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Using as a prototype example the harmonic oscillator we show how losing self-adjointness of the Hamiltonian
H changes drastically the related functional structure. In particular, we show that even a small deviation from
strict self-adjointness of H produces two deep consequences, not well understood in the literature: First of all,
the original orthonormal basis of H splits into two families of biorthogonal vectors. These two families are
complete but, contrarily to what often claimed for similar systems, none of them is a basis for the Hilbert space
H. Second, the so-called metric operator is unbounded, as well as its inverse. In the second part of the paper,
after an extension of some previous results on the so-called D pseudobosons, we discuss some aspects of our
extended harmonic oscillator from this different point of view.
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I. INTRODUCTION

In recent years a larger and larger community of physicists
and mathematicians started to be interested in some non-
self-adjoint operators having real eigenvalues, such as the
celebrated Hamiltonian H = p2 + ix3; see [1] for a mathe-
matically oriented treatment of H and for many references.
This original, and maybe restricted, interest was soon comple-
mented by other related aspects, which include, for instance,
gain and loss structures; see for instance [2], as well as phase
transitions, exceptional points, and so on. We refer to [3–5] for
some reviews on what is now called pseudo-Hermitian, PT ,
or crypto-Hermitian quantum mechanics.

In our opinion, most of the literature on these topics suffers
from a sort of original sin: it is mainly written by physicists for
physicists. This means that not much care about mathematical
details is adopted, and this may have unpleasant consequences
on the validity of the results deduced. For instance, in very
many papers, the authors work with some non-self-adjoint
Hamiltonian h, deducing the eigenstates of both h and h†,
and they simply claim that these two families are biorthogonal
bases of the Hilbert spaceHwhere h is defined. The aim of this
paper is to convince the reader that such a procedure is, in fact,
very dangerous, since already for extremely simple systems
the two sets of eigenstates of h and h† are not bases at all!
This is related, as discussed for instance in [1], to the fact that
the metric operator, or its inverse, is quite often an unbounded
operator. And it is exactly for this reason that this kind of
problem simply does not exist in finite dimensional Hilbert
spaces, which are used quite often in the literature to produce
examples of the general structure behind the models. However,
if from one side finite-dimensional examples are usually easily
handled, and for this reason they are very often proposed
and analyzed, see [6] for instance, on the other side they
hide completely the mathematical problems we have sketched
above. Hence, trying to deduce a general structure out of only
finite-dimensional systems can be a rather risky business.
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In this paper we will consider an example based on the
simplest system in quantum mechanics, the harmonic oscil-
lator, and some non-self-adjoint extensions of it introduced
by making use of the D pseudobosonic operators recently
discussed in [7]. Among the other results, we will show that,
for our particular system, there exist sets of vectors in H which
are not bases, but which still are complete (or total) in H.1

They are eigenstates of the Hamiltonian of the system and of
its adjoint.

This article is organized as follows: in the next section
we review and extend the definition and few useful results
on D pseudobosons (D-PBs). In Sec. III we introduce the
harmonic oscillator and some non-self-adjoint extensions. For
these extended systems we deduce that the related biorthogonal
sets of eigenstates are not Riesz bases. As a matter of fact, we
prove that they are not even bases. In Sec. IV we show how
to use D-PBs to deal with these extended oscillators, and we
prove that the metric operator is unbounded, as well as its
inverse. Section V contains our conclusions.

II. D PSEUDOBOSONS

We briefly review here a few facts and definitions on D-
PBs. More details can be found in [7]. Let H be a given
Hilbert space with scalar product 〈.,.〉 and related norm ‖.‖.
Let further a and b be two operators on H, with domains
D(a) and D(b) respectively, a† and b† their adjoint, and let D
be a dense subspace of H such that a�D ⊆ D and b�D ⊆ D,
where x� is x or x†. Incidentally, it may be worth noticing
that we are not requiring here that D coincide with, e.g., D(a)
or D(b). Nevertheless, for obvious reasons, D ⊆ D(a�) and
D ⊆ D(b�).

Definition 1. The operators (a,b) are D-pseudo bosonic
(D-pb) if, for all f ∈ D, we have

abf − baf = f. (2.1)

1Recall that, when orthonormality of a set of vectors F is lost, the
two concepts (F being a basis or F being complete) are different: the
first implies the second, but the opposite is false [8].
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Sometimes, to simplify the notation, instead of (2.1) we will
simply write [a,b] = 11, having in mind that both sides of this
equation have to act on f ∈ D.

Our working assumptions are the following:
Assumption D-PB 1. There exists a nonzero ϕ0 ∈ D such

that a ϕ0 = 0.
Assumption D-PB 2. There exists a nonzero �0 ∈ D such

that b† �0 = 0.
Then, if (a,b) satisfy Definition 1, it is obvious that

ϕ0 ∈ D∞(b) := ∩k�0D(bk) and that �0 ∈ D∞(a†), so that the
vectors

ϕn := 1√
n!

bnϕ0, �n := 1√
n!

a†n�0, (2.2)

n � 0, can be defined and they all belong to D and, as a
consequence, to the domains of a�, b�, and N�, where N = ba.
We introduce, as in [7],F� = {�n, n � 0} andFϕ = {ϕn, n �
0}.

It is now simple to deduce the following lowering and
raising relations:

⎧⎪⎪⎨
⎪⎪⎩

b ϕn = √
n + 1ϕn+1, n � 0,

a ϕ0 = 0, aϕn = √
n ϕn−1, n � 1,

a†�n = √
n + 1�n+1, n � 0,

b†�0 = 0, b†�n = √
n �n−1, n � 1,

(2.3)

as well as the following eigenvalue equations: Nϕn = nϕn and
N †�n = n�n, n � 0. As a consequence of these equations,
choosing the normalization of ϕ0 and �0 in such a way that
〈ϕ0,�0〉 = 1, we deduce that

〈ϕn,�m〉 = δn,m, (2.4)

for all n,m � 0. The third assumption we introduced in [7] is
the following:

Assumption D-PB 3. Fϕ is a basis for H.
This is equivalent to the request that F� is a basis for

H, [7]. In particular, if Fϕ and F� are Riesz basis for H, we
have called our D-PBs regular.

Remark. We recall once again that requiring that Fϕ is a
basis is much more, for nonorthonormal sets, than requiring
that Fϕ is just complete. Counterexamples can be found in
[7,8].

In [7] we have introduced a weaker version of Assumption
D-PB 3, useful for physical applications: for that, let G be a
suitable dense subspace of H. Two biorthogonal sets Fη =
{ηn ∈ G, g � 0} and F� = {�n ∈ G, g � 0} have been called
G-quasibases if, for all f,g ∈ G, the following holds:

〈f,g〉 =
∑
n�0

〈f,ηn〉〈�n,g〉 =
∑
n�0

〈f,�n〉〈ηn,g〉. (2.5)

It is clear that, while Assumption D-PB 3 implies (2.5), the
reverse is false. However, if Fη and F� satisfy (2.5), we still
have some (weak) form of resolution of the identity. Now
Assumption D-PB 3 is replaced by the following:

Assumption D-PBW 3. For some subspace G dense in H,
Fϕ , and F� are G quasibases.

�-conjugate operators for D quasibases

In this section we slightly refine the structure. Notice that,
with respect to what was done in [7], we will here assume
that Assumption D-PB 1, D-PB 2, and D-PBW 3 are satisfied,
with G ≡ D. In other words, we will not assume D-PB 3, since
this assumption, even if it is very often taken for granted in
the physical literature on non-self-adjoint Hamiltonians, is not
satisfied even in our simple extended harmonic oscillator; see
Sec. III.

Let us consider a self-adjoint, invertible, operator �, which
leaves, together with �−1, D invariant: �D ⊆ D, �−1D ⊆ D.
Then, as in [7], we say that (a,b†) are � conjugate if af =
�−1b† �f , for all f ∈ D.

Replacing D-PB 3 with D-PBW 3 does not influence the
fact that, for instance, (a,b†) are � conjugate if and only if
(b,a†) are � conjugate. This is because, see [7], the proof of
this equivalence does not make any use of the nature of the
sets Fϕ and F� . On the other hand, this is used in [7] to prove
that (a,b†) are � conjugate if and only if �n = �ϕn, for all
n � 0, so one may imagine that this is no longer true in our
new hypotheses. However, this is not so, and we can in fact
prove the following:

Proposition 2. Assume that Fϕ and F� are D quasibases
for H. Then the operators (a,b†) are �−conjugate if and only
if �n = �ϕn, for all n � 0.

Proof. The proof is quite similar to that in [7], so that here
we will stress only the differences. Notice that, as in [7], we
will use the following normalization: 〈ϕ0,�ϕ0〉 = 1.

Let us first assume that (a,b†) are � conjugate. Then,
as in [7], we can check that Fϕ̃ = {ϕ̃n := �ϕn, n � 0} is
biorthogonal to Fϕ . Now, it is easy to see that both Fϕ and F�

are complete in D. In other words, if f ∈ D is orthogonal to
all the ϕn’s or to all the �n’s, then f = 0. Hence, since for all
fixed k

〈ϕ̃k − �k,ϕn〉 = 〈ϕ̃k,ϕn〉 − 〈�k,ϕn〉 = δk,n − δk,n = 0,

∀ n � 0, and since ϕ̃k − �k belongs to D, we conclude that
ϕ̃k = �k for each k. Hence �k = �ϕk .

Let us now assume that �n = �ϕn, for all n � 0. Then, as
in [7], we deduce that, taking f in D,

〈(�a �−1 − b†)f,ϕn〉 = 〈f,(�−1 a† � − b)ϕn〉 = 0,

for all n � 0. Hence, since Fϕ is complete in D, we conclude
that (�a �−1 − b†)f = 0 for each f ∈ D, so that (b†,a) are
�−1 conjugate, which in turns implies our statement. �

The positivity of �, proved in [7] under stronger assump-
tions, can also be deduced in the present settings, again with a
really minor difference. We have the following:

Proposition 3. If (a,b†) are � conjugate, then 〈f,�f 〉 > 0
for all nonzero f ∈ D.

Proof. Since both f and �f belong to D, and since Fϕ and
F� are D quasibases for H, the following expansion holds:

〈f,�f 〉 =
∑

n

〈f,�n〉〈ϕn,�f 〉 =
∑

n

〈f,�n〉〈�ϕn,f 〉

=
∑

n

〈f,�n〉〈�n,f 〉 =
∑

n

|〈f,�n〉|2,

which is surely strictly positive if f �= 0, due to the fact that
F� is complete in D. �
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Notice that, in [7], f was any vector in D(�), which could
be larger than D. Here we need to restrict to D. Notice also
that, not surprisingly, we can deduce that Nf = �−1N †�f ,
for all f ∈ D.

We end this section with a final remark: it is clear by the
definition that (a,b†) are � conjugate if and only if (a,b†) are
�k conjugate, where �k := k �, for all possible choices of
nonzero real k. Here, reality of k is needed to ensure that �k is
self-adjoint. Notice that k could also be negative, in principle.
This could seem to be in contradiction with Propositions 2 and
3. In fact, this is not so, since these results are deduced under
the requirement that 〈ϕ0,�ϕ0〉 = 1, which of course fixes the
value of the constant k.

III. HARMONIC OSCILLATOR:
LOSING SELF-ADJOINTNESS

This section is devoted to a detailed analysis of the shifted
harmonic oscillator, and of some of its possible non-self-
adjoint extensions. It may be worth stressing that in the
literature several such extensions exist, in one or more spatial
dimensions; see [9] and references therein for some examples.
We should also mention that part of the results we will discuss
in this section are somehow related to a similar model we
have recently introduced in [10], but with a rather different
perspective.

The original ingredients of our analysis are the self-adjoint
position and momentum operators x and p = −i d

dx
, satisfying

[x,p] = i11, and the standard annihilation and creation opera-
tors a = 1√

2
(x + ip) and a† = 1√

2
(x − ip) constructed out of x

and p, which obey [a,a†] = 11. Here 11 is the identity operator
on H = L2(R).

Let us now fix k ∈ R, α,β ∈ C, and let us introduce the
operators

c := a + k, A = a + α, B = a† + β, (3.1)

as well as their adjoints c† = a† + k, A† = a† + α, and B† =
a + β. The commutation rules

[c,c†] = [c,A†] = [c,B] = [A,c†] = [A,A†]

= [A,B] = [B,c] = [B,A] = [B,B†] = 11 (3.2)

suggest that (c,c†), (A,A†), and (B,B†) are bosonic operators
for all choices of k, α, and β, while, for instance, the pairs
(A,c†), (A,B), or (B,c) are (at least formally), pseudobosonic.
Therefore, we could introduce several self-adjoint, and non-
self-adjoint, number operators, like n̂ = c†c, A†A, BB†, N =
BA, and N † = A†B†, and so on. The main result of our analysis
will allow us to conclude that, while the eigenstates of n̂

produce an orthonormal (o.n.) basis for H, the eigenstates
of N (or those of N †) are not even a basis. For that we will
make use of the unitary displacement operator

D(z) = ez a−za† = e−izi zr e−i
√

2zixei
√

2zrp, (3.3)

where z = zr + izi . The role of D(z) is important, since
we can write c = D(k)aD−1(k), A = D(α)aD−1(α), and
B = D(β)a†D−1(β). Hence, calling n̂0 := a†a, it is clear that
n̂ = D(k)n̂0D

−1(k), N = D(β)a†D−1(β)D(α)aD−1(α), and
N † = D(α)a†D−1(α)D(β)aD−1(β). In particular, we see that
N = N † if α = β, but not in general.

A. Self-adjoint shifted harmonic oscillator

Let us first recall that, in coordinate representation, the
normalized vacuum of a, a e0(x) = 0, is e0(x) = 1

π1/4 e−x2/2,
and that the other eigenstates of n̂0 can be written as

en(x) = 1√
n!

(a†)n e0(x) = 1√
2nn!

√
π

Hn(x) e−x2/2,

where Hn(x) is the nth Hermite polynomial. The eigenstates
�n(x) of n̂ can be easily deduced, both with a direct
computation, or from the previous ones, simply because
c �0(x) = 0 produces, choosing properly the normalization,
�0(x) = D(k)e0(x). This relation can be extended to the
other functions of the two sets, Fe = {en(x),n � 0} and
F� = {�n(x),n � 0}. Indeed we find

�n(x) = D(k)en(x) = ei
√

2kpen(x) = en(x +
√

2k), (3.4)

for all n � 0 and for all real choices of k. In particular, the
last equality follows from (3.3). Since n̂�n(x) = n�n(x), we
conclude that the eigenstates of the self-adjoint operator n̂ are
just the translated version of those of n̂0. They are clearly o.n.,
complete,2 and span all the Hilbert space. These properties
could be easily deduced from the fact that D(k) is unitary.3 In
fact, for instance, if f ∈ H is orthogonal to all the �n(x)’s,
then for all n � 0 we have

0 = 〈f,�n〉 = 〈f,D(k)en〉 = 〈D−1(k)f,en〉 ⇒ D−1(k)f = 0,

since Fe is complete. Hence, f = 0, which implies that F� is
complete as well. To prove that F� is also a basis for H, we
use the fact that ∀g ∈ H, g = ∑

n�0〈en,g〉en. Then we have,
using the fact that D(k) is continuous and the relation between
en and �n,

f = D(k)[D−1(k)f ] = D(k)

⎛
⎝∑

n�0

〈en,D
−1(k)f 〉en

⎞
⎠

=
∑
n�0

〈D(k)en,f 〉D(k)en =
∑
n�0

〈�n,f 〉�n,

for all f ∈ H. It is important to stress that what we have done
here is only possible since D(k) and D−1(k) are bounded.
Otherwise, for instance, in the proof of the completeness of
F� we should have taken f in the domain of D−1(k), and
this would not allow us to conclude. Also, in the previous
equation, D(k) could not be taken inside the infinite sum on
n, since, in this case, there is no guarantee that the series∑N

n=0〈D(k)en,f 〉D(k)en converge.

B. Non-self-adjoint shifted harmonic oscillator

Among the possible generalizations of the number oper-
ators n̂0 and n̂, we could consider A†A or BB†. However,

2We have previously introduces the notion of completeness in D.
To simplify the notation, here and in the following, we will simply
say complete to mean complete in H.

3We include here the proofs of the statements since they are
important to show that, as soon as we move from unitary (and
therefore bounded) to unbounded operators, many of the apparently
obvious properties of the systems are simply lost.
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since these appear both self-adjoint, not many differences are
expected with respect to what we have deduced previously.
For instance, if we act with powers of A† on the vacuum
of A, ϕ0, again we get an o.n. basis for H, whose nth
vector can be written as D(α)en(x), and which satisfies the
eigenvalue equation (A†A)[D(α)en(x)] = n[D(α)en(x)]. For
our purposes it is more interesting to act on ϕ0 with powers of
B, and this is what we will do in some detail here.

First, let us observe that, choosing a suitable normalization,
Aϕ0 = 0 if ϕ0 = D(α)e0. Then we have, see Sec. II,

ϕn = 1√
n!

Bnϕ0

= 1√
n!

D(β)(a†)nD−1(β)D(α)e0 = V (α,β) en, (3.5)

where we have introduced the operator V (α,β) =
e(1/2)α(β−α)eβa−αa†

. It is important to stress that V (α,α) =
D(α), which means that, for some values of, say, β the operator
V (α,β) is unitary and, therefore, bounded. However, if α �= β,
we will see later that V (α,β) is unbounded. Due to (3.5), each
en belongs to its domain, which is dense in H since it contains
the set of all the linear combinations of the en’s.

As discussed in Sec. II, the biorthogonal set �n is
constructed by first looking for the vacuum of B†: B†�0 = 0.
This is satisfied if a[D−1(β)e0] = 0, and then we deduce
that �0 = μ(α,β)D(β)e0, where μ(α,β) := e(1/2)(|α|2+|β|2)−β α

is a suitable normalization, see below, needed ensure that
〈ϕ0,�0〉 = 1. If we act on �0 with powers of B we construct an
orthogonal basis for H of eigenstates of BB†. Suppose instead
that we are interested in finding the eigenstates of N † = A†B†.
Then, following Sec. II, we construct the new vectors

�n = 1√
n!

(A†)n�0

= μ(α,β)√
n!

D(α)(a†)nD−1(α)D(β) e0 = μ(α,β)V (β,α) en,

(3.6)

where we stress that V (β,α) appears rather than V (α,β), see
(3.5). A simple computation shows that, with our previous
choice of normalization for ϕ0 and �0,

〈ϕ0,�0〉 = 〈V (α,β)e0,μ(α,β)V (β,α)e0〉
= μ(α,β)e−(1/2)(|α|2+|β|2)+β α = 1,

so that 〈ϕn,�m〉 = δn,m, for all n,m � 0. The vectors of the
sets Fϕ and F� are respectively eigenstates of N and N †, and
they are biorthogonal. This is what quite often, in the literature,
is assumed to be sufficient to claim that Fϕ and F� are indeed
bases for H. We will now prove that, on the contrary, neither
Fϕ nor F� can be a basis for H. Our argument extends that
originally given in [10].

We start proving that limn→∞ ‖ϕn‖ = ∞. In fact, with a
little algebra, we have

‖ϕn‖2 = 〈V (α,β) en,V (α,β) en〉
= ‖e(β−α)aen‖2 � 1 + |β − α|2n = 1 + |β − α|2n,

which clearly diverges with n diverging. The inequality above
follows from the fact that, ∀γ ∈ C,

eγa en =
n∑

k=0

(γ a)k

k!
en = en + γ

√
nen−1 + · · · + γ n

√
n!

e0,

and from the orthogonality of the different ek’s. In a similar
way we can also prove that limn→∞ ‖�n‖ = ∞: the different
choice of normalization, in fact, does not produce any serious
difference, at least under this aspect.

Remark. An essential point to stress is that the divergence
of both ‖ϕn‖ and ‖�n‖ is only true if α �= β, which is exactly
what we expect since, if α = β, Fϕ , and F� both coincide
with F�, with k = α = β, whose vectors are, in particular,
normalized.

A consequence of these results is that V (α,β), if α �= β,
is necessarily unbounded. The reason is simple: suppose
this would not be so, and let M be the (finite) norm of
V (α,β). Hence, since ‖ϕn‖ = ‖V (α,β)en‖ � M , we would
get a contradiction. An immediate consequence of this fact is
that neither Fϕ nor F� can be a Riesz basis for H, because a
Riesz basis is the image of an o.n. basis via a bounded operator,
with bounded inverse. However, this would not prevent Fϕ or
F� , or both, to be bases. Nevertheless, we will now show that,
for α �= β, this is also impossible.

In fact, let us assume for the moment that Fϕ is a
basis for H. Hence each f ∈ H can be written as f =∑∞

n=0〈�n,f 〉ϕn = ∑∞
n=0 Pn(f ), where Pn(f ) := 〈�n,f 〉ϕn.

Since ‖Pn‖ = ‖ϕn‖‖�n‖ → ∞, supn ‖Pn‖ = ∞ and, as a
consequence, the above expansion cannot converge for all
vectors f . Hence, Fϕ cannot be a basis for H. In a similar way
we can conclude thatF� cannot be a basis forH. Nevertheless,
we will see in the next section that they still produce some
useful weak form of the resolution of the identity.

Summarizing we have that, in our very simple model, the
biorthogonal sets of eigenstates of N and N † are not bases
for H. This suggests that most of the claims which one can
find in the physical literature on this subject, where the non-
self-adjoint Hamiltonians are by far more complicated than
the number operators N and N † considered here, are wrong
or, at least, need to be justified in more detail.

We should also stress that, even if they are not bases, both
Fϕ and F� are complete in L2(R). This is because both these
sets are made of polynomials times a shifted Gaussian. In more
detail, for instance, ϕn(x) = pn(x)e−(x−γ )2/2, where pn(x) is a
polynomial of degree n and γ is some fixed shift parameter.
Then Fϕ is complete [11]. Our results show explicitly that,
when orthonormality is lost, a complete set need not to be a
basis!

We end this section with some similarity relations, which
can be proved explicitly, by using simple formulas for a and a†:

V −1(α,β)NV (α,β) = V −1(β,α)N †V (β,α) = n̂0,

T −1(α,β)NT (α,β) = N †,

where

T (α,β) = V (α,β)V −1(β,α)

= e(1/2)(αβ−βα+2|β|2−2|α|2)ea(β−α)+a†(β−α).

Notice that all these identities cannot be defined in all of H,
since the operators involved are unbounded.
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IV. A D-PB VIEW TO THE NON-SELF-ADJOINT
HARMONIC OSCILLATOR

Among all the possible choices of formal pseudobosonic
operators, we will here only consider the pair (A,B),
as in Sec. III B. We have, see (3.1), A = 1√

2
(x + d

dx
+√

2 α) and B = 1√
2
(x − d

dx
+ √

2 β). The vacua of A and

B† are then ϕ0(x) = Nϕ exp{−( x2

2 + √
2 α x)} and �0(x) =

N� exp{−( x2

2 + √
2 β x)}. Here Nϕ and N� must satisfy the

following equality:

Nϕ N� = 1√
π

e−(β+α)2/2,

which ensure that 〈ϕ0,�0〉 = 1. Of course, Nϕ and N� can be
related to μ(α,β) introduced before, but this is not relevant
for us. Both vacua belong to the set D = {f (x) ∈ S(R) :
ekxf (x) ∈ S(R),∀k ∈ R}. This set is dense in L2(R), since
it contains D(R), and is stable under the action of A� and B�.
AssumptionsD-PB 1 andD-PB 2 are satisfied. As for Assump-
tion D-PB 3, our previous results show that this does not hold.
However, it is possible to show that Assumption D-PBW 3 is
satisfied, with G ≡ D. Indeed let us take f,g ∈ D. Then, since
Fe is an o.n. basis and sinceD ⊆ D(V †(α,β)) ∩ D(V −1(α,β)),
we have

〈f,g〉 = 〈V †(α,β)f,V −1(α,β)g〉
=

∑
n

〈V †(α,β)f,en〉〈en,V
−1(α,β)g〉

=
∑

n

〈f,ϕn〉〈�n,g〉, (4.1)

since ϕn = V (α,β)en and �n = [V †(α,β)]−1en. Equation (4.1)
shows that, as required by Assumption D-PBW 3, Fϕ

and F� produce a weak form of the resolution of the
identity.

Let us now put together ϕn = V (α,β) en and �n =
μ(α,β)V (β,α) en. Then we deduce that

�n = �(α,β)ϕn, (4.2)

where

�(α,β) = μ(α,β)V (β,α)V −1(α,β)

= e−(1/2)|α+β|2+2|α|2ea(α−β)+a†(α−β), (4.3)

which can also be written as �(α,β) =
e|α|2−|β|2ea(α−β)ea†(α−β). We see that �(α,β) is self-adjoint,

leaves D invariant together with its inverse, and that
�(α,α) = 11. Moreover, a simple computation shows that
�−1(α,β)B†�(α,β)f = Af , for all f ∈ D, so that (A,B†)
are �(α,β) conjugate. This, in view of (4.2), is exactly
the content of Proposition 2. A simple consequence of
this is, for instance, that �−1(α,β)N †�(α,β)f = Nf , for
all f ∈ D. Finally, for each nonzero f ∈ D, we deduce
that 〈f,�(α,β)f 〉 = e|α|2−|β|2‖ea†(α−β)f ‖2, which is strictly
positive. Hence we recover, for our simple model, the general
structure and results discussed in Sec. II.

We should stress that �(α,β) is what in the literature is
usually called the metric operator, and an estimate of the
kind already used above for V (α,β) allows us to conclude
that both �(α,β) and its inverse are unbounded operators, at
least if α �= β. Again, this result contradicts what is usually
assumed in the literature, i.e., that the metric operator and its
inverse are (at least one of them) bounded. This seems to be
not so automatic, and needs to be checked even in very simple
systems.

V. CONCLUSIONS

After a preliminary section on D-PBs, we have considered
some manifestly non-self-adjoint extensions of the harmonic
oscillator producing two numberlike operators related by the
adjoint operation in L2(R), N , and N †. For these operators
we have deduced the related eigenstates, and we have proved
that they form two biorthogonal, complete families ofH which
are not bases. This suggests that, when dealing with non-self-
adjoint Hamiltonians, the assumption that their eigenstates
form a basis could quite likely be false, while what might
remain true is that these eigenstates produce some weaker
form of resolution of the identity, as described by Assumption
D-PBW 3 in Sec. II. Also: even for quite simple systems, the
metric operator can be unbounded, together with its inverse.
Hence, for infinite-dimensional systems, more care is required
than that usually used in the physical literature on the subject.

We should also mention that another nontrivial output of
this paper is that most of the results deduced in [7], under
the very strong assumption that the eigenstates of N and N †

are indeed bases, still hold true even if they are simply D
quasibases.

ACKNOWLEDGMENT

This work was partially supported by the University of
Palermo.

[1] P. Siegl and D. Krejcirik, Phys. Rev. D 86, 121702(R) (2012).
[2] J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, and T. Kottos, Phys.

Rev. A 84, 040101 (2011).
[3] C. Bender, Rep. Prog. Phys. 70, 947 (2007).
[4] A. Mostafazadeh, Int. J. Geom. Methods Mod. Phys. 7, 1191

(2010).
[5] M. Znojil, SIGMA 5, 001 (2009).
[6] M. Znojil and M. Tater, Int. J. Theor. Phys. 50, 982 (2011);

M. Znojil, Phys. Lett. A 375, 2503 (2011).

[7] F. Bagarello, J. Math. Phys. 54, 063512 (2013).
[8] C. Heil, A Basis Theory Primer: Expanded Edition (Springer,

New York, 2010).
[9] C. M. Bender and H. F. Jones, J. Phys. A 41, 244006 (2008);

J.-Q. Li, Q. Li, and Y.-G. Miao, Commun. Theor. Phys. 58, 497
(2012); J.-Q. Li, Y.-G. Miao, and Z. Xue, arXiv:1107.4972.

[10] F. Bagarello, J. Math. Phys. 51, 023531 (2010).
[11] A. Kolmogorov and S. Fomine, Eléments de la Théorie des
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