3,16,17].
Therefore if an eavesdropper measures in the incorrect basis,
he or she will obtain no meaningful information but instead
introduce a disturbance in the system, resulting in its detection.
The simplest example of MUBs of dimension d = 2 are the
horizontal and vertical, diagonal and antidiagonal, and left-
and right-handed polarization bases, as they are unbiased with
respect to each other, forming a set of three MUBs. Although
MUBS offer security against eavesdropping, encoding states in
the polarization degree of freedom only allows a maximum of
one bit of information transmitted per photon, which results in
a limited key generation rate. Since systems with a higher-
dimensional Hilbert space can store more information per
carrier, the question arises as to whether QKD protocols using
higher-dimensional MUBs also result in higher generation
rates of secure key bits; indeed, such protocols can be expected
to be more robust in terms of abstract noise measures [18,19].

*Corresponding author: aforbes1 @csir.co.za

1050-2947/2013/88(3)/032305(8)

032305-1

PACS number(s): 03.67.Dd, 03.67.Hk, 42.50.Ex

Their actual performance in terms of secure key rate, however,
depends on whether the amount of noise in higher-dimensional
implementations grows faster with increasing dimension than
their robustness against noise. The present article addresses
this question for implementations using the orbital angular
momentum (OAM) of photons. Beams that carry OAM have
an azimuthal angular dependence of exp(i£6) [20], where ¢
is the azimuthal index and 6 is the azimuthal angle. It has
been shown theoretically that MUBs for higher-dimensional
OAM states can be used to encode bits of information in
alignment with the BB84 protocol [21-24]. A standard P&M
implementation of a generalized BB84 protocol, relying on
11 OAM states and superpositions of these 11 OAM states,
has previously been performed [25] using two of the 12
available MUBs. In this paper we experimentally investigate
an entanglement-based scheme for QKD encoded in complete
sets of higher-dimensional MUBs, which we first verify with
a classically simulated P&M scheme. We implement our
protocol with MUBs encoded in OAM states and present
values for the corresponding average error rates, classical
Shannon information, and secret key rates. As with all OAM
protocols, our QKD protocol uses filter measurements that
project onto one MUB element at a time; we provide the
connection between these protocols to the established theory
for protocols using full MUB measurements. To achieve this,
we prove that the detection efficiency depends only on the basis
choice and not on the elements within a basis; otherwise the
security parameters of the protocol cannot be evaluated. This
allows us to map our protocol to the key rates, thus arriving
at the standard MUB protocol. By increasing the dimension
d, we obtain an increase in the secret key rate which has been
theoretically observed in recent papers [18,19], resulting in
higher key generation rates for dimension d = 4. Similarly,
the Shannon mutual information increases, demonstrating an
improvement in the information capacity.
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II. CHOICE OF MUTUALLY UNBIASED BASES

Two orthonormal bases, M = {|¢q),i =0,1,...,
d—1} and M, ={|¢nj).j =0,1,....d =1}, of a d-
dimensional Hilbert space H, are said to be mutually unbiased
if, and only if, all pairs of basis vectors | ;) and |, j))
satisfy

|mmmmW=5 M
Physically, this means that for a system prepared in the basis
M and measured with respect to basis M, all outcomes are
equally probable. This property of mutually unbiased bases
makes them important for QKD protocols. Mutually unbiased
bases were introduced by Schwinger [8] in 1960 as optimum
incompatible measurement bases. In 1981, Ivonovic showed
their application in quantum state discrimination [9]. Later
Wootters and Fields [10] gave a constructive proof that there
exist complete sets of MUBs for prime power dimensions and
proved that for any dimension d there are not more than d + 1
MUBs within any particular set of MUBs. The smallest prime
dimension is 2, and for that an example of a complete set
of MUBs consists of the eigenstates of the three Pauli spin
operators o;,0x,0y, i.e.,
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L&m+mwﬁm—mﬁ 3)
V2 V2 ’

1 1

—(0) +i]1)),—(10) — i|1))¢. 4
{ﬁuww»ﬁu>w»} @)

Pauli operators can be generalized to higher dimension, known
as the Weyl operators. These are unitary operators of the form
X*z! for k,l € {0,1,...,d — 1}. The operator Z is diagonal
in the standard basis {|0),[1), ...,|d — 1)},

d-1
Z=>Y oli)il. ©)
i=0
with w = exp(i27/d), whereas the operator X reads
d—1
X=Z|i+ 1modd) (i|. (6)

i=0

The eigenbases belonging to the different operators in the set
{Z,XZ'|l € {0,1,...,d — 1}} form a complete set of MUBs
for any prime number d as the dimension of the underlying
Hilbert space. For d = 2, the operator X is identical with
the Pauli operator o,, and the operator Z is given by the
Pauli operator o,. In the present study of MUB-based QKD,
a complete set of MUBs is implemented following the recipe
above by means of photons carrying OAM. The MUBs are
obtained by assuming that the standard basis (eigenbasis of
the operator Z) is realized by single-photon states which
correspond to an elementary excitation of Laguerre-Gaussian
modes (LGy) carrying an OAM value /7. For d = 2 we employ
the LG, modes with £ = %1 to generate the standard basis. For
d = 3, our choice of the standard basis corresponds to LG,
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FIG. 1. (Color online) The states for each of the four MUBs
for d =3. (a) Images representing the measurement filters (or
holograms) for each of the 12 states. (b) Experimentally produced
and (c) theoretically calculated intensity profiles of the LG, modes
produced by each hologram. The first row (1) represents the well-
known LG basis, sometimes called the OAM basis, as given by Eq. (7).

modes with OAM values £ = —1,0, 1:
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—h=]olo=|1|.nv=]0]}. @
0 0 1

The remaining three bases are given in matrix notation with
respect to the standard basis as
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Here each matrix represents a complete orthonormal basis with
its columns reflecting the basis vectors. In general, for prime
dimension d, the standard basis consists of d LG, modes, while
the remaining d bases pertain to superpositions of the LG,
modes. Examples of the LG, modes and their superpositions
are given in Fig. 1, which contains images of the measurement
holograms and their corresponding intensity profiles. The first
row represents the standard basis as given by Eq. (7), while
rows 2—4 show the remaining three bases (for d = 3), as given
by Eq. (8).

III. FILTER-BASED MUB QKD PROTOCOL

We now describe our filter-based QKD protocol. In both
scenarios, Alice (SLM A) prepares her mode in a state
chosen randomly from one of the (d + 1) bases, while Bob
(SLM B) performs a measurement on his mode by randomly
selecting a state in one of the (d + 1) bases chosen out
of d(d + 1) different basis settings but biased towards one
basis. Each party then announces from which basis the filter
measurement was chosen (sifting) and keeps measurements of
whether they all arrived in the same basis. They later make
announcements as to whether photon coincidences occurred
(postselection). A coincidence event represents a conclusive
result; otherwise it becomes inconclusive. This is followed
by parameter estimation (error rate in the remaining data),
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error correction, and privacy amplification. The announcement
step allows our filter-measurement-based QKD protocol to be
mapped back to the original protocol, which uses full MUB
measurements.

IV. AVERAGE ERROR RATE AND SECRET KEY RATE

In standard EB QKD protocols both parties perform mea-
surements on the states that they receive, followed by a public
announcement of their measurement basis. The two parties
then compare a small portion of their measurements in order
to obtain an estimate of the average error rate. This quantifies
the error in the QKD protocol resulting from all sources of
noise, such as noise in the transmission channel and errors in
the measurements. Moreover, the noise could also be caused
by an eavesdropper. The error rate refers to the probability that
Alice sends the state |@(g «)), while Bob receives an orthogonal
state |Pg ry). Given the MUB B, the corresponding average
error rate in each basis QF is expressed as

0F = " trllgs o) (D10l ® ) (Dipirlpasl. (9
Ktk
where p4p is the density matrix of the two-photon (joint)

state. The total average error rate is the total error obtained as
an average over the different MUBs, £ [19], and is defined as

