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Two-band Bose-Hubbard model for many-body resonant tunneling in the Wannier-Stark system
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1Institut für Theoretische Physik and Center for Quantum Dynamics, Universität Heidelberg, 69120 Heidelberg, Germany
2Departamento de Fı́sica, Universidad del Valle, Cali, Colombia

(Received 11 June 2013; published 30 September 2013)

We study an experimentally realizable paradigm of complex many-body quantum systems, a two-band
Wannier-Stark model, for which diffusion in Hilbert space as well as many-body Landau-Zener processes
can be engineered. A crossover between regular and quantum chaotic spectra is found within the many-body
avoided crossings at resonant tunneling conditions. The spectral properties are shown to determine the evolution
of states across a cascade of Landau-Zener events. We apply the obtained spectral information to study the
nonequilibrium dynamics of our many-body system in different parameter regimes.
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I. INTRODUCTION

The rapid development of high-precision techniques for the
experimental control of ultracold quantum gases offers a clean
way to study static and dynamical properties of interacting
many-body lattice systems [1–3]. Of particular interest are
realizations of strongly correlated or complex quantum sys-
tems composed of many particles. Experiments controlling the
populations of higher orbitals and bands in periodic potentials
are now at hand [4,5]. This facilitates the study of many
degree-of-freedom systems. Moreover, many-body quantum
quenches, nonequilibrium dynamics, and real-time controlled
sweep dynamics can be realized in the experiments [6–9]. This
offers very good advantages for a better understanding of the
underlying diffusion processes taking place not only in real
space, but, more generally, in the Hilbert space [10–12]. In
this latter context, aspects of integrability of quantum systems
are crucial for predictions on, for instance, their relaxation
dynamics and further thermalization [13–20].

In this paper, we present a case study of a complex
many-body system including two strongly coupled energy
bands. As we sketch in Sec. II A and in the Appendix, this
can, for instance, be realized experimentally with ultracold
bosons in accelerated (or equivalently tilted) optical lattices
[21–23]. Our system represents a paradigm for the many-
body physics in which the dynamics can be steered by the
parameters (tilt, interaction strength, and potential depth), thus,
implementing very different dynamics. Although the mean-
field transport (weakly interacting limit) and the single-particle
limit are well studied for one-dimensional Wannier-Stark
systems [21,22,24,25], even the simplest many-body version,
a one-band Bose-Hubbard model with(out) tilt, allows one to
tune between regular and quantum chaotic evolutions [26–31].
In our problem, depending on the choice of parameters,
full complexity in the interband transport in Hilbert space
can be reached by sweeping predetermined initial states
over resonant tunneling regions. This is possible since the
strongest interband coupling occurs at resonantly enhanced
tunneling (RET) between energy bands [24,25,32,33]. At
resonant conditions, we find a clear crossover from regular
to quantum chaotic spectral statistics as a function of a few
system parameters. The complexity in the energy spectrum
determines the transport across the many avoided crossings
(ACs) at RET when the force becomes time dependent.

This not only generalizes results on the weakly interacting
limit [34,35], but relates to the largely open problem of
many-body Landau-Zener (LZ) processes in the presence of
strong particle interactions [11,29,36]. As direct applications,
we show how the spectral properties influence the diffusion in
Hilbert space. We characterize different realistic scenarios for
which relaxation toward equilibrium and spectral localization,
on one hand, and diffusion, on the other hand, take place. This
is performed with the help of controlled sweeps through the
interband many-body resonant regimes.

This paper is organized as follows: In Sec. II, we introduce
our two-band Bose-Hubbard model and the numerical methods
implemented for the diagonalization. Its spectral properties are
presented in Sec. III where the conditions for the emergence of
chaos are discussed along with predictions for the dynamics. In
Sec. IV, we study the diffusion processes for different spectra
and initial conditions when driving the system through the
resonant regime. Finally, Sec. V concludes the paper with a
discussion of experimental ramifications.

II. MANY-BODY WANNIER-STARK PROBLEM

A. The two-band model

Our Wannier-Stark system consists of ultracold bosonic
atoms in a one-dimensional optical lattice. An additional
Stark force stimulates the quantum transport along the lattice
[21–23,28] and, at the same time, couples the two lowest
Bloch bands. The system we have in mind, see Eq. (1),
could be realized experimentally with ultracold bosons in
a doubly periodic optical lattice. For a convenient choice
of the parameters, a well-isolated two-band system can be
engineered, thus, neglecting the effects of the third and higher
excited Bloch bands (see Fig. 9 in the Appendix). Further
details on the realization can be found in the Appendix.

The corresponding many-particle problem can be described
in the tight-binding (TB) limit by a two-band Bose-Hubbard
Hamiltonian,

Ĥ =
∑

β=a,b

Ĥβ + Ĥ1 + Ĥ2, (1)
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with the terms in Eq. (1) defined by

Ĥβ =
L∑

l=1

−Jβ

2
(β̂†

l+1β̂l + H.c.) + Wβ

2
β̂
†2
l β̂2

l + ε
β

l n̂
β

l ,

Ĥ1 =
L∑

l=1

∑
μ

ωBCμ(â†
l+μb̂l + H.c.), (2)

Ĥ2 =
L∑

l=1

2Wxn̂
a
l n̂

b
l + Wx

2
(b̂†l b̂

†
l âl âl + H.c.).

The bosonic annihilation (creation) operators at the lth site are
β̂l(β̂

†
l ), and the number operators are n̂

β

l = β̂
†
l β̂l . β is the band

index, i.e., β = a for the lower band and β = b for the upper
one. The on-site energies are given by ε

β

l = ωBl + �gδβ,b, the
Bloch frequency is ωB = 2πF , and �g is the energy separation
between the Bloch bands. Jβ are the hopping amplitudes. The
on-site interparticle interaction in the bands is assumed to be
repulsive with strength Wβ > 0. The coupling between the
bands is given by: (i) the dipolelike terms in Ĥ1 with strength
proportional to Cμ, where the integer index μ is symmetric
around 0 and (ii) the interaction terms with strength Wx

in Ĥ2.
In the single-particle picture, the interband coupling is

maximal at specific tilts Fr ≈ �g/2πr . At those values,
RET occurs between levels located at wells separated by
a distance r . This integer r = la − lb is called the order
of the resonance [24]. The above resonance formula is
modified to

Fr = �g/2π

√
r2 − 4C2

0 , (3)

by taking into account the Stark shift of the levels [34].

