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Lagrangian approach to the semirelativistic electron dynamics in the mean-field approximation
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We derive a mean-field model that is based on a two-component Pauli-like equation and incorporates quantum,
spin, and relativistic effects up to second order in 1/c. Using a Lagrangian approach, we obtain the self-consistent
charge and current densities that act as sources in the Maxwell equations. A physical interpretation is provided
for the second-order corrections to the sources. The Maxwell equations are also expanded to the same order. The
resulting self-consistent model constitutes a suitable semirelativistic approximation to the full Dirac-Maxwell
equations.
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I. INTRODUCTION

The interaction of a femtosecond electromagnetic pulse
with the electron spin in a ferromagnetic metal has been
the object of intense investigations, both theoretical and
experimental, during the past 15 years [1]. Typical experiments
involve perturbing the electron charge and spin with an
ultrashort light pulse (the pump), followed by a second weaker
pulse (the probe) that acts as a diagnostic tool. By modulating
the relative amplitude of the signals, as well as the delay
between the pump and the probe, it is possible to assess with
great precision the dynamical relaxation of the electron gas.

Early results [2] already pointed at the quick loss of magne-
tization that occurs following the excitation by a femtosecond
laser pulse. These experiments showed that the electron spins
respond to the excitation on a subpicosecond time scale, which
is a typical time scale for electrons to equilibrate thermally with
the lattice in metal nanostructures. These thermal processes
can be explained qualitatively by “three-temperature models,”
involving the temperatures of the electron, the lattice, and the
spin, without specifying the exact nature of the interaction
between the spins and the charges. From a fundamental point
of view, several mechanisms have been proposed for the
modification of the magnetic order of nanostructures subject to
an ultrafast external field, ranging from the spin-orbit coupling
[3] to the spin-lattice interactions [4]. A recent review of the
state of the art in the field of ultrafast magnetization dynamics
in nanostructures can be found in Ref. [1].

Recent experiments [5] have now given a new twist to
these problems, with promising future developments, both
theoretical and experimental. These experiments have shown
the existence of a coherent coupling between a femtosecond
laser pulse and the magnetization of a ferromagnetic thin film.
The underlying mechanism is thought to involve a form of
spin-orbit coupling (SOC) that goes beyond the usual one due
to the electric field of the ions, and involves the electromagnetic
field of the laser pulse [6]. This coherent mechanism is clearly
distinguished from the incoherent ultrafast demagnetization
associated with the thermalization of the spins. The theoretical
description of these coherent effects is still lacking and will be
mandatory in order to gain a sound understanding of ultrafast
laser-spin interactions [7].
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The electromagnetic field associated with a femtosecond
laser pulse can be strong enough to significantly perturb
the electronic charges and spins in nanometric systems, so
that relativistic effects become important. Given the intensity
of the fields involved, nonlinear effects are also expected
to play a considerable role. This scenario represents an
ambitious theoretical challenge, as it requires the modeling
of the nonlinear dynamics of a quantum-relativistic system of
many interacting electrons excited by an intense and ultrashort
electromagnetic field.

In neighboring areas, relativistic corrections to the many-
electron dynamics are taken into account in quantum chemistry
calculations, particularly for heavy elements [8]. Relativistic
versions of density functional theory (DFT) based on the
Dirac-Kohn-Sham equations and relativistic mean-field or
Dirac-Hartree-Fock models have been developed for these
purposes [9–13], but they are in general rather complex to
handle either analytically or numerically.

The goal of the present work is to develop a time-
dependent semirelativistic mean-field theory that is based on
two-component wave functions and thus considerably simpler
than the full relativistic models relying on the Dirac equation.
The model should preserve the mathematical structure of the
Schrödinger or Kohn-Sham equations, which have been im-
plemented in many numerical codes with great computational
sophistication.

Semirelativistic approximation to the Dirac equation can be
formally obtained in several ways, for instance, by making use
of the Foldy-Wouthuysen transformation [14,15] to expand
the Dirac equation in powers of the inverse of the speed of
light in vacuum c. To lowest order, the only correction to the
Schrödinger equation comes from the Zeeman term, coupling
the spin to the magnetic field. Nevertheless, it is well known
that second-order effects such as the SOC are crucial for
the proper understanding of magneto-optical processes and
should therefore be retained. Hence the need to develop a
self-consistent second-order approach.