1
0=;) 0" (10)
BeLl

We use the full set of available MUBs; therefore £ =d + 1.
Another important figure of merit for the performance of a
QKD scheme is the secret key rate. It is given by the amount
of information that one can send securely in a photonic
QKD scheme. It equals the number of key bits per photon
measured by both parties in the same basis that can be
generated securely. The maximum secret key rate that one
can achieve is log,d for a d-level system but is limited by an
adversarial attack by Eve, which results in an observed error
that requires Alice and Bob to perform error correction and
privacy amplification. Both processes affect the secret key
rate. The resulting key rate is given as [18,19]

d+1 0
min = l0g,d + —— 01 -
r 0g,d + ——Qlog, (d(d—l))

d+1 d+1

where Q is the average error rate from Eq. (10). The secret
key rate is given as the difference between the classical mutual
information shared by Alice and Bob and the information
shared by Alice and Eve as measured by the quantum mutual
information. The quantum mutual information is also referred
to as the Holevo quantity [2]. The Holevo quantity measures
the information that one has on Alice’s data as a result of
Eve’s interaction with the signals as they pass to Bob. The
secret key rate can be written as

r =1(A:B) — x(X:E), (12)

where I(A:B) is the classical mutual information and
X(X:E)= H(X)— S(E) — S(X,E) is the quantum mutual
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information or Holevo quantity, where H and S denote the
Shannon entropy and von Neumann entropy, respectively.
The limit on the tolerable error rate that is safe for secret key
generation can be improved by implementing a full set of
(d + 1) MUBs [19,24]. Using a full set of MUBSs results in an
increase in the tolerable error rate in which we can still extract
a reasonable secret key without compromising the security of
the protocol. However, this happens at the cost of reducing
the transmission rate, which is proportional to the probability
1/(d + 1) that Alice and Bob choose the same basis. But in
our protocol, this is not a problem since we make use of the
asymmetric [26] basis choice, so one does not pay the high
cost of sifting with MUBs. In order to calculate the maximum
tolerable error rate Qp,x, the secret key rate ry;, is set to zero.

V. EXPERIMENTAL SETUP

Our EB QKD protocol was implemented at the single-
photon level on entangled photon pairs depicted in Fig. 2.
The laser source was a mode-locked UV laser (Vanguard
355-2500), producing pulses of approximately 10 ps at a
repetition rate of 80 MHz. The 355-nm wavelength beam was
collimated and directed to pump a 3-mm-thick type-I beta
barium borate (BBO) crystal, producing collinear frequency-
degenerate entangled photon pairs at 710 nm. A beam splitter
was used to separate the collinear signal and idler photons
(depicted by arms A and B), which were directed and imaged
(2x) from the plane of the crystal onto spatial light modulators
(SLMs) by a4- f telescope. The SLMs were used to execute the
filter measurements and were encoded to manipulate both the
phase and amplitude of the incident light [27-30], allowing
only one particular superposition of the LG, modes to be
detected by the detector, while all the others were blocked.
False color images of the types of filters (or holograms)
encoded on the SLMs are presented in Fig. 1. The projected
mode obtained at the plane of the SLM, be it either Gaussian
or non-Gaussian, depending on whether the filter either does
or does not match the state of the incident photon, was imaged
(0.004x) by a 4-f telescope onto a single-mode fiber. The
fibers were connected to avalanche photodiodes (APDs) which

Laser
L, Source
APD
M BBO L, Coincidence
- ] Counter
o
355nm +'."
Source

‘CCD

FIG. 2. (Color online) The experimental setup used to perform
both the EB and P&M QKD protocols. The plane of the crystal was
relayed imaged onto SLMs A and B with the use of lenses, L, and L,
(f; = 200 mm and f, = 400 mm). Lenses L3 and L4 (f; = 500 mm
and f; = 2 mm) were used to relay image the SLM planes to single-
mode fibers.
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detected the photon pairs via a coincidence counter with a
gating time of 12 ns. The single count rates, S4 and Sp, and
the coincidence count rates, C, were recorded simultaneously
and accumulated over an integration time of 10 s.

An initial step in conducting our EB QKD protocol was to
test it in a classically simulated P&M experiment. This served
to confirm the correct filter measurements at more manageable
photon count rates. Our experimental setup for the classically
simulated P&M scheme can be illustrated with the use of
Fig. 2, where the BBO crystal is considered to be reflective
and the APD in arm A is replaced with a diode laser source at
a wavelength equal to the downconverted photons (710 nm),
and the APD in arm B with a CCD camera. This procedure
is commonly referred to as backprojection or retrodiction
[31] and has shown promise in classically simulating the
downconverted photon experiment [32,33]. Conducting the
experiment in this manner provided a quicker and simpler
method for the verification of the experimental procedure.

VI. RESULTS AND DISCUSSION

By way of example, we consider d = 3 in our classically
simulated P&M-based experiment. We scanned through all
possible states, defined by Eqgs. (7) and (8) and depicted in
Fig. 1, on SLM A and SLM B. Figure 3(a) contains the cross-
sectional intensity profiles recorded on the CCD (depicted in
Fig. 2) when SLM A and SLM B scanned through the states
pertaining to the first basis. It is evident that when SLM A and
SLM B select the same (different) states, a Gaussian mode
(singularity) appears on axis. The normalized on-axis intensi-
ties are depicted in Fig. 3(b) for the permutation of all the bases
elements for d = 3. We note that the diagonal elements are ap-
proximately equal to 1/3 (1/d) and the elements corresponding
to different bases are found to be approximately 1/9 (1/d?).
This validates the implementation of the filters (holograms)
and their normalization. We note that there is some variance
across the bases sets. This is likely due to the complex
amplitude modulation implemented on a finite-resolution
phase-only spatial light modulator. Our approach in obtaining
the normalized joint probabilities is outlined in the Appendix
together with a discussion on the detection efficiencies.

(a)

w| =

0

FIG. 3. (Color online) (a) Cross-sectional intensity profiles of the
field recorded on the CCD for permutations of the first basis’s states
encoded on SLM A and SLM B. White crosshairs mark the axis of
propagation. (b) The normalized intensity recorded at the CCD when
SLM A (Alice) and SLM B (Bob) select one of the three states from
one of the four bases.

PHYSICAL REVIEW A 88, 032305 (2013)

1 30 31
2
P QC QC
15
11
(N }f 1
1 1+ 2 ¥ 3
30 30
QC QC

1 {2 §85455

FIG. 4. (Color online) The normalized joint probabilities when
SLM A (Alice) and SLM B (Bob) select one of the d states from one
of the d + 1 bases for the EB scheme.

Following the successful implementation of the simulated
P&M scheme, we proceeded to the EB scheme. For each
permutation of the projective measurements by Alice and Bob
in the EB scheme, the single count rates and coincidence count
rates were recorded and the normalized joint probabilities
calculated for d = 2,3,4, and 5 given in Fig. 4, together with
the quantum contrast for each measurement. Coincidences
peaked at approximately 300 counts per second for each
dimension, roughly half the value measured when no hologram
is programmed on the SLM (£ = 0 mode on both SLMs.) The
maximum efficiency of detection is limited by the APDs and
SLMs at approximately 10%, while our measured detection
efficiency with the intensity masking is only 1%. In studying
the data in Fig. 4, it is evident that when the filter settings
are the same, anticorrelations in all the bases are observed
(denoted by the white diagonal elements). In performing the
projective measurements, completely orthogonal filter settings
result in no correlations (an inconclusive measurement), while

L Theory:  Measured:
20 \ ....... d=2 A d=2
~ 2 --—-d=3 e d=3
&£ \\ d=4 md=4
2 15 M —d=5 #d=5
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@2 05 Ny \\ ™ ‘
. ~ \\
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s e IS .
0 5% 10% 15% 20% 25% 30%

Average error rate (Q)

FIG. 5. (Color online) The secret key rate rp,;, as a function of the
average error rate Q for different dimensions. The solid data points
denote the measured values and the dashed curves the theoretical
values calculated from Eq. (11).
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FIG. 6. (Color online) The measured average error rate (Q) and
the maximum permissible error rate (Qn.x) evaluated when rp;, = 0.

the overlap between the remaining filter settings is given as
the inverse of the dimension (i.e., 1/d).

Based on the results from the normalized joint probabilities,
we calculated the average error rate Q according to Eq. (10).
We find that for d = 2, 3, 4, and 5, the average error rate
is Q = 0.016, 0.040, 0.088, and 0.14, respectively. By using
these values of Q together with Eq. (11) we calculate the secret
key rate to be rpi, = 0.7590, 1.123, 1.139, and 0.8606 for
d =2,3,4,and 5, respectively. Figure 5 contains the measured
secret key rates plotted as a function of the measured average
error rates for dimensions d = 2, 3, 4, and 5, denoted by the
data points. The curves denote the theoretical secret key rate
as a function of the average error rate, plotted with the use of
Eq. (11). For each dimension d, the intersection between the
dashed curves and the horizontal axis (i.e., where ry;, = 0)
corresponds to the maximum permissible error rate (Qmax) in
order to enable the secure distribution of a secret key. Ideally,
we want to minimize the error rate Q in order to maximize
the secret key rate rpi,. These results are shown in a different
format in Fig. 6, where it is now evident that all the measured
error rates are well below the maximum permissible error rate.

The Shannon information ford = 2, 3, 4, and 5 is calculated
tobe I1(A:B) =0.9999, 1.313, 1.478, and 1.487, respectively
(depicted by the green data points in Fig. 7). While the Shannon
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FIG. 7. (Color online) The Shannon mutual information /(A:B)
and the secret key rate ry,;, plotted as a function of the dimension. The
shaded region denotes the mutual information between Alice and Eve.
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mutual information increases monotonically, it seems to level
off for d = 4 and 5. On the other hand, r,;, first increases and
then decreases for d = 5. This means that we have reached a
finite limit on the dimension in which the protocol can encode,
while still resulting in higher generation rates per photon. The
difference between these two quantities [/(A:B) and rp;,] is
the mutual information between Alice and Eve, in other words
the information that is shared between Alice and Eve (denoted
by the red shaded region in Fig. 7). From our results it is
evident that the noise (attributed to a disturbance by Eve) grows
faster than the correlations between Alice and Bob that can be
used to generate a key. As this is not expected theoretically,
this may be due to the complexity associated with encoding
higher-dimensional states holographically on pixelated, finite-
resolution, spatial light modulators. Our detection efficiency
is low because our filter measurements are based on intensity
masking and serve as a proof-of-principle experiment.

VII. CONCLUSION

In this work, we have classically simulated a P&M and
realized an EB QKD protocol for dimensions d = 2-5 using
MUB encoded in the OAM degree of freedom. We show that
our protocol, which is based on filter measurements, can be
mapped back into the original MUB protocol, which uses full
measurements. In particular, we verify our claim that detection
efficiency depends on a basis choice and not on the element
within a basis, an important consideration for the protocol to
work. We show this explicitly for d = 2 and attest to the fact
that this dependency holds for all dimensions. We infer from
our measurements the average error rate, mutual information,
and secret key generation rate per photon for each dimension.
We observe that encoding in higher-dimensional MUBs leads
to an increase in the encoding density per photon and increased
key generation rates per photon. However, our implementation
shows a decrease of generated secret key bits per carrier
photon for dimension d = 5 compared to dimensions d = 3,4.
Future studies are needed to determine whether this effect
occurs independent of the particular implementation scheme
and corresponds to a trend for higher dimensions.
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APPENDIX

1. Shannon information

In order to analyze the security of our scheme, we employ
the concept of mutual information given by Shannon. The
Shannon entropy gives a measure of uncertainty for a random
variable A with alphabet A and is defined as H(A) =
— D e 4 p(a)log, p(a), where p(a) is the probability of
outcome a. The classical mutual information is defined as
the amount by which the Shannon entropy on A decreases
when one learns about B. The classical mutual information

032305-5



MHLAMBULULI MAFU et al.

I(A:B) gives a degree of correlation between Alice (A), and
Bob’s (B) data and it is also an upper bound on the secret
key rate. It is defined as /(A:B) = H(A)+ H(B) — H(A,B),
where H(A, B) is the joint entropy. The joint entropy is used
to measure the total uncertainty about the pair (A,B). It
isexpressedas H(A,B) = — ) 1> ,cp P(a,b)log, p(a,b).
After data processing, Alice and Bob apply a key map where
their respective data is mapped to raw keys K and K'. In
this step, the total probability distribution remains unchanged
but the total classical mutual information changes to I(A’:B),
which is expressed as

I(A":B) =

where H(A) =), Zij pii log, pif'
defined in a similar manner as above.

H(A")+ H(B) — H(A',B), (AL)

. The joint entropy is

2. Calculation of detection efficiencies

In this section, we show how to formalize and verify the
claim that the detection efficiencies depend only on the bases
but are the same for all elements within a basis. We demonstrate
the calculation of detection efficiencies by comparing the
expected and detected number of clicks for the case of qubit
pairs (d = 2). For this purpose, we first calculate the expected
number of detection events by following the light beam from
the laser source to the detection device. Afterwards we relate
them to the measured counts. By comparing the single count
rates and the coincidence count rates we obtain an expression
for the detection efficiency for each basis state.

a. Photon pair creation and action of the beam splitter. The
state of the light exiting the laser source can be represented by
a coherent state with complex parameter o which specifies the
intensity and phase of the light:

o) = D()|0) = exp(abl — a*bo)|0), (A2)

where |0) is the vacuum state, by and bg are annihilation and
creation operators, respectively, with the index referring to
OAM value [ = 0. The operator D(«) is called a displacement
operator. The laser beam pumps a BBO crystal, creating pairs
of photons with OAM values !/ by type-I parametric down
conversion. This process can be modeled by the following
transformation of creation operators:

bT — Z\/_a[a 0 (A3)

where y; is the creation probability of a photon pair with OAM
values +¢ and aie are the corresponding creation operators.
After passing through the BBO crystal, the light is sent to a
50:50 beam splitter, resulting in the following transformation:

1
al — E(a},A +al p), (A4)

where A and B refer to the two beams exiting the beam splitter.

Thus the combined action of the BBO crystal and the beam
splitter reads

t i\/—(aZA-i_aZB)(aTlA"_aTZB) (AS)
ag —> Xe - - - - .
pry V2 V2
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It maps the displacement operator D(«) to a squeeze operator
S(a./x¢) given by

S(a/xe)
00 i i i i
Qpataypg\(a_gata_p
gt
|:£_<) V2 V2

= agatagp\(a-—,a+a—s
o m( Atar )( ' - )} (A6)
; V2 V2

Thus the initial coherent state is transformed into a (two-mode)
squeezed vacuum state: |&) = S(a./x¢)|0). For a small value
of «./x¢, the state |@) can be approximated to the first order

in o/ as
@) ~ [1+a2¢—(—“fA}afB>

f T

ayatap

=t w2 0’ A7
X( V2 )}l ) AP

where N is the normalization constant. The vacuum does not
play any role as far as photon detections are concerned; thus
one can ignore the vacuum component. This results in the
(un-normalized) state |vr) which reads

o0 a ral Nsat adl
V)=« m( = “‘)( - “’B)|0>, (A8)
g V2 V2

o0
_¢ tt ot
=3 Z m(a(,Aafl,A Tap A0y p
£=0

+aj gal, , +al gat, I0). (A9)
b. Measurements. After the BBO crystal and the beam
splitter filter measurements projecting onto individual basis
modes were carried out independently in both beams A and
B, the signal for each basis mode was detected by means of
avalanche photodiodes. These detectors respond to incident
photons but do not discriminate between a single photon and
multiple photons. However, the probability for a click varies
for different photon numbers. The probability to obtain a click
in a filter measurement of mode s can be modeled by the
expectation value of the effect Py defined by

Py _Zﬂ(")ms ) (ngl,

where 7" represents the probability for n photons in mode s
to trigger a detector click and reads [34]

a0 =1— (1= 0",
~ nn(” for small n“) (A11)

(A10)

Because of photon loss on the path from source to detector
and nonideal detection, only a fraction of the detection events
expected under ideal conditions is measured in the experiment.
We attribute any loss to nonideal detection. The probability of
coincidence can be calculated as an expectation value of the
operator P; ® Py with respect to the state |Y) [Eq. (A9)] after
the beam splitter.
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From Eq. (A9) it is clear that only the single-photon
components of state |i) can yield a click of detector A for
OAM value ¢, leading to a detection probability of

pes = WIP@LIY) = 0y lalxe/2.

Similarly, we can calculate the other probabilities as

(A12)

Poea = WIP_ @LIY) =) laPxe/2,  (A13)
pes = (WIL® Ply) = ny ylaxe/2, (Al14)
poes = WIL® P_y) =) glaPxe/2.  (ALS)

The probability of the coincidence count in detector A with
OAM value ¢ and in detector B with OAM value —¢ amounts to

Pea—en = (WIP ® P_olyr) = 0 yn') plalxe/4. (A16)

For the measured count of clicks C; 4 in detector A with
OAM value ¢ and the measured count C_, p in detector B with
OAM value —¢ we obtain the following expressions:

Coa = Npga, (A17)
C_¢,p=Np_y 3, (A18)
Cea—e.8 =Npea o8, (A19)

where N is the number of photon pairs created by consec-
utive pump pulses during the measurement period. For the
coincidence counts Cy 4, g in the last equation it is assumed
that photon loss in beams A and B are independent. Note
that pea.—e.8/Pea = 772 /2 and hence one can calculate
the efficiencies as follows:

Coa—e,B

(O]
N_yp=2 , (A20)
5 B — C[YA
Con—
Mon = 2= (A21)
—{,B

For the SLM-filter setting (|¢) £ |—£))/«/§, which is a
superposition of -=¢ OAM modes, the corresponding creation

operators read al = (az == af_[! A/ V2. Thus we can repre-

T i : T
sent ag A and a_, 410 terms of ag as

e
a =
“TTA
By substituting Eq. (A22) in Eq. (A9) we obtain

00 IRY T\
=%Zm<ﬁ(“;§) VA ]l
=0

(A22)

ToN2 T2
~2d" pal , + V2 (af/*g) - ﬁ(a:/*g) ) 10).

(A23)

Thus the probability of a click in detector A for the SLM setting
+ amounts to py 4 = 775:) A|a|2 X¢/2, while the coincidence
probability for the SLM setting + in detector A and detector
Breads py o 4+p5 = 77+ An$)3|a|2)(4/4. The observed number
of clicks is related to the expected detection counts as follows:

Cya=Npya, (A24)
Cy5=Npys, (A25)
Cia+.8=Npia+s. (A26)
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Since py a4+ B/P+.aA = 775:,)3/2, it follows for the efficiencies
that

(€)) — 2C+,A,+,B ’ (A27)
+.B
Cia
C
0, =2-LAtE (A28)
C+,B

Similarly for SLM settings (|£) £ i|—€))/«/§, the state [i)

can be rewritten as

(ﬂA)2 f(aiy,A)z L
Zx/_ NG 2 /2 +2a,, 40,

t t \/—(aer,B)z \/—(aing)z
+2a_yBa_y_A+ 2 NG + V2 N |0),
(A29)
where
al  +id
ajtyA % (A30)

Thus the relation for the efficiencies in this filter setting is
obtained as

C
[€))] +y,A,+y.B
Tayp =270 (A31)
y
C
€)) +y,A,+y,B
= e —

Using the expressions derived above, we calculated the
detection efficiencies for the case of a two-level system for
different SLM settings (Table I). We found that even though the
detection efficiencies vary for different bases, the fluctuation
in the values is very small for all the basis vectors within each
basis, which proves the claim for qubits.

Furthermore, this method can be used to show that the
detection efficiencies are independent of the basis vectors
within each basis, regardless of the dimension. However, let us
point out that the analysis of our measurement data indicated
an anomaly for the detection efficiency for the OAM value
£ =0, which is different from the other values of OAM.
Although not so important in the present context, this case
has to be investigated more carefully when it comes to actual
key transmission and will be the subject of future work.

TABLEI. Detection efficiencies for different detectors projecting
on different bases vectors. Here the first two vectors belong to the o,
basis, the following two to the o, basis, and the last two to the oy, basis.

Basis vectors Detector A Detector B
1 0.01504 0.02145
2 0.01517 0.02106
3 0.00536 0.00886
4 0.00503 0.00727
5 0.00508 0.00787
6 0.00556 0.00874
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