B. The Floquet-Bloch operator and
its numerical diagonalization

It is convenient to transform the Hamiltonian (1) into the
interaction picture with respect to the external force, which
removes the tilt

∑
l,β ωBln̂

β

l and transforms the hopping terms

as β̂
†
l+1β̂l → β̂

†
l+1β̂l exp (−iωBt). In addition, in this proce-

dure, the dipolelike couplings with |μ| > 0 are transformed
as â

†
l+μb̂l → â

†
l+μb̂l exp (−iωBμF t). The gauge-transformed

Hamiltonian is now translationally invariant and time depen-
dent with the fundamental period TB = 2π/ωB , the Bloch
period, i.e., Ĥ (t + TB) = Ĥ (t). This condition holds be-
cause the remaining frequencies are integer multiples of
ωB . We are now allowed to impose periodic boundary
conditions in space, i.e., by identifying β̂

†
L+1 = β̂

†
1. Therefore,

a suitable basis for numerical diagonalization is given by
the translationally invariant Fock states {|γ 〉} defined in
Refs. [28–30]. We can also work with the Floquet Hamiltonian
Ĥf = Ĥ (t) − i∂t [37] for which the eigenvalue equation
reads

εi 1̂
∣∣φk

εi

〉 = (Ĥ0 − ωBk1̂)
∣∣φk

εi

〉 + Ĵ
∣∣φk−1

εi

〉 + Ĵ †∣∣φk+1
εi

〉
+

∑
μ

[
Ĉμ

∣∣φk−μ
εi

〉 + Ĉ†
μ

∣∣φk+μ
εi

〉]
. (4)

Here we used multimode Fourier decomposition of the
eigenstates of Ĥf [38], i.e., |φn(t)〉 = ∑

k exp (−ikωBt)|φk
εn

〉
with k = k1 + 2k2 + · · · + μkμ. The operator Ĥ0 contains
all the time-independent terms of the gauge-transformed
Hamiltonian Ĥ (t), and the operators Ĵ and Ĉμ are
defined by the hopping and dipolelike transition terms
Ĵ = −∑

l,β Jββ̂
†
l+1β̂l/2 and Ĉμ = ωBCμ

∑
l a

†
l+μbl ,

respectively. In order to diagonalize (4), we use the expansion
|φk

n〉 = ∑
k Ak,γ |γ 〉, which implies that the Floquet operator

is represented by a block matrix. Since |Cμ| drops faster to
zero as |μ| increases because of the decreasing overlapping
between the Wannier states at different lattice sites, we can
neglect all processes with C|μ|>r . In this paper, we restrict to
resonances of orders r = 1 and r = 2, then, the Floquet matrix
is reduced to a five-block diagonal matrix (see Appendix
2 [10]) with every block size given by the dimension of the
Hamiltonian (1).

In order to compute the quasienergies εi (eigenvalues of
Ĥf ), we numerically diagonalized Eq. (4) by a Lanczos
algorithm [39]. The quasienergies lie within the so-called
Floquet zone (FZ): εi ∈ [ε0 − ωB/2,ε0 + ωB/2] of width ωB

and centered at ε0. We conveniently set ε0 as a function of
F in order to improve the visualization of the spectrum in
the different regions of interest. Due to the periodicity of the
quasienergies, the extended spectrum is given by the operation
εi → εi + nf zωB with the index nf z of the FZ. For N atoms
distributed in L lattice sites, the number of quasienergies is
given by Ns = (N + 2L − 1)!/[LN !(2L − 1)!], considering
the reduction by a factor L arising from the translational
symmetry [28–30]. However, the effective dimension of Ĥf in
Eq. (4) is much larger: Ns�k, with �k = 10 · · · 50 being the
number of Floquet components needed to obtain a number Ns

of convergent eigenstates. This latter procedure is equivalent
to diagonalizing the evolution operator integrated over one
Bloch period ÛTB

= T̂ exp[−i
∫ TB

0 Ĥ (t)dt], where T̂ is the
time-ordering operator. Nevertheless, the diagonalization of
Ĥf has advantages with respect to the computation times for
larger systems and large TB .

III. SPECTRAL PROPERTIES OF THE TWO-BAND
WANNIER-STARK SYSTEM

A. The single-particle limit and the two-band
manifold approach

Let the force F be the control parameter to analyze the
spectrum in the plane ε-F as shown in Fig. 1(a) for the single-
particle case. The gap �g , typically the largest energy scale in
Eq. (1) for experimental realization (see the Appendix), allows
us to split up the spectrum into equidistant subsets of states,
each labeled by the upper band occupation number,

M ≡ 〈εi |
∑

l

n̂b
l |εi〉. (5)

In the off-resonant regime where F is not close to Fr, M is
a good quantum number since the eigenstates of Ĥf essentially
correspond to specific basis states, i.e., to translationally
invariant Fock states |γ 〉. One can group these states into
N + 1 subsets of states with the same M and dimension
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FIG. 1. (Color online) The spectrum vs Stark force F : (a) two-
band Wannier-Stark ladders for the single-particle case for �g =
0.796 (corresponding to lattice parameters V0 = 5 and z0 = 2.5,
see the Appendix). Avoided crossings appear at the resonances
Fr with width �min

r � �g . (b) and (c) The many-body spectrum
for N/L = 5/3 with no interparticle interaction, revealing the
presence of the M manifolds discussed in Sec. III. The different
lines correspond to eigenstates of the type: lower-band-like states
{|N〉a ⊗ |0〉b} (black lines), upper-band-like states {|0〉a ⊗ |N〉b}
(thick red lines), and mixedlike states {|N − M〉a ⊗ |M〉b} (thin green
lines). The remaining parameters are C0 = −0.095, C1 = 0.04, C2 =
0.004, Ja = 0.078, and Jb = −0.24.

NM = 1
L

( M + L − 1
L − 1 )( N − M + L − 1

L − 1 ) < Ns . Hereafter, we refer
to those subsets as M manifolds.

In the noninteracting case, i.e., Wa,b,x = 0, the internal
manifold states are degenerate as shown by the level bunching
in Figs. 1(b) and 1(c). The simplest case is that for F = 0
for which the commutator [Ĥ ,M̂] = 0. Then the Hamiltonian
factorizes into a block matrix Ĥ = ⊕N

M=0 ĤM . Note that
the blocks Ĥ0 and ĤN correspond to the independent Bose-
Hubbard Hamiltonians Ĥβ=a,b, respectively. Therefore, we can
think of the Hamiltonian in (1) as two tilted Bose-Hubbard
chains, connected through the midmanifolds 0 < M < N

when F 
= 0. The central manifolds contain all information
about the interband coupling since they correspond to mixtures
between states from both bands, for instance, Fock states of
type |�na,b〉 ↔ |N − M〉a ⊗ |M〉b. Furthermore, there is no
direct coupling term between the blocks Ĥ0 and ĤN . The
interband coupling can be understood as the mixing of the
N + 1 manifolds, which is mainly induced by the one- and
two-particle exchange terms in (2), that is, Ĥ1(F 
= 0) and
Ĥ2(Wx 
= 0).

Around the RET of order r , see Eq. (3), the Hamiltonian
(1) can effectively be transformed into a resonant Hamiltonian
Ĥr by setting the reference system as la = 0 with lb = −r .
Additionally, we define the manifold projectors,

P̂M =
∑

i

|�na,b,M〉i i〈�na,b,M|, (6)

where |�na,b,M〉 ≡ |na
1,n

a
2, . . .〉 ⊗ |nb

1,n
b
2, . . .〉. The closure

condition is given by
∑

M P̂M = 1. This allows one to

FIG. 2. (Color online) Interaction effects: (a) interacting many-
body spectra for N/L = 5/3 [see Fig. 1(a)]. (b) Zoom around
the resonance position revealing the emerging cluster of avoided
crossings. (c) Manifold number Mi for all Floquet eigenstates as
a function of the ratio �g/ωB . Here the manifold structure is clearly
seen before and after the single-particle resonance Fr=1 = 0.128,
characterized by the bunches of eigenstates with approximately
the same upper band occupation number M . The parameters are
the same as those in Fig. 1 with additional interaction strengths
Wa = 0.023, Wb = 0.027, and Wx = 0.025 [see Eq. (2)].

transform the Schrödinger equation Ĥr |ψ〉 = E|ψ〉 into the
M representation where the resonant Hamiltonian becomes

Ĥr 
N∑

M=0

εr
M |ψM〉〈ψM | + ω̃B(|ψM〉〈ψM + 1| + H.c.). (7)

Here εr
M = (�g − ωBr)M + (Ja − Jb)M, ω̃B ≡ ωBC0√

M + 1, |ψM〉 = P̂M |ψ〉, and we used N = Na + Nb with
M ≡ Nb. In this expression for εr

M , the order of the resonance
(cf. Sec. II A) is approximated by r ≈ �g/ωB . For typical
parameters, we have that �g,ωB � |Jb − Ja|. Note that
we disregard the dipolelike processes |C|μ|�1|, which are
only relevant at the exact resonance inducing a splitting of
the manifold levels. In this representation, the Hamiltonian
is clearly transformed into a TB-type Hamiltonian for the
manifolds where the first-neighbor interaction is induced by a
one-particle exchange with transition strength proportional to
ωBC0. Therefore, certain localization features are expected in
energy space (as discussed in other contexts in Refs. [12,40]),
which, in our case, imply a high occupation probability of a
specific M manifold.

An important energy scale is given by the energy difference
between neighboring manifolds |ψM〉 and |ψM + 1〉, which
characterizes the one-particle exchange process [see Fig. 2(c)].
This scale can be estimated by diagonalizing the 2 × 2
Hamiltonian matrix,

H2×2 =
(

εr
M+1 ωBC0

ωBC0 εr
M

)
, (8)

from which we obtain

�r = �g

√
(1 − ωBr/�g)2 + 4(ωBC0/�g)2. (9)
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FIG. 3. (Color online) Manifold mixing: interacting many-body
spectra as a function of the filling factor: (a) N/L = 3/13, (b) N/L =
4/5, and (c) N/L = 5/4. Strong manifold mixing occurs as N/L

increases due to the high density of avoided crossings in the resonant
regime. The arrows in (a) represent: the (red, thin) width of the many-
body avoided crossing �E and (blue, thick) the maximal energy
splitting of the central manifold M = 1. The parameters are the same
as those in Fig. 2.

The minimal width of the bow-tie-shaped many-body nonin-
teracting spectrum in Fig. 1(b) is, thus, straightforwardly given
by �E = N�min

r with �min
r = 2ωB |C0|.

B. Interaction effects and manifold mixing
at resonant tunneling

The interparticle interaction (Wa,b,x 
= 0) splits up the
internal manifold levels, and strong level mixing occurs at
the RET condition when the levels come closest. Then ACs
appear due to the level repulsion, which arises from the lack of
symmetries [see Fig. 2(b)]. The number of ACs is the larger,
the larger the filling factor N/L (see Fig. 3). The maximal
splittings by the on-site interparticle interaction occur due to
those states with M particles occupying a single-particle level
in one lattice site [see blue arrows in Fig. 3(a)], for example,
|N − M,0, . . .〉a ⊗ |M,0, . . .〉b. These are given by

(
UM

a

)
max = Wa

2
(N − M)(N − M − 1),

(
UM

b

)
max = Wb

2
M(M − 1), (10)(

UM
ab

)
max = 2Wx(N − M)M.

With these quantities, we can compute the maximal manifold
splitting as U (M) ≡ max{(UM

β=a,b)max,(UM
ab )max}. Then we

estimate the width �E of the many-body avoided crossing
as

�E = N�min
r + U (N ) = N�min

r + Wb

2
N (N − 1). (11)

This follows from the fact that the maximal splitting is
generated by those states with total particle number N in
one lattice site in the upper Bloch band β = b. Both scales
U (M = 1) and �E are sketched by the two pairs of arrows in
Fig. 3(a).

The mixing in the spectrum is the strongest, the closer the
central manifolds are, namely, around Fr . Therefore, there
are neither characteristic energy scales nor good quantum
numbers. Conversely, in the off-resonant regime, the energy

spectrum is characterized not only by the manifold number
M , but also by the numbers θβ = 〈εi |

∑
l n̂

β

l (n̂β

l − 1)/2|εi〉
and θx = 2〈εi |

∑
l n̂

a
l n̂

b
l |εi〉. The latter numbers arise from the

energy splitting induced by the interaction terms in Eq. (2). In
this way, the eigenenergies can be approached by

εi(M,�θ) ≈ Mi�r + Waθa,i + Wbθb,i + Wxμx,i . (12)

The effective region of manifold mixing, the RET regime,
is that for which the cluster of ACs is visible. Therein,
M, θβ , and θx are no longer good quantum numbers since
even the identification of the otherwise most distant manifolds
M = 0 and M = N becomes difficult. Manifold mixing is
a local effect whenever �g � Jβ,Wa,b,x,Cs and �g ≈ rωB .
Nevertheless, global mixing can be engineered, for instance, by
decreasing the energy band gap to a value comparable with the
interaction strengths, i.e., �g ≈ Wa,b,x . Global mixing in the
energy spectrum implies the destruction of the local resonances
at F = Fr . Therefore, resonant tunneling generated by the
interparticle interaction Wa,b [6,7] has the same relevance as
the one generated by the interband coupling terms Cμ and Wx .