It has been noted that the Hamiltonian obtained through
Foldy-Wouthuysen transformation is not a regular approxima-
tion of the full Dirac Hamiltonian, because the expansion of the
relativistic kinetic energy has a finite radius of convergence.
Thus, the expansion is no longer valid for large enough
values of the momentum p, which is bound to occur as
the Coulomb potential of the nuclei diverges as 1/r . Quan-
tum chemistry calculations generally resort to the so-called
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zeroth-order regular approximation (ZORA) equation in order
to circumvent this problem [16]. In the present work, we
shall neglect altogether the relativistic correction to the kinetic
energy, because it introduces fourth-order spatial derivatives
that are difficult to conciliate with a Schrödinger-like equation
(The effect of such a term on the current density is, however,
described in Appendix A).

Things become even more complicated when the Dirac
equation is coupled self-consistently to the Maxwell equations
for the electromagnetic fields, for the resulting system is
nonlinear, in contrast to the linear Dirac or Schrödinger
equations. In addition, for the internal consistency of the
overall model, one should also require that the Maxwell
equations be expanded to the same order in 1/c [17,18].

An important issue lies in the determination of the sources
to be inserted into the Maxwell equations. In a fully relativistic
approach, the Dirac 4-current is the appropriate expression;
Conversely, for the nonrelativistic Schrödinger or Pauli equa-
tions, the density and current are also well established. For
semirelativistic models to a certain order in 1/c the situation
is more complicated and no clear-cut consensus exists on this
issue.

In the present work, the Dirac equation is approximated
to second order in 1/c to obtain a Pauli-type Hamiltonian
for the two-component wave function (hereafter, we refer to
this Hamiltonian as the “extended Pauli Hamiltonian” and the
corresponding equation as the “extended Pauli equation,” or
EPE). Next, we derive a Lagrangian density that reproduces
such EPE as well as the Maxwell equations.

By using the standard minimal coupling between the
sources and the electromagnetic fields, we are able to obtain the
relativistic corrections to the classical probability density and
the probability current density. We then derive the expression
for charge and mass conservation from different methods
(direct calculation, Noether’s theorem) thereby verifying the
correctness of the sources obtained with the Lagrangian
approach. A physical interpretation of the various correction
terms is attempted whenever possible.

Finally, the Maxwell equations are also expanded to second
order to maintain consistency with the second-order EPE [19].
The resulting model contains all the standard semirelativistic
terms (Zeeman effect, Darwin term, spin-orbit coupling,
Hartree mean field) in addition to the self-consistent magnetic
fields generated by the internal currents. The model should
constitute an appropriate self-consistent approximation of the
Dirac-Maxwell equations to second order in 1/c.

II. LAGRANGIAN FORMALISM—GENERAL
FRAMEWORK

We consider a many-electron system where both quantum
and relativistic effects can in principle play a significant role.
In a mean-field approach, the electron dynamics is governed
by the Dirac equations,

ih̄
∂�n

D

∂t
= cα · (p̂ − qA)�n

D + βmc2�n
D + qφ�n

D, (1)

coupled self-consistently to the Maxwell equations, which we
write in terms of the scalar and vector potentials (φ, A) in the

Lorentz gauge (∇ · A + c−2∂tφ = 0):

−�φ + 1

c2

∂2φ

∂t2
= qρ

ε0
, (2)

−�A + 1

c2

∂2A
∂t2

= μ0qj, (3)

and the sources are given by the Dirac 4-current, i.e.,

(cρ,j) = c
∑

n

(
�

n†
D �n

D,�
n†
D α�n

D

)
. (4)

Here, �n
D represents the Dirac bispinor for the nth electron,

α and β are the usual Dirac matrices, m and q are the particle
rest mass and charge (for electrons m = me and q = −e),
ε0 and μ0 are the electric permittivity and the magnetic
permeability in vacuum (ε0μ0c

2 = 1), h̄ is the Planck constant,
ρ is the probability density, and j is the probability current
density.

Equations (1)–(4) constitute a fully relativistic, Lorentz-
covariant model for the quantum dynamics of a system of N

electrons in the mean-field approximation.
The purpose of the present paper is to work out a semirel-

ativistic version of this model that is valid to second order in
1/c. This low-energy semirelativistic theory should consider
only electrons and neglect positrons (negative energy states)
and thus should be based on two-component spinors. Ignoring
issues of self-consistency for the time being, the second-order
Hamiltonian can be obtained from the full Dirac Hamiltonian
by performing a Foldy-Wouthuysen transformation [14,15].
One obtains

Ĥ = mc2 + qφ + (p̂ − qA)2

2m
− qh̄

2m
σ · B

− (p̂ − qA)4

8m3c2
− qh̄2

8m2c2
∇ · E

− qh̄

8m2c2
σ · [E × (p̂ − qA) − (p̂ − qA) × E], (5)

where the electromagnetic fields are defined as usual as E =
−∇φ − ∂tA and B = ∇ × A.

Here, the first term on the right-hand side is the rest-
mass energy of the electron; the next two terms are the
standard Schrödinger Hamiltonian in the presence of an
electromagnetic field; the fourth term is the Pauli spin term
(Zeeman effect); the (p̂ − qA)4 term is the first relativistic
correction to the electron mass (expansion of the Lorentz factor
γ to second order); the ∇ · E term is the Darwin term; and the
last two terms represent the spin-orbit coupling (SOC).

In terms of the vector and scalar potentials, the Hamiltonian
(5) can also be written in the following form:

Ĥ = mc2 + qφ + (p̂ − qA)2

2m
− qh̄

2m
σ · (∇ × A)

+ qh̄2

8m2c2
�φ + qh̄2

8m2c2
∇ · ∂tA

+ qh̄

4m2c2
σ · [(∇φ + ∂tA) × (p̂ − qA)]

− qh̄

8m2c2
σ · (p̂ × ∂tA). (6)
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From now on, we will neglect the relativistic correction to
the electron mass [i.e., the term proportional to (p̂ − qA)4 in
the expansion of the kinetic energy]. Although it is still second
order in 1/c, this term introduces fourth-order derivatives in
the evolution equation, unlike the nonrelativistic Schrödinger
equation which only contains second-order derivatives. A
Lagrangian density that accounts for the relativistic mass
correction can nevertheless be found, as is shown in Appendix
A, where we also provide the resulting corrections on the
current density (the particle density is unchanged).

The resulting extended Pauli equation,

ih̄
∂�

∂t
= Ĥ�, (7)

can be derived from a Lagrangian density by applying
the Euler-Lagrange equations. One form of the Lagrangian
density is

L = 1
2�†[(ih̄∂t − Ĥ )�] + 1

2 [(−ih̄∂t − Ĥ †)�†]�, (8)

but the following form also yields the same Pauli equation:

L = �†(ih̄∂t − Ĥ )�. (9)

The Lagrangian density we propose is based on a combi-
nation of the above forms and is defined as

LP = ih̄

2
(�†�̇ − �̇†�) − �†(mc2 + qφ)�

− 1

2m
[(ih̄∂k − qAk)�†(−ih̄∂k − qAk)�]

+�†
[

qh̄

2m
εijkσi∂jAk − qh̄2

8m2c2
∂2
k φ − qh̄2

8m2c2
∂t∂kAk

]
�

+�†εijk

[
qh̄

4m2c2
σi∂jφqAk + qh̄

4m2c2
σi∂tAjqAk

]
�

− qh̄

8m2c2
εijk[�†σi∂jφp̂k� − ∂jφp̂k�

†σi�

+�†σi∂tAj p̂k� − ∂tAj p̂k�
†σi�], (10)

where εijk is the Levi-Civita symbol (equal to +1 for even
permutations of ijk, −1 for odd permutations, and 0 if
any index is repeated) and we have assumed the Einstein
summation convention over repeated indexes. Also note that
from now on, we shall omit the summation

∑
n over all

particles of the system, for simplicity of notation.
The advantage of the Lagrangian approach is that the self-

consistency can be incorporated in the model simply by adding
the Lagrangian for the electromagnetic fields. In the Lorentz
gauge, this reads as

LEM = ε0

2
(∂kφ)2 − ε0

2c2
(∂tφ)2 − 1

2μ0
(∂jAk)2

+ 1

2μ0c2
(∂tAk)2. (11)

The total Lagrangian (particles and fields) is then
L(�,�†,φ,A) = LP + LEM. By taking the Euler-Lagrangian
equation for L with respect to the scalar and vector potentials,
we obtain the Maxwell Eqs. (2) and (3), with certain (yet
undetermined) expressions on the right-hand side of the
equations. These expressions can be identified as the particle
and current densities of our system, governed by the EPE.

Thus, we have a systematic and straightforward method to
obtain the second-order relativistic corrections to the standard
(Schrödinger) expressions of the density and current.

The Euler-Lagrange equation for a Lagrangian density
depending on up to the second derivatives of a field ϕ reads
as [20]

∂L
∂ϕ

−
∑

μ

∂μ

∂L
∂(∂μϕ)

+
∑

μ

∂2
μ

∂L
∂
(
∂2
μϕ

)
+

∑
μ �=ν

∂μ∂ν

∂L
∂(∂μ∂νϕ)

= 0, (12)

where the subscripts μ,ν denote the space-time coordinates
(ct,x,y,z) and the field ϕ is either the scalar potential or one
Cartesian component of the vector potential. The first two
terms in Eq. (12) are the standard ones for a Lagrangian that
depends only on the first derivatives. We need this general
form of the Euler-Lagrange equations for our system since the
terms we encounter contain mixed derivatives up to second
order.

The Lagrangian density (10) does return the EPE when we
calculate the Euler-Lagrange equations for �†, as is shown in
Appendix B.

III. RELATIVISTIC CORRECTIONS TO THE SOURCES

Our goal here is to compute the relativistic corrections
to the sources (density and current) that appear in the
Maxwell equations. In principle, one could proceed straight
from the Dirac current by applying the Foldy-Wouthuysen
transformations on the Dirac 4-current, but the procedure
would be mathematically complicated. Here, we will show that
the correct results can be obtained by means of the Lagrangian
approach outlined in the preceding section.

As we shall see, the obtained charge and current densities
contain several terms beyond the result of standard relativistic
DFT [13].

A. Probability density

We compute each term appearing in the Euler-Lagrange
equations for φ:

∂L
∂φ

= −q�†�,

∂t

∂L
∂(∂tφ)

= −ε0

c2

∂2φ

∂t2
,

∂L
∂(∂jφ)

= qh̄

4m2c2
[qA × (�†σ�)]j

− iqh̄2

8m2c2
[(∇�†) × σ� + �†σ × (∇�)]j

+ ε0∂jφ,

∂2
j

∂L
∂
(
∂2
j φ

) = − qh̄2

8m2c2
�(�†�).
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Combining the above terms in the Euler-Lagrange Eq. (12)
for φ, we obtain

−ε0�φ + ε0

c2

∂2φ

∂t2

= q�†� + qh̄2

8m2c2
�(�†�) + qh̄

4mc2
∇ ·

[
q

m
A × (�†σ�)

− ih̄

2m
{(∇�†) × σ� + �†σ × (∇�)}

]
. (13)

This allows us, using Eq. (2), to define the probability
density as

ρ ≡ �†� + h̄

4mc2
∇ ·

{
h̄

2m
∇(�†�)

}

+ h̄

4mc2
∇ ·

[
q

m
A × (�†σ�)

− ih̄

2m
{(∇�†) × σ� + �†σ × (∇�)}

]
. (14)

At zeroth order, we recover the standard Schrödinger or
Pauli density �†�. Furthermore, we see that all correction
terms at second order in 1/c can be written as the divergence
of a vector P, which can be interpreted as a polarization density.

B. Probability current density

In order to obtain the expression of the current density, we
compute the Euler-Lagrange Eq. (12) for the kth component
of the vector potential Ak . Explicitly, this yields

∂L
∂Ak

= iqh̄

2m
[(∇�†)� − �†(∇�)]k − q2

m
Ak�

†�

− q2h̄

4m2c2
[(∇φ + ∂tA) × (�†σ�)]k.

∂L
∂(∂tAj )

= q2h̄

4m2c2
[A × (�†σ�)]j

− qih̄2

8m2c2
[(∇�†) × σ� + �†σ × (∇�)]j

+ 1

μ0c2
∂tAj .

∂L
∂(∂jAk)

= qh̄

2m
εijk�

†σ i� − 1

μ0
∂jAk.

∂L
∂(∂t∂jAk)

= − qh̄2

8m2c2
δjk�

†�.

Combining the above terms together gives the Maxwell
equation for A:

1

μ0c2

∂2A
∂t2

− 1

μ0
�A = iqh̄

2m
[(∇�†)� − �†(∇�)] − q2

m
A�†� − q2h̄

4m2c2
∂t [A × (�†σ�)]

− q2h̄

4m2c2
[(∇φ + ∂tA) × (�†σ�)] + qh̄

2m
[∇ × (�†σ�)]

+ qih̄2

8m2c2
∂t [(∇�†) × σ� + �†σ × (∇�)] