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Nonclassicality breaking is the same as entanglement breaking for bosonic Gaussian channels
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Nonclassicality and entanglement are notions fundamental to quantum-information processes involving
continuous variable systems. That these two notions are intimately related has been intuitively appreciated
for quite some time. An aspect of considerable interest is the behavior of these attributes of a state under the
action of a noisy channel. Inspired by the notion of entanglement-breaking channels, we define the concept
of nonclassicality-breaking channels in a natural manner. We show that the notion of nonclassicality breaking
is essentially equivalent—in a clearly defined sense of the term “essentially”—to the notion of entanglement
breaking, as far as bosonic Gaussian channels are concerned. This is notwithstanding the fact that the very notion
of entanglement breaking requires reference to a bipartite system, whereas the definition of nonclassicality
breaking makes no such reference. Our analysis rests on our classification of channels into nonclassicality-based,
as against entanglement-based, types of canonical forms. Our result takes ones intuitive understanding of the
close relationship between nonclassicality and entanglement a step closer.

DOI: 10.1103/PhysRevA.88.032302 PACS number(s): 03.67.Mn, 42.50.Dv, 03.65.Yz

I. INTRODUCTION

Two notions that have been particularly well explored in
the context of quantum information of continuous variable
states are nonclassicality [1] and entanglement [2]. The “older”
notion of entanglement has become one of renewed interest in
recent decades for its central role and applications in (potential
as well as demonstrated) quantum-information processes [3],
while the concept of nonclassicality, which emerges directly
from the diagonal representation [1], had already been well
explored in the quantum optical context [4], even before
the emergence of the present quantum-information era. A
fundamental distinction between these two notions may be
noted: While nonclassicality can be defined even for states of
a single mode of radiation, the very notion of entanglement
requires two or more parties. Nevertheless, it turns out that
the two notions are not entirely independent of one another;
they are rather intimately related [5–7]. In fact, nonclassicality
is a prerequisite for entanglement [7]. Since a nonclassical
bipartite state whose nonclassicality can be removed by
local unitaries could not be entangled, one can assert, at
least in an intuitive sense, that entanglement is nonlocal
nonclassicality.

An important aspect in the study of nonclassicality and
entanglement is in regard to their evolution under the action
of a channel. A noisy channel acting on a state can degrade
its nonclassical features [8]. Similarly, entanglement can be
degraded by channels acting locally on the constituent parties
or modes [9–12]. In fact, there are channels that render every
bipartite state separable by acting on just one of the parties
[11–13]. Such channels are said to be entanglement breaking.
We may recall that a channel � is a linear, completely positive,
trace-preserving map that takes a state ρ̂a of a system A to
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state ρ̂a′ of system A′. That is, ρ̂a′ = �(ρ̂a) � 0, Tr(ρ̂a′) = 1
for every ρ̂a � 0, Tr(ρ̂a) = 1. Further, ρ̂a′e = � ⊗ 11e (ρ̂ae) is a
physical state (i.e., unit-trace positive operator) for every input
state ρ̂ae of the extended composite system A + E, with the
environment E assumed to be arbitrary [14]: this is the notion
of complete positivity (CP).

In the present work we address the following issue: Which
channels possess the property of ridding every input state of
its nonclassicality? Inspired by the notion of entanglement-
breaking channels, we may call such channels nonclassicality-
breaking channels. The close connection between nonclas-
sicality and entanglement alluded to earlier raises a re-
lated second issue: What is the connection, if any, between
entanglement-breaking channels and nonclassicality-breaking
channels? To appreciate the nontriviality of the second issue, it
suffices to simply note that the very definition of entanglement
breaking refers to bipartite states, whereas the notion of
nonclassicality breaking makes no such reference. In this paper
we show that both these issues can be completely answered
in the case of bosonic Gaussian channels: nonclassicality-
breaking channels are enumerated, and it is shown that the
set of all nonclassicality-breaking channels is essentially the
same as the set of all entanglement-breaking channels.