In both cases, local or global manifold mixing, the spectral
properties of (1) can be very complicated. Nevertheless, it is
still possible to characterize the many-body spectrum in terms
of the following subset of parameters: (g,N/L,�g). Here g is a
prefactor that controls the strength of the interparticle interac-
tion defined as Wa,b,x → gWa,b,x . Experimentally, changing
g is realized by varying the two-body scattering length via
Feshbach resonances [2,7].

We now rescale the Hamiltonian (1) by the energy gap
and then compute its commutator with the manifold number
operator M̂ . This results in

[Ĥ /�g,M̂] = 1

�g

([Ĥ1,M̂] + [Ĥ2,M̂])

= ωB

�g

∑
l,μ

Cμ(â†
l+μb̂l − H.c.) (13)

− gWx

2�g

∑
l

(b̂†l b̂
†
l âl âl − H.c.).

From this equation, we see that one- and two-particle exchange
operators, corresponding to the two interband coupling pro-
cesses, are mainly responsible for the mixing properties. Let us
now fix the force to F = Fr for which the interband coupling is
maximized. Then we vary the filling factor, the band gap, and
the strength of the interparticle interaction. We have various
cases:

(i) At resonance, we have ωB/�g ≈ 1/r . If g = 1, this
implies that, for high-order resonances (r > 2), Ĥ2 dominates
only if �g � Wx , otherwise, the band coupling is weak and
the commutator (11) goes to zero.

(ii) For r = 1 and �g � Wx, Ĥ1 dominates, i.e., �r is
approximately a good energy scale. If �g ∼ Wx , both Ĥ1 and
Ĥ2 are equally important.

(iii) At condition (ii) with �g ∼ Wx , the filling factor plays
an important role. In the case of N/L � 1, we are close to
the single-particle limit, which is nearly integrable. As the
filling factor increases, so does the number of Fock states with
double occupancies in a single lattice site, therefore, there is

032119-4



TWO-BAND BOSE-HUBBARD MODEL FOR MANY-BODY . . . PHYSICAL REVIEW A 88, 032119 (2013)

FIG. 4. (Color online) Regular-to-chaotic transition: (a) The main panel shows the level spacing distribution P (s) for N/L = 7/5 (Ns =
2288) for the interparticle control parameter (Sec. III) g = 0.1 (red, gray histogram, η = 0.98) and g = 1.0 (black histogram, η = 0.056),
and Wx = Wa = Wb = 0.025. The inset shows the parameter η as a function of g where the black line corresponds to an exponential fit.
(b) The main panel depicts the level spacing distribution P (s) for three different filling factors: N/L = 3/25 (Ns = 848, red, gray histogram),
N/L = 4/11 (Ns = 1050, blue dashed-dotted histogram), and N/L = 6/5 (Ns = 1001, black thick histogram). The random-matrix theory
(RMT) distributions are those in dashed lines in both panels. The inset shows the cumulative distribution I (s) for the systems: N/L = 3/25
(red, gray �) and N/L = 6/5 (black ◦). The solid lines represent the RMT prediction for I (s) Poisson (red, gray) and GOE (black). The other
parameters are the same as in the previous figures.

a strong interplay between one- and two-particle exchanges.
This naturally induces an enhancement of the manifold mixing.

In terms of the M manifolds, to consider the two-particle
exchange process introduces a second-neighbor transition term
in our tight-binding Hamiltonian of Eq. (7). Such types of
extended TB-type Hamiltonians are usually nonintegrable (see
Refs. [17,18] and references therein). We conclude that the
many-body spectrum is strongly mixed when Ĥ1 and Ĥ2 have
the same relevance, i.e., for the conditions |C0|/r ∼ Wx/2�g

and N/L ∼ 1. The latter can be achieved in both local, i.e., at
RET, and global, i.e., for �g ≈ Wa,b,x manifold mixings.

C. Emergence of many-body quantum chaos

We now investigate the many-body spectra by means of
random-matrix measures [41]. We study the level spacing
(or local gap) distribution P (si) with si = εi+1 − εi , where
〈si〉 = 1 after an appropriated unfolding procedure [10,41].
The crossover between regular (Poisson) PP (s) = exp(−s)
and quantum chaotic [Wigner-Dyson or Gaussian orthogonal
ensemble (GOE)] statistics PW (s) = πs exp(−πs2/4)/2 can
be reached in several ways.

First, for an energy band gap �g � 1, we found that all
systems with N/L ∼ 1 are fully chaotic as shown in the main
panel of Fig. 4(a) for N/L = 7/5. This is expected according
to the commutator (13) and its respective discussion in the
previous subsection.

Second, for fixed filling factor N/L ∼ 1, quantum chaos
can be tuned by the prefactor g of the interparticle interaction
terms. In order to check this crossover, we compute the
parameter,

η =
∫ s0

0 [P (s) − PW (s)]ds∫ s0

0 [PP (s) − PW (s)]ds
, (14)

where s0 = 0.4729 · · · is the intersection point between the
distributions PP (s) and PW (s). η is plotted as a function
of g in the inset of Fig. 4(a). Herein, η = 1 for a perfect
Poissonian distribution, and η = 0 for a perfect Wigner-Dyson
distribution.

Deviations from the limiting random-matrix distributions
are found for filling factors approaching the single-particle

limit for N/L � 1. This is seen in Fig. 4(b) for N/L = 3/25
and N/L = 4/11.

Due to the high dimensional parameter space of our system,
perfect Poissonian distributions are not easy to find at the
RET domain. On the other hand, good chaotic distributions
are straightforwardly obtained. This is shown in the inset
of Fig. 4(b) where the respective cumulative distribution
is plotted, that is, I (s) = ∫ s

0 P (s ′)ds ′. For the remaining
combinations of parameters, we always obtain deviations
characterized by nonfully chaotic level spacing distributions
[10]. N/L ∼ 1 and |C0| ∼ Wx/2�g are similar conditions
for the emergence of quantum chaos as in the one-band
Bose-Hubbard models studied in Refs. [28–30]. Yet, in our
two-band model, F can also be large, and the RET allows
us to squeeze many-body energy levels in order to enforce a
chaotic level structure. Hence, our new model allows us to
switch between more or less regular and chaotic regimes in
the vicinity of Fr (see the manifold picture in Sec. III A and
Fig. 3).

As a final remark, for our spectral analysis, we did not take
into account those systems for which the greatest common
divisor gcd(N,L) is larger or is equal to 1 due to the existence
of a temporal symmetry of the Hamiltonian as reported in
Ref. [28]. In the following, we discuss important consequences
that emerge from the spectral properties studied so far for the
many-body Wannier-Stark system defined by Eq. (1).

IV. DIFFUSION IN HILBERT SPACE

A. Eigenstate diffusion

The structure of avoided crossings presented above pro-
vides a perfect setup for studying dynamical processes gener-
ated by a cascade of single LZ events around Fr .