We hasten to clarify the caveat “essentially.” Suppose a
channel � is nonclassicality breaking as well as entanglement
breaking, and let us follow the action of this channel with a
local unitary U . The composite U � is clearly entanglement
breaking. But local unitaries can create nonclassicality, and
so U � need not be nonclassicality breaking. We say � is
essentially nonclassicality breaking if there exists a fixed
unitary U dependent on � but independent of the input state
on which � acts, so that U � is nonclassicality breaking. We
may stress that this definition is not vacuous, for given a
collection of states it is generically the case that there is no
single unitary which would render the entire set nonclassical.
(This is not necessarily a property of the collection: Given a
nonclassical mixed state ρ, it is possibly not guaranteed that
there exists a unitary U such that ρ̂

′ = U ρ̂ U† is classical.) It
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is thus reasonable to declare the set of entanglement-breaking
channels to be the same as the set of nonclassicality-breaking
channels if at all the two sets indeed turn out to be the same,
modulo this “obvious” caveat or provision.

Gaussian channels are physical processes that map
Gaussian states to Gaussian states. They are generalization of
symplectic (metaplectic) unitaries, generated by Hamiltonians
quadratic in the mode operators, which too map Gaussian (pure
and mixed) states into Gaussian states [15–18]. To realize
a Gaussian channel, the state of the system is coupled to a
Gaussian state of an ancilla system of modes, evolved jointly
using a symplectic unitary, and then the ancilla modes are
discarded. Gaussian channels have played an important role
in quantum-information processing with continuous variable
states, and this has led to their systematic analysis [19–25].
Single-mode Gaussian channels were classified in [19], and
their canonical forms were enumerated. Their operator sum
representation was obtained in [22]. Multimode Gaussian
channels and their canonical forms were studied in [23].

The outline of the presentation is as follows. Section II
contains a brief discussion of the concept of s-ordered
quasiprobabilities and their corresponding s-ordered char-
acteristic functions. This is done in anticipation of its use
as the principal tool in our entire analysis. The diagonal
representation (s = 1) and the important notion that arises
from it—the classicality-nonclassicality divide—are noted,
the classicality-nonclassicality divide leading, inspired by
the notion of entanglement-breaking channels, to a natural
definition of the notion of nonclassicality-breaking channels.
We briefly discuss Gaussian states and bosonic Gaussian
channels in Sec. III, including a brief consideration of
entanglement-breaking Gaussian channels. In Sec. IV we
present a complete classification of single-mode Gaussian
channels into classicality-based canonical forms. There are
three different canonical forms, and these are distinct from
the entanglement-based canonical forms obtained by Holevo
and collaborators [19,20], the notion of nonclassicality break-
ing having a more restricted invariance than the notion of
entanglement breaking. Necessary and sufficient condition
on the channel parameters, in order that the channel breaks
nonclassicality of every input state, is derived in Sec. V for each
of the three nonclassicality-based canonical forms. In Sec. VI
we present a comparative analysis of nonclassicality-breaking
and entanglement-breaking channels. The paper concludes
with some final remarks in Sec. VII.

II. NONCLASSICALITY-BREAKING CHANNELS

A state of a quantum-mechanical system specified by
density operator ρ̂ can be faithfully described by any member
of the one-parameter family of s-ordered quasiprobability
distributions or, equivalently, by the corresponding s-ordered
characteristic functions [26]. For a single mode of radiation
field with mode operators â and â† satisfying the commutation
relation [â,â†] = 11, the s-ordered characteristic function
associated with state ρ̂ is defined as [26]

χs(ξ ; ρ) = exp

[
s

2
|ξ |2

]
Tr[ρ̂D(ξ )], − 1 � s � 1. (1)

Here ξ = (ξ1 + iξ2)/
√

2 ∈ C, D(ξ ) = exp(ξ â† − ξ ∗â) is the
phase-space displacement operator, and s is the order parame-
ter. The particular cases s = 1,0, − 1 correspond, respectively,
to normal-ordering N , Weyl or symmetric-ordering W , and
antinormal-ordering A of the mode operators.

By performing a Fourier transformation on the s-ordered
characteristic function χs(ξ ; ρ), we obtain

Ws(α; ρ)= 1

π

∫
exp(αξ ∗ − α∗ξ )χs(ξ ; ρ)d2ξ, (2)

the corresponding s-ordered quasiprobability, where α stands
for the classical (c-number) phase-space variable: α =
(q, p) = (q + ip)/

√
2 ∈ C. The particular cases s = −1,0,1

correspond, respectively, to the better known Q function, the
Wigner function, and the diagonal “weight” function (also
called the P function).

Except the Q function Q(α) = 〈α|ρ̂|α〉, which by definition
is manifestly pointwise nonnegative over the complex plane C,
all other s-ordered quasiprobabilities assume negative values
for some α, at least for some states. That is, the Q function
alone is a genuine probability distribution; but every genuine
probability distribution over C is not a Q function.

It is clear from Eq. (1) that the characteristic functions of a
state ρ̂ for two different values s1, s2 of the “order parameter”
s are related as

χs1 (ξ ; ρ) = exp

[−(s2 − s1)

2
|ξ |2

]
χs2 (ξ ; ρ). (3)

Performing Fourier transformation, we see that the respective
s-ordered quasiprobabilities (with s2 > s1) are related through
a Gaussian convolution [26].

Any density operator ρ̂ representing some state of a single
mode of a radiation field can always be expanded as

ρ̂ =
∫

d2α

π
φρ(α)|α〉〈α|, (4)

where φρ(α) = W1(α; ρ) is the diagonal “weight” function,
|α〉 being the coherent state. This diagonal representation is
made possible because of the over-completeness property of
the coherent state “basis” [1]. The diagonal representation (4)
enables the evaluation, in a classical-looking manner, of
ensemble averages of normal-ordered operators, and this is
important from the experimental point of view [27].

An important notion that arises from the diagonal repre-
sentation is the classicality-nonclassicality divide. If φρ(α)
associated with density operator ρ̂ is pointwise nonnegative
over C, then the state is a convex sum, or ensemble, of coherent
states. Since coherent states are the most elementary of all
quantum-mechanical states exhibiting classical behavior, any
state that can be written as a convex sum of these elementary
classical states is deemed classical. We have

φρ(α) � 0 for all α ∈ C ⇔ ρ̂ is classical. (5)

Any state which cannot be so written is declared to be
nonclassical. Fock states |n〉〈n|, whose diagonal weight
function φ|n〉〈n|(α) is the nth derivative of the delta function, are
examples of nonclassical states. (All the above considerations
generalize from one mode to n modes in a painless manner,
with α, ξ ∈ R2n ∼ Cn.)
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This classicality-nonclassicality divide leads to the follow-
ing natural definition, inspired by the notion of entanglement
breaking:

Definition: A channel � is said to be nonclassicality
breaking if and only if the output state ρ̂out = �(ρ̂in) is classical
for every input state ρ̂in, i.e., if and only if the diagonal function
of every output state is a genuine probability distribution.

III. GAUSSIAN STATES AND GAUSSIAN CHANNELS

A state ρ̂ is said to be Gaussian if its s-ordered quasiprob-
ability or, equivalently, its s-ordered characteristic function
is Gaussian. And without loss of generality we may assume
it to be a zero mean state. The symmetric or Weyl-ordered
characteristic function (s = 0) of a Gaussian state then has the
form [15,16]

χW (ξ ; ρ) = exp

[
−ξT V ξ

2

]
, (6)

where V is its variance matrix. V is real, symmetric, and
positive definite, and it specifies the Gaussian state completely;
and V necessarily obeys the uncertainty principle [17]

V + i	 � 0, 	 = iσ2 ⊕ iσ2 ⊕ · · · ⊕ iσ2, (7)

where σ2 is the antisymmetric Pauli matrix.
A Gaussian channel maps every Gaussian state to a Gaus-

sian state. The action of a Gaussian channel thus manifests
simply as a linear transformation on the variance matrix V .
Under the action of a Gaussian channel described by (X,Y )
[20],

V → V ′ = XT V X + Y, (8)

Y being symmetric positive semidefinite.
For an arbitrary input state with a symmetric-ordered

characteristic function χ in
W (ξ ; ρ), we have

χ in
W (ξ ; ρ) → χout

W (ξ ; ρ) = χ in
W (Xξ ; ρ) exp

[
−ξT Y ξ

2

]
. (9)

If a single-mode Gaussian channel (X,Y ) acts on the
A mode of a two-mode squeezed vacuum state |ψr〉 =
sech r

∑∞
k=0(tanh r)k|k, k〉, whose variance matrix equals

c2r114×4 + s2rσ1 ⊗ σ3, the result is a two-mode mixed Gaus-
sian state specified by the variance matrix

Vout(r) =
(

c2r (XT X) + Y s2r (XT σ3)
s2r (σ3X) c2r (112)

)
, (10)

where c2r = cosh 2r , s2r = sinh 2r , and σj are the Pauli
matrices. It is clear that Vout(r) should obey the mandatory
uncertainty principle

Vout(r) + i	 � 0, for all r, (11)

where 	 = iσ2 ⊕ iσ2. In fact, this uncertainty principle is both
a necessary and sufficient condition on (X,Y ) to be a Gaussian
channel, and it may be restated in the form [24]

Y + iσ � iXσXT . (12)

Since a noisy Gaussian channel preceded and/or succeeded by
Gaussian unitary (noiseless) channels is a Gaussian channel,
the double Gaussian unitary freedom can be used to bring
both X and Y to simpler canonical forms, as shown in [19].