1. Time evolution

We now focus on the diffusion process triggered by the
parametric time evolution of different initial conditions with
F (t) = F0 + αt and with α = �F/�T . In analogy to the LZ
problem [42], we use a linear sweep. Here �F represents the
effective extension of the RET regime, and �T is the time
needed to evolve the initial state from a starting tilt F0 to
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FIG. 5. (Color online) Diffusion: (a) Sketch of the sweeping
process. The initial state |ψ(0)〉 is prepared at F = 0 and suddenly is
evolved by means of a quench from F = 0 to F = F0 (λ � 1). After
this process, the state is then further evolved but nonadiabatically
(λ ∼ 1) from F = F0 to F = Ff across the many-body AC during
a finite time �T . The resonance order is r = 1 with Fr=1 = 0.045.
(b) Spreading of the evolved state |ψ(t)〉 measured by the Shannon
entropy Ssh when dynamically crossing the RET regime. The param-
eters are λ = 0.7, �g = 0.285, Ja = 0.0382, Jb = −0.0417, Wa =
0.028, Wb = 0.029, Wx = 0.029, C0 = −0.096, C1 = 0.046, and
C2 = 0.008.

the final one Ff [see Fig. 5(a)], i.e., the sweeping time. A
reasonable value for �T and, hence, for the sweeping rate
α, is given by the Heisenberg relation �T d ≈ 1, where d ≈
�E/Ns is the mean level spacing of the many-body spectrum
at Fr . We now rewrite the Hamiltonian as follows:

Ĥ (t) = Ĥ0 + Ĵ †e−i2πF (t)t +
∑

μ

Ĉ†
μe−i2πμF (t)t + H.c., (15)

with Ĥ0, Ĵ , and Ĉμ as defined in Sec. II B. We can study two
types of dynamics using (15): first, by fixing the Stark force
F (t) = F . This implies that the Hamiltonian is temporally pe-
riodic and fulfills all properties described in Sec. II A. The time
evolution of the initial state |ψ(0)〉 is, thus, obtained through
stroboscopic quantum maps |ψ(m + 1)TB〉 = ÛTB

|ψ(mTB)〉
with m as an integer. Second, when considering the time-
dependent pulse F (t) = F0 + αt , the periodicity is broken.
The temporal evolution must then be explicitly computed,
e.g., by using a fourth-order Runge-Kutta method. In addition,
Ĥ (F (t)) no longer preserves the time-reversal symmetry,
therefore, the expansion coefficients of state |ψ(t)〉 in any
basis are, in general, complex numbers.

To determine the parameter regime for the dynamical
evolution, we define the parameter λ ≡ α/d �F . The diabatic
passage (or sudden quench) is set by λ � 1. We expect an
adiabatic evolution for λ � 1 and a nonadiabatic one for

λ ∼ 1. Hereafter, we concentrate on the nonadiabatic regime
when driving the system through a single resonance [see
Fig. 5(a)]. Furthermore, we set the time scale to be the Bloch
period defined by the tilt for the exact single-particle resonance
Fr , that is, TB = 1/Fr . The Bloch period is small when Fr is
large. Therefore, for practical implementations, it is useful to
concentrate on the dynamics across a first-order resonance. In
Sec. III C, we have already seen that the manifold mixing is
enhanced because of the chaotic spectral properties of the RET
regime for N/L ∼ 1.

2. Initial condition

To study the emerging diffusion process in Hilbert space, we
have two natural choices for the initial conditions: the Floquet
eigenstates at any fixed force |εi(F )〉 and the translationally
invariant Fock basis states |γ 〉. The two sets of states map
one to one onto each other with probability �80% in the
off-resonant regime due to the presence of the M manifolds. In
this way, if we choose |γ 〉 as the initial state, it is well localized
in the energy space [see Fig. 2(c)]. In this sense, we have,
without loss of generality, generic initial conditions [14,17].
If the initial state is a Floquet eigenstate at F0, then it is, by
definition, well localized in the instantaneous spectrum at F0.

3. Protocol

(i) The initial state |ψ(0)〉 is chosen to be, for instance, a
Fock state with a well-defined upper band occupation number
M . This may be prepared in the flat lattice condition, i.e.,
at F = 0. (ii) Then we evolve |ψ(0)〉 by suddenly (λ � 1)
ramping the lattice as: F = 0 → F = F0. This allows us to set
a nonequilibrium scenario as sketched in Fig. 5(a). (iii) Next,
state |ψ(F0)〉 is nonadiabatically driven (λ ∼ 1) across the
many-body AC from F = F0 to F = Ff . When the evolution
starts at F0, a fast coupling of the initial state with the local
eigenstates is expected since the spectrum at F0 is highly
mixed. Yet, if the spectrum at F0 is well described in terms of
manifolds, |ψ(F0)〉 mixes in a first instance with the eigenstate
members of the same manifold via hopping transitions before
it mixes states from other manifolds. This latter process gives
rise to manifold mixing in time and, hence, the diffusion in
energy space.

B. Localization-delocalization transition

To quantify the diffusive processes across the ACs, we
compute the probability amplitudes Ci(t) ≡ 〈εi(Fk)|ψ(t)〉,
where {|εi(Fk)〉} is the set of local Floquet eigenstates at the
instantaneous tilt F (t = �Tk) = Fk with �Tk = Tk − T0. As
a function of the local energy space, the distribution of the
probabilities |Ci(t)|2 can be represented in terms of the local
density of states (LDOS) [18,43],

Pψ (ε,t) =
∑

i

|Ci(t)|2δ(ε − εi), (16)

which allows for a visualization of the transit of state |ψ(t)〉
across the ACs. At F0, Pψ (ε,T0) is δ shaped (as indicated
by the arrow in Fig. 6). As the tilt increases with the time,
Pψ (ε,t) starts to delocalize due to the multiple LZ transitions
induced by the cluster of avoided crossings. The diffusion
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FIG. 6. (Color online) Diffusion: Temporal evolution of the initial
state |ψ(0)〉 across the many-body AC represented by the local density
of states Pψ (ε,t) as defined in Eq. (16). The panels show the respective
transit through the energy spectra for (a) N/L = 4/11 and (b) N/L =
6/5. The remaining parameters are those of Fig. 5(b).

depends on α [11], but it is also highly sensitive to the type
of statistical distribution of the spectrum in the vicinity of Fr .
In Fig. 6(a), we show the evolution of Pψ (ε,t) corresponding
to N/L = 4/11 with the initial state defined by a Floquet
eigenstate with manifold number M = [N/2] with [· · · ]
standing for the integer part. For this system, the spectrum
at Fr presents deviations of the full quantum chaotic regime
as previously shown (see Fig. 4). The incoming state is well
localized in energy space, and its localization is preserved with
high probability after the passage through the RET regime,
despite partial delocalization of |ψ(t)〉 around Fr . An initially
localized state can stay well localized by two mechanisms: (i)
by a fast diabatic driving across the many-level AC, similar to
a diabatic crossing in a two-level Landau-Zener system; (ii) in
the nonadiabatic dynamical regime, the instantaneous state can
exchange its character (M) with the local eigenstates during
the crossing through the RET domain. The outgoing state may
be characterized either by the same manifold number M [see
Fig. 6(a)] or by a different one. This latter implies a change
in the direction of the LDOS in the course of time in the
plane ε − F (t). The exchange of character is inherited from a
two-level AC [8,10].

Localization properties of Pψ (ε,t) are analyzed by comput-
ing its second moment from which we obtain∫

ρ(ε)P 2
ψ (t)dε =

∑
i

|Ci(t)|4 ≡ ξψ (t). (17)

ξψ (t) is the so-called inverse participation ratio, and ρ(ε) is
the density of states. In this way, the spreading over the local
instantaneous spectrum can be quantitatively characterized by
the average inverse participation ratio [43,44] and similarly by

the Shannon entropy [27], both defined as

ξ (F (t)) ≡
〈 Ns∑

i=1

|Ci(t)|4
〉

ψ

,

Ssh(F (t)) ≡
〈
−

Ns∑
i=1

|Ci(t)|2
log10 Ns

log10 |Ci(t)|2
〉

ψ

. (18)

The average 〈·〉ψ is taken over a large set of similar initial
conditions {|ψ(0)〉} with M = [N/2]. The measures in (18)
depend on the choice of basis to compute the coefficients Ci .
In the case of complete delocalization, the coefficients {|Ci |}
fluctuate around the equipartition condition |Ci | = 1/

√
Ns .

Therefore, the localization measures (16) converge to their
respective minimal values, which can be computed under
the assumption of complete randomness, i.e., no correlations
between the coefficients. The set of coefficients Ci satisfies
a normalization condition

∑
i |Ci(t)|2 = 1. Therefore, we

have (Ns − 1)-independent contributions. In the presence of
chaos, the randomness of the above set of coefficients is
guaranteed. Then by defining y = |Ci |2/〈c2〉 with 〈c2〉 being
the average probability, the resulting distribution f (y) follows
a Porter-Thomas distribution [41]. Because the coefficients
Ci are, in general, complex numbers due to the breaking
of time-reversal symmetry of (1) when considering F (t),
we must use the Gaussian unitary ensemble (GUE) [41].
For this ensemble, RMT predicts f (y) = exp(−y). Following
Ref. [44] and using f (y), we compute the GUE (or statistical)
limits of the localization measures as

ξ = Ns〈c2〉2
∫ ∞

0
dy f (y)y2, (19)

Ssh = Ns

∫ ∞

0
dy f (y)y〈c2〉 ln(y〈c2〉). (20)

These integrals are accessible from which we obtain

ξGUE = 2

Ns

, SGUE
sh = 1 − σc

ln(Ns)
, (21)

with σc = 0.422 784 [10]. We represented SGUE
sh by the

horizontal dashed lines in Fig. 5(b) along with the Shannon
entropy Ssh(F (t)) for different filling factors.

In the case of deviations from the chaotic level spac-
ing distributions (N/L = 3/25,4/11), the time-evolved state
never reaches the GUE limits but remains localized instead
[see Fig. 5(b)]. The maximization of the entropy implies
a dynamical equilibrium [18,20]. Under this condition, the
density operator ρ̂(t) = |ψ(t)〉〈ψ(t)| diagonalizes in the local
energy basis. We, thus, get 〈εi |ρ̂(t)|εj 〉 ≈ |Ci |2δi,j since the
off-diagonal terms drop to zero. Then the Shannon and von
Neumann entropies coincide [19]. At this point, it is easily
noticed that, under chaotic conditions, the density operator
also diagonalizes in the Fock basis. This implies no further
(re)localization in the course of the evolution, hence, strong
mixing of the complete set of manifolds is obtained.

C. Spectral ergodicity and relaxation toward equilibrium

Previously, we have seen that, in the course of the time
evolution, the system undergoes a dynamical diffusion [see
Fig. 5(b)] in the accessible Hilbert space. This diffusive
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spreading is much stronger for chaotic spectra (N/L =
6/5,7/4) than for Poissonian or mixed ones (N/L =
3/25,4/11). The latter manifests itself in a (re)localization
during the passage through the RET regime. The LDOS,
locally in energy space, is, thus, described by the Breit-Wigner
formula [45],

Pψ (ε,t) ∼ 1

π

�2/4

(ε − ε0)2 + �2/4
, (22)

where � is the width of the distribution and ε0 is its mean
position in the spectrum. In the fully quantum chaotic (Wigner-
Dyson-distributed) case, such a (re)localization does not take
place as shown in Fig. 5(b) for N/L � 1. Pψ (ε,t) is then a
uniform function over the entire FZ. In this way, we see that
the system undergoes spectral ergodicity in the course of the
evolution since the equipartition condition |Ci(t)|2 ≈ 1/Ns is
fulfilled.

The presence of chaos also plays an important role in
the evolution at the fixed force of an initial condition after
a quench F : 0 → Fr . This latter is straightforwardly shown
by computing the long-time average of the basis projector
P̂γ ≡ |γ 〉〈γ |, i.e.,

〈ψ(t)|P̂γ |ψ(t)〉 = lim
τ→∞

1

τ

∫ τ

0
dt〈ψ(t)|P̂γ |ψ(t)〉. (23)

To compute the above average, we can use the evolution
operator of the Floquet formalism given in Ref. [46],

Û (t2,t1) =
∑

j,k1,k2

e−iεj (t2−t1)eiωBk1t1e−iωBk2t2
∣∣φk2

εj

〉〈
φk1

εj

∣∣. (24)

Choosing the initial state to be, for example, the state
|ψ(0)〉 = |γ 〉 and assuming nondegeneracies of the Floquet
eigenenergies, one finds

P̄γ (Fr ; |γ 〉) ≈ ξγ =
∑

j

p
γ

j 〈εj |P̂γ |εj 〉, (25)

where ξγ = ∑
j |〈γ |εj (Fr )〉|4 and the right-hand term is just

the spectral average of the projector P̂γ [10]. Here the
occupation probabilities satisfy the normalization condition∑

j p
γ

j = 1. The strong mixing properties of the spectrum,
which give rise to quantum chaos, are, thus, also responsible
for two dynamical processes: diffusion and relaxation of the
system initially prepared in |ψ(0)〉, either by sweeping across
the spectrum (F (t) ∼ αt) or by the dynamical evolution after
the quench to a fixed tilt F = Fr . Note that P̄γ (Fr ; |γ 〉)
is nothing else but the long-time average of the survival
probability for the initial state |ψ(0)〉 = |γ 〉.