The canonical forms so determined are useful, for instance, in
the study of entanglement-breaking Gaussian channels [12].
We recall that a channel � acting on system A is entangle-
ment breaking if the bipartite output state (� ⊗ 11e) (ρ̂ae) is
separable for every input state ρ̂ae, the ancilla system E being
arbitrary [11].

IV. NONCLASSICALITY-BASED CANONICAL FORMS
FOR GAUSSIAN CHANNELS

The canonical forms for Gaussian channels have been
described by Holevo [19] and Werner and Holevo [20]. Let S
denote an element of the symplectic group Sp(2n,R) of linear
canonical transformations and U(S) the corresponding unitary
(metaplectic) operator [17]. One often encounters situations
wherein the aspects one is looking for are invariant under local
unitary operations, entanglement being an example. In such
cases a Gaussian channel � is “equivalent” to U(S ′

) � U(S),
for arbitrary symplectic group elements S, S ′

. The orbits or
double cosets of equivalent channels in this sense are the
ones classified and enumerated by Holevo and collaborators
[19,20].

While the classification of Holevo and collaborators is
entanglement based, as just noted, the notion of nonclassicality
breaking has a more restricted invariance. A nonclassicality-
breaking Gaussian channel � preceded by any Gaussian
unitary U(S) is nonclassicality breaking if and only if �

itself is nonclassicality breaking. In contradistinction, the
nonclassicality breaking aspect of � and U(S) � [� followed
the Gaussian unitary U(S)] are not equivalent in general;
they are equivalent if and only if S is in the intersection
Sp(2n,R) ∩ SO(2n,R) ∼ U(n) of “symplectic phase-space
rotations” or passive elements [17,18]. In the single-mode case
this intersection is just the rotation group SO(2) ⊂ Sp(2, R).
We thus need to classify single-mode Gaussian channels �

into orbits or double cosets U(R) � U(S), S ∈ Sp(2, R), R ∈
SO(2) ⊂ Sp(2,R). Equivalently, we need to classify (X,Y )
into orbits (S XR,RT Y R). It turns out that there are three
distinct canonical forms, and the type into which a given pair
(X,Y ) belongs is fully determined by det X.

First canonical form: det X > 0. A real 2 × 2 matrix X with
det X = κ2 > 0 is necessarily of the form κ SX for some SX ∈
Sp(2, R). Indeed we have SX = (det X)−1/2 X. Choose R ∈
SO(2) so as to diagonalize Y > 0: RT Y R = diag(a,b). With
such an R, the choice S = RT S−1

X ∈ Sp(2, R) takes (X, Y ) to
the canonical form (κ11, diag(a,b)), where κ = √

det X > 0,
and a, b are the eigenvalues of Y .

Second canonical form: det X < 0. Again choose R so
that RT YR = diag(a,b). Since det X < 0, X is necessar-
ily of the form κ SX σ3, for some SX ∈ Sp(2, R): SX =
(det Xσ3)−1/2Xσ3. Since R σ3 R = σ3 for every R ∈ SO(2),
it is clear that the choice S = RS−1

X ∈ Sp(2, R) takes (X, Y )
to the canonical form (κ σ3, diag(a,b)) in this case, with
κ = √

det Xσ3, and the parameters a, b being the eigenvalues
of Y .

Third canonical form: det X = 0. Let κ be the singular
value of X; choose R′, R ∈ SO(2) such that R′ XR =
diag(κ,0). It is clear that the choice SX = diag(κ−1,κ)R′ T ∈
Sp(2, R) along with R ∈ SO(2) takes (X, Y ) to the canoni-
cal form (diag(1,0), Y0 = RT Y R). Y0 does not, of course,
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assume any special form. But if X = 0, then R ∈ SO(2) can
be chosen so as to diagonalize Y : in that case Y0 = (a,b), a, b

being the eigenvalues of Y .

V. NONCLASSICALITY-BREAKING GAUSSIAN
CHANNELS

Having obtained the nonclassicality-based canonical forms
of (X, Y ), we now derive the necessary and sufficient condi-
tions for a single-mode Gaussian channel to be nonclassicality
breaking. We do it for the three canonical forms in that order.

First canonical form: (X, Y ) = (κ11, diag(a,b)). There are
three possibilities: κ = 1, κ < 1, and κ > 1. We begin with
κ = 1; it happens that the analysis extends quite easily to the
other two cases and, indeed, to the other two canonical forms as
well. The action on the normal-ordered characteristic function
in this case is

χ in
N (ξ1, ξ2; ρ) → χout

N (ξ1,ξ2; ρ)

= exp

[
−a ξ 2

1

2
− b ξ 2

2

2

]
χ in

N (ξ1, ξ2; ρ). (13)

(For clarity, we shall write the subscript of χ explicitly as N ,
W , or A in place of 1, 0, or -1). It should be appreciated that for
this class of Gaussian channels (κ = 1) the above input-output
relationship holds even with the subscript N replaced by W or
A uniformly. Let us assume a, b > 1 so that a = 1 + ε1, b =
1 + ε2 with ε1, ε2 > 0. The above input-output relationship
can then be written in the form

χout
N (ξ1,ξ2; ρ) = exp

[
−ε1 ξ 2

1

2
− ε2 ξ 2

2

2

]
χ in

W (ξ1, ξ2; ρ).

Note that the subscript of χ on the right-hand side is now W

and not N .
Define λ > 0 through λ2 = √

ε2/ε1, and rewrite the input-
output relationship in the suggestive form

χout
N (λξ1,λ

−1ξ2; ρ) = exp

[
−1

2

(√
ε1ε2 ξ 2

1 − √
ε1ε2 ξ 2

2

)]

×χ in
W (λξ1, λ

−1ξ2; ρ). (14)

But χ in
W (λξ1, λ

−1ξ2; ρ) is simply the Weyl-ordered or Wigner
characteristic function of a (single-mode-) squeezed version
of ρ̂, for every ρ̂. If Uλ represents the unitary (metaplectic)
operator that effects this squeezing transformation specified
by squeeze parameter λ, we have

χ in
W (λξ1, λ

−1ξ2; ρ) = χ in
W (ξ1, ξ2;Uλ ρ U†

λ), (15)

so that the right-hand side of the last input-output relationship,
in the special case ε1ε2 = 1, reads

χout
W (λξ1, λ

−1ξ2; ρ) = χ in
A (ξ1, ξ2;Uλ ρ U†

λ). (16)

This special case would transcribe, on Fourier transformation,
to

φout(λα1, λ
−1α2; ρ) = Qin(α1, α2;Uλ ρ U†

λ) = 〈α|Uλ ρ̂ U†
λ|α〉

� 0, ∀ α, ∀ ρ̂. (17)

That is, the output diagonal weight function evaluated at
(λα1, λ

−1α2) equals the input Q function evaluated at (α1, α2),
and hence is non-negative for all α ∈ C. Thus the output

state is classical for every input, and hence the channel
is nonclassicality breaking. It is clear that if ε1ε2 > 1, the
further Gaussian convolution corresponding to the additional
multiplicative factor exp[−(

√
ε1ε2 − 1)(ξ 2

1 + ξ 2
2 )/2] in the

output characteristic function will only render the output state
even more strongly classical. We have thus established this
sufficient condition

(a − 1)(b − 1) � 1, (18)

or, equivalently,

1

a
+ 1

b
� 1. (19)

Having derived a sufficient condition for nonclassicality
breaking, we derive a necessary condition by looking at
the signature of the output diagonal weight function for a
particular input state evaluated at a particular phase-space
point at the output. Let the input be the Fock state |1〉〈1|, the
first excited state of the oscillator. Fourier transforming the
input-output relation (13), one readily computes the output
diagonal weight function to be

φout(α1, α2; |1〉〈1|) = 2√
ab

exp

[
−2α2

1

a
− 2α2

2

b

]

×
(

1 + 4(α1 + α2)2

a2
− 1

a
− 1

b

)
.