A basic feature of chaos is that all possible dynamical
processes take place with the same probability. The result is
a mixture of all different time scales in the evolution. For a
system started at F0 very far away from Fr , the only possible
transitions are intramanifold ones, which occur due to the
hopping transitions, i.e., by Jβ in Eq. (2). In this process, for a
given initial state |γ 〉, one expects that its survival probability
P̄γ showed collapses but also some revivals before Fr . Once
the mixing between neighbor manifolds takes place, the system
diffuses, and this effect is very much enhanced when crossing
the AC structure. One way to characterize the manifold mixing

is by defining the degree-of-mixing parameter,

ζ (t) = 1 −
∑
M

[pM (t)]2, pM (t) = 〈ψ(t)|P̂M |ψ(t)〉,

(26)

with P̂M as defined in Sec. II A. Clearly, in the case of a
fully chaotic RET domain, no revivals are observed, therefore,
maximal manifold mixing arises. ζ (t) is, thus, maximized, and
its maximal value is given by ζmax ≈ 1 − 1/N with N as the
total particle number. The system is subjected to a dynamical
relaxation process, which is characterized by a power-law
(scale-free) decay of the localization measures. To see this,
we look at the time-average function defined as

T -averaged h(t) = 1

�Tk

�Tk∑
t=0

h(t), (27)

where h(t) is either the inverse participation ratio or the
Shannon entropy.

In Fig. 7(a), we show a double-logarithmic plot of the
time evolution of the inverse participation ratio. Two different
power laws are observed (see straight lines). In a first instance,
the full chaotic spectra N/L = 6/5,7/4 show a well-defined
decay t−ν with exponents ν ≈ 0.78 before Fr (indicated by
the arrows). Afterwards, a slowing down for F > Fr occurs
due to the maximization of the spreading in the instantaneous
eigenbasis. The exponent for this region is ν ≈ 0.5. In the latter
case, the straight lines depict the tendency of the evolution if
�T is extended to again reach the off-resonant regime where
the mixing is suppressed. In this regime, the equidistribution
of the probability over the energy space remains unchanged,
explaining the slowing down in Fig. 7.

FIG. 7. (Color online) Relaxation: time-averaged inverse partic-
ipation ratio ξ for N/L = 4/11, 6/5, and 7/4. The straight lines
indicate the power-law tendency of the diffusion processes with
t−0.78 for chaotic spectra before the resonance Fr=1 and t−0.5 for
F > Fr . The change in the exponents corresponds to a slowing down
of the spreading of the evolved state since, in the chaotic case, the
maximal delocalization has already occurred. For the not fully chaotic
spectra N/L = 4/11, the tendency to a power law t−0.64 is destroyed
by the emerging relocalization as explained in Sec. IV B, see cf.
N/L = 3/25.

032119-8



TWO-BAND BOSE-HUBBARD MODEL FOR MANY-BODY . . . PHYSICAL REVIEW A 88, 032119 (2013)

For N/L = 3/25,4/11, deviations from chaotic spectra
occur (see Sec. III C). Here the time-evolved states undergo
different processes in the course of the evolution. We observe
a tendency to a power law with ν ≈ 0.64 (N/L = 4/11), but
also a slowing down before Fr , interestingly, right before
Fr localization occurs. After Fr , the short-time decay also
presents a power-law exponent ν ≈ 0.5, which implies a
certain stabilization (slowing down). Yet for long times, one
observes final relocalization highlighted by a second slowing
down. This is most clearly seen for N/L = 3/25 where the
decay stops completely [see asterisks in Fig. 7]. It does,
however, not undergo any equilibration. We see that chaos,
apart from generating strong band mixing, also induces a
fast decay to the equilibrium values set by the GUE limits
of Eq. (21). In Fig. 7, one can also notice that the system
diffuses the slower, the smaller the filling factor N/L.

In our case, the equilibrium is defined in the context of
the energy shell approach [18]. However, the connection is
not straightforward since, in our case, the distribution of
coefficients Ci as a function of the energies within the Floquet
zone is nearly a flat function. Therefore, the LDOS is an
extended function over the entire spectrum. In the energy shell
approach, the distribution of the coefficients is expected to be
Gaussian distributed. To solve such a discrepancy, one must
perform an unfolding of the distribution Pψ , or equivalently,
one can fold the Gaussian profile into the FZ. The latter method
is straightforward since the resulting function is a normal

FIG. 8. (Color online) Manifold mixing: (a) and (b) depict the
final time-manifold degree of mixing ζ (�T ) and manifold creation
M(�T ) for different band gaps: �g = 2.53 (green ◦), �g = 1.16 (red
�), �g = 0.556 (blue ×), �g = 0.285 (black •), and �g = 0.155
(dark orange �). To this end, more than Ns/2 initial states were
evolved starting at F0 = 0 for (a) N/L = 4/11 and (b) N/L = 6/5.
Panel (c) depicts ζ (t) vs M(t) with t as a parameter for �g = 0.155.
Note that all trajectories in the plane ζ -M converge to the equilibrium
point (ζmax,M = N/2) (see the main text).

wrapped distribution [47], which is a periodic function in the
energy domain, meaning, in our case, in the FZ zone.

As final result, we show the dynamical creation and destruc-
tion of the M manifolds. This is performed by computing the
manifold mixing degree ζ (�T ) (or the localization measures)
and the manifold number M(�T ) at the final time, i.e., at
Ff > Fr . The results are shown in Fig. 8 for (a) N/L = 4/11
and (b) N/L = 6/5. For this calculation, we have evolved
more than Ns/2 different initial conditions belonging to all
possible sets of manifolds. Some of them are plotted in
Fig. 8(c), which shows the trajectories in the plane ζ -M .
One must keep in mind that the number of manifolds is
N + 1. Taking the final time �T as a parameter, panels (a)
and (b) show the destruction of the manifolds as the gap
decreases below a critical value of �g ≈ 0.285. Here one
can no longer identify the separated bunches of states with
well-defined manifold numbers. The latter dynamical effect is
expected according to the discussion in Sec. II A. In addition,
the mixing does not depend on the class of initial states.
For the fully chaotic spectrum �g = 0.155, all final states
are completely delocalized. This implies that M = N/2 and
ζ (�T ) ≈ 1 − 1/N as around (26), dashed lines in Figs. 8(a)
and 8(b), which is exactly the equilibrium condition. We, thus,
confirm that the outgoing state, after the passage across the
RET is, indeed, an equilibrium state for which the respective
entropy is maximized due to the presence of the fully chaotic
many-body AC structure.

V. CONCLUSIONS

We have studied, in detail, the spectral properties of a
many-body two-band Wannier-Stark system with particular
emphasis on the resonant tunneling regime. Depending on
the strength of the interaction on the band gap between the
two lowest energy bands and on the filling factor, the spectra
show a regular to quantum-chaotic transition. This allows us
to study the diffusive properties of generic energy spectra
in Hilbert space. The spectral characteristics can be probed
by quantum sweeps of different initial conditions across the
resonant regions by using the Stark force as a time-dependent
control parameter. In this way, we can clearly distinguish the
dynamics depending on the various spectral characteristics.
Relaxation toward equilibrium, corresponding to a maximal
delocalization in energy (Hilbert) space occurs for quantum
chaotic spectra. Interestingly, the spectral ergodicity arises in
both types of dynamics, either by sweeping across the chaotic
many-body RET regime, or by a quench with additional free
evolution at fixed tilt.

In the case of regular or mixed spectra, showing a Poisso-
nian component in the nearest-neighbor statistics, localization
of the instantaneous states preserves in the dynamics. In this
case, full ergodicity cannot arise. The manifold approach
developed here, starting from the single-particle (noninter-
acting) case, has proved to be a good tool for analyzing the
localization-delocalization transition. It provides an intuitive
picture based on the mixing of the manifolds during the
temporal evolution. The transition between the various regimes
can be controlled by means of the system parameters, in
particular, the interparticle interaction, the filling factor, and
the Stark force.
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As explained in the Appendix, our two-band system can
readily be realized in the experiment. Its implementation
is based on the miniband structure, which can easily be
engineered using a double period one-dimensional lattice
[48,49]. A standard procedure for controlling, i.e., the Stark
force, is by accelerating the lattice structure by shifting the
frequencies of two counterpropagating waves that generate
the optical potential [8,24,48,50]. Our system offers a high
controllability of all system parameters. For instance, the in-
terparticle interaction (g ∼ ascatt) can be changed by Feshbach
resonances [2,7]. The remaining parameters can be varied
by using the geometry properties of the lattice. Observing
the single-band populations [8,24,33], in principle, also with
single-site resolution [6,51], signatures of the here-discussed
spectral diffusion and equilibration could be experimentally
investigated.

In this way, our engineered system and results exposed
in this paper open an interesting route toward the realization
of complex many-body systems with immediate experimental
implications on coherent control of ultracold atoms [5–9,52].
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APPENDIX: WANNIER FUNCTIONS AND
BOSE-HUBBARD COEFFICIENTS

Here we show how the coefficients in Eq. (2) are computed
for an experimental realization with ultracold bosons in
an optical lattice. We based our calculation on the single-
particle Wannier functions, which are localized within each
site. We suggest using a double periodic optical lattice as
experimentally realized in Refs. [48,49],

V (x) = −V0[cos(2kLx) + z0 cos(4kLx + φ)], (A1)

with kL being the recoil momentum and the recoil energy
Er = h̄2k2

L/2m0. The energy dispersion relation is computed
by diagonalizing the Hamiltonian Ĥ0 = p̂2/2m0 + V (x) as a
function of the lattice parameters: the depth V0 of the lattice, the
ratio z0 = V1/V0 between the amplitudes of the two lattices,
and the phase difference φ. One can, thus, appropriately
engineer a periodic potential for which the respective two
lowest Bloch bands are well separated from all higher-energy
bands [48] as shown in Fig. 9. In this way, by choosing a
relative phase φ ≡ π and appropriate values of z0, we can
work with a realistic closed two-band model, represented
by our Hamiltonian in Eq. (1). The Wannier functions are
defined through the Fourier transform of the Bloch functions
ψβ,k̃(x) = eik̃xuβ(x) in the first Brillouin zone (BZ) as

χβ(x) =
∫

BZ
e−ik̃xl ψ

β

k̃
(x)dk̃, (A2)

FIG. 9. (Color online) Profile of the optical lattice (left) and its
respective band structure (right) for V0 = 3 and z0 = 4 as a function
of the phase difference φ. (a) φ = 0, (b) φ = π/2, and (c) φ = π .

with uβ(x) = uβ(x + dL). dL is the spatial periodicity of the
lattice, and xl → dLl. Since k̃ = k/kL is a parameter, the
Bloch functions are not unique, and a phase factor can be
chosen such that the Wannier functions are highly localized
[25,30,53]. The latter property and the appropriate symmetry
χβ(−x) = (−1)β−1χβ(x) are shown to be satisfied by the
following functions:

χ1(x) = 1√
N1

∑
kj ,n

|un(1,k̃j )| cos[kj,nx0] cos[kj,nx],

(A3)

χ2(x) = i√
N2

∑
kj ,n

|un(2,k̃j )| sin[kj,nx0] sin[kj,nx],

where kj,n ≡ 2n + k̃j . x0 = ± cos−1(1/4z0) are the first min-
ima positions of the potential in Eq. (A1) around x = 0, and
N1,2 are normalization constants. The coefficients un(β,k̃j ) are
the Fourier components of the periodic function uβ(x) given
by uβ(x) = ∑

n un(β,k̃)e−inx .
The Bose-Hubbard coefficients, sketched in Fig. 10(a),

are then obtained from the following relations: The hopping
amplitudes Jβ are

J
β

l−l′ ≡
∫

χ∗
β (x − xl)H0(x)χβ(x − xl′ )dx = ε

β

l−l′ , (A4)

where Ja ≡ J
β=a

1 , Jb≡J
β=b

1 , and �g=|εb − εa| = |J β=b

0 −
J

β=a

0 |. The dipolelike coupling strengths are

C
ββ ′
l−l′ ≡

∫
χ∗

β (x − xl)xχβ ′ (x − xl′ )dx, (A5)

FIG. 10. (Color online) : (a) Many-body processes of the two-
band Bose-Hubbard Hamiltonian for a bichromatic tilted optical
lattice. (b) RET condition for the nearest-neighboring double wells,
i.e, for a first-order resonance.
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with Cμ ≡ Cab
μ . Because of the high localization of the

Wannier functions, coefficients with |μ| > 0 are at least one
order of magnitude smaller than C0. Thus, we only take into
account the strength with |μ| = 0, 1, and 2 for the first two
resonances r = 1,2. Finally, the repulsive intraband on-site
interparticle interaction terms are given by

Wβ ≡ g1D

∫
|χβ(x)|4dx. (A6)

The interband on-site interparticle interaction is

Wx ≡ g1D

∫
|χa(x)|2|χb(x)|2dx, (A7)

where the interaction strength is defined by g1D = 4πa1D/m0

with a1D as the one-dimensional scattering constant and m0 as
the mass of the atoms [2].
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