(20)

An obvious necessary condition for nonclassicality breaking is
that this function should be non-negative everywhere in phase
space. Non-negativity at the single phase-space point α = 0
gives the necessary condition 1/a + 1/b � 1 which is, perhaps
surprisingly, the same as the sufficiency condition established
earlier! That is, the sufficient condition (18) is also a necessary
condition for nonclassicality breaking. Saturation of this
inequality corresponds to the boundary wherein the channel
is “just” nonclassicality breaking. The formal resemblance in
this case with the law of distances in respect to imaging by a
thin convex lens is unlikely to miss the reader’s attention.

The above proof for the particular case of classical noise
channel (κ = 1) gets easily extended to noisy beamsplitter
(attenuator) channel (κ < 1) and noisy amplifier channel
(κ > 1). The action of the channel (κ11, diag(a,b)) on the
normal-ordered characteristic function follows from that on
the Wigner characteristic function given in Eq. (9):

χout
N (ξ ; ρ) = exp

[
− ã ξ 2

1

2
− b̃ ξ 2

2

2

]
χ in

N (κ ξ ; ρ),

(21)
ã = a + κ2 − 1, b̃ = b + κ2 − 1.

This may be rewritten in the suggestive form

χout
N (κ−1ξ ; ρ) = exp

[
− ã ξ 2

1

2κ2
− b̃ ξ 2

2

2κ2

]
χ in

N (ξ ; ρ). (22)

With this we see that the right-hand side of Eq. (22) is the same
as the right-hand side of Eq. (13) with ã/κ2, b̃/κ2 replacing
a, b. The case κ �= 1 thus is essentially reduced to the case
κ = 1, the case of classical noise channel, analyzed in detail
above. This leads to the following necessary and sufficient
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condition for nonclassicality breaking:

1

a + κ2 − 1
+ 1

b + κ2 − 1
� 1

κ2
⇔ (a − 1)(b − 1) � κ4,

(23)

for all κ > 0, thus completing our analysis of the first canonical
form.

Second canonical form: (X,Y ) = (κ σ3, diag(a,b)). The
noisy phase conjugation channel with canonical form
(κ σ3, diag(a,b)) acts on the normal-ordered characteristic
function in the following manner, as may be seen from its
action on the Weyl-ordered characteristic function (9):

χout
N (ξ ; ρ) = exp

[
− ã ξ 2

1

2
− b̃ ξ 2

2

2

]
χ in

N (κ σ3 ξ ; ρ), (24)

with ã = a + κ2 − 1, b̃ = b + κ2 − 1 again, and κ σ3 ξ de-
noting the pair (κ ξ1, − κ ξ2). As in the case of the noisy
amplifier and attenuator channels, we rewrite it in the form

χout
N (κ−1 σ3 ξ ; ρ) = exp

[
− ã ξ 2

1

2κ2
− b̃ ξ 2

2

2κ2

]
χ in

N (ξ ; ρ), (25)

the right-hand side of Eq. (25) has the same form
as Eq. (13), leading to the necessary and sufficient
nonclassicality-breaking condition

1

ã
+ 1

b̃
� 1

κ2
⇔ (a − 1)(b − 1) � κ4. (26)

Remark: We note in passing that in exploiting the “similar-
ity” of Eqs. (22) and (25) with Eq. (13), we made use of the
following two elementary facts: (1) An invertible linear change
of variables [f (x) → f (Ax), det A �= 0] on a multivariable
function f (x) reflects as a corresponding linear change of
variables in its Fourier transform; (2) a function f (x) is
pointwise non-negative if and only if f (Ax) is pointwise
non-negative for every invertible A. In the case of Eq. (22),
the linear change A corresponds to uniform scaling, and in the
case of Eq. (25) it corresponds to uniform scaling followed or
preceded by mirror reflection.

Third canonical form: Singular X. Unlike the previous
two cases, it proves to be convenient to begin with the Weyl
or symmetric-ordered characteristic function in this case of
singular X:

χout
W (ξ ; ρ) = exp

[
−1

2
ξT Y0 ξ

]
χ in

W (ξ1,0; ρ). (27)

Since we are dealing with symmetric ordering, χ in
W (ξ1,0; ρ) is

the Fourier transform of the marginal distribution of the first
quadrature (“position” quadrature) variable. Let us assume

that the input ρ̂ is a (single-mode-) squeezed Gaussian pure
state, squeezed in the position (or first) quadrature. For
arbitrarily large squeezing, the state approaches a position
eigenstate and the position quadrature marginal approaches
the Dirac δ function. That is, χ in

W (ξ1,0; ρ) approaches a
constant. Thus, the Gaussian exp[−(ξT Y0 ξ )/2] is essentially
the Weyl-characteristic function of the output state, and hence
corresponds to a classical state if and only if

Y0 � 11, or a, b � 1, (28)

a, b being the eigenvalues of Y .
We have derived this as a necessary condition for nonclas-

sicality breaking, taking as input a highly squeezed state. It is
clear that for any other input state the phase-space distribution
of the output state will be a convolution of this Gaussian
classical state with the position quadrature marginal of the
input state, rendering the output state more strongly classical,
and thus proving that the condition (28) is also a sufficient
condition for nonclassicality breaking.

In the special case in which X = 0 identically, we have the
following input-output relation in place of Eq. (27):

χout
W (ξ ; ρ) = exp

[
−1

2
ξT Y ξ

]
χ in

W (ξ = 0; ρ). (29)

Since χ in
W (ξ = 0; ρ) = 1 independent of ρ̂, the output is an

input-independent fixed state, and exp[− 1
2ξT Y ξ ] is its Weyl-

characteristic function. But we know that this fixed output
is a classical state if and only if Y � 11. In other words,
the condition for nonclassicality breaking is the same for all
singular X, including vanishing X.

We conclude our analysis in this section with the following,
perhaps redundant, remark: Since our canonical forms are
nonclassicality based, rather than entanglement based, if the
nonclassicality-breaking property applies for one member of
an orbit or double coset, it applies to the entire orbit.

VI. NONCLASSICALITY BREAKING VS
ENTANGLEMENT BREAKING

We are now fully equipped to explore the relation-
ship between nonclassicality-breaking Gaussian channels and
entanglement-breaking channels. In the case of the first
canonical form the nonclassicality-breaking condition reads
(a − 1)(b − 1) � κ4, the entanglement-breaking condition
reads ab � (1 + κ2)2, while the complete positivity condition
reads ab � (1 − κ2)2. These conditions are progressively
weaker, indicating that the family of channels which meet these
conditions are progressively larger. For the second canonical

TABLE I. Comparison of the nonclassicality-breaking, entanglement-breaking, and complete positivity conditions
for the three canonical classes of channels.

Canonical form Nonclassicality-breaking Entanglement-breaking Complete positivity

(κ 11, diag(a,b)) (a − 1)(b − 1) � κ4 ab � (1 + κ2)2 ab � (1 − κ2)2

(κ σ3, diag(a,b)) (a − 1)(b − 1) � κ4 ab � (1 + κ2)2 ab � (1 + κ2)2

(diag(1,0), Y ), a, b � 1, a, b being ab � 1 ab � 1
eigenvalues of Y

(diag(0,0), diag(a,b)) a, b � 1 ab � 1 ab � 1
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form the first two conditions have the same formal expression
as the first canonical form, while the complete positivity
condition has a more stringent form ab � (1 + κ2)2. For the
third and final canonical form, the nonclassicality-breaking
condition requires both a and b to be bounded from below
by unity, whereas both the entanglement-breaking and com-
plete positivity conditions read ab � 1. Table I conveniently
places these conditions side by side. In the case of the first
canonical form (first row of Table I), the complete positivity
condition itself is vacuous for κ = 1, the classical noise
channels.

This comparison is rendered pictorially in Fig. 1, in
the channel parameter plane (a,b), for fixed values of
detX. Saturation of the nonclassicality-breaking condition, the
entanglement-breaking condition, and the complete positivity
condition are marked (1), (2), and (3), respectively, in all four
frames. Frame (a) depicts the first canonical form for κ = 0.6
(attenuator channel). The case of the amplifier channel takes
a qualitatively similar form in this pictorial representation.
As κ → 1, from below (κ < 1) or above (κ > 1), curve (3)
approaches the straight lines a = 0, b = 0 shown as solid
lines in frame (b) which depicts this limiting κ = 1 case
(the classical noise channel). Frame (c) corresponds to the
second canonical form (phase conjugation channel) for κ =
0.8 and frame (d) to the third canonical form. It may be
noticed that in frames (c) and (d), curves (2) and (3) merge,
indicating and consistent with the fact that channels of the
second and third canonical forms are always entanglement
breaking.

It is clear that the nonclassicality-breaking condition is
stronger than the entanglement-breaking condition. Thus, a
nonclassicality-breaking channel is necessarily entanglement
breaking: But there are channel parameter ranges wherein the
channel is entanglement breaking, though not nonclassicality
breaking. The dotted curves in Fig. 1 represent orbits of
a generic entanglement-breaking channel �, fixed by the
product ab (κ having been already fixed), when � is followed
up by a variable local unitary squeezing U(r). To see that
the orbit of every entanglement-breaking channel passes
through the nonclassicality-breaking region, it suffices
to note from Table I that the nonclassicality-breaking
boundary has a = 1, b = 1 as asymptotes whereas the
entanglement-breaking boundary has a = 0, b = 0 as the
asymptotes. That is, for every entanglement-breaking channel
there exists a particular value of squeeze-parameter r0,
depending only on the channel parameters and not on the
input state, so that the entanglement-breaking channel �

followed by unitary squeezing of extent r0 always results
in a nonclassicality-breaking channel U(r0) �. It is in this
precise sense that nonclassicality-breaking channels and
entanglement-breaking channels are essentially one and the
same.

Stated somewhat differently, even if the output of an
entanglement-breaking channel is nonclassical, the nonclas-
sicality is of a “weak” kind in the following sense. Squeezing
is not the only form of nonclassicality. Our result not only says
that the output of an entanglement-breaking channel could at
the most have a squeezing-type nonclassicality, it further says
that the nonclassicality of all output states can be removed by
a fixed unitary squeezing transformation.

FIG. 1. (Color online) A pictorial comparison of the
nonclassicality-breaking, entanglement-breaking, and complete pos-
itivity conditions in the channel parameter space (a,b) for fixed det X.
Curves (1), (2), and (3) correspond to saturation of these conditions in
that order. Curve (3) thus corresponds to quantum-limited channels.
Frame (a) refers to the first canonical form (κ11, diag(a,b)), frame
(c) to the second canonical form (κ σ3, diag(a,b)), and frame (d) to
the third canonical form, singular X. Frame (b) refers to the limiting
case κ = 1, classical noise channel. In all four frames, the region to
the right of (above) curve (1) corresponds to nonclassicality-breaking
channels; the region to the right of (above) curve (2) corresponds to
entanglement-breaking channels; curve (3) depicts the CP condition,
so the region to the right of (above) it alone corresponds to physical
channels. The region to the left (below) curve (3) is unphysical
as channels. In frames (c) and (d), curves (2) and (3) coincide.
In frame (b), curve (3) of (a) reduces to the a and b axis shown
in bold. In frames (a) and (c), curves (1) and (2) meet at the
point (1 + κ2,1 + κ2), in frame (b) they meet at (2,2), and in
frame (d) at (1,1). The region between (2) and (3) corresponds
to the set of channels which are not entanglement breaking. That
in frame (c) and (d) the two curves coincide proves that this
set is vacuous for the second and third canonical forms. That in
every frame the nonclassicality-breaking region is properly contained
in the entanglement-breaking region proves that a nonclassicality-
breaking channel is certainly an entanglement-breaking channel.
The dotted curve in each frame indicates the orbit of a generic
entanglement-breaking Gaussian channel under the action of a local
unitary squeezing after the channel action. That the orbit of every
entanglement-breaking channel passes through the nonclassicality-
breaking region proves that the nonclassicality in all the output states
of an entanglement-breaking channel can be removed by a fixed
unitary squeezing, thus showing that every entanglement-breaking
channel is “essentially” a nonclassicality-breaking channel.

VII. FINAL REMARKS

We have explored the notion of nonclassicality breaking and
its relation to entanglement breaking. We have shown that the
two notions are effectively equivalent in the context of bosonic
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Gaussian channels, even though at the level of definition the
two notions are quite different, the latter requiring reference to
a bipartite system. Our analysis shows that some nonclassical-
ity could survive an entanglement-breaking channel, but this
residual nonclassicality would be of a particular weaker kind.

The close relationship between entanglement and nonclas-
sicality has been studied by several authors in the past [5–7,10].

It would seem that our result brings this relationship another
step closer.

Finally, we have presented details of the analysis only
in the case of single-mode bosonic Gaussian channels.
We believe the analysis is likely to generalize to the
case of n-mode channels in a reasonably straight forward
manner.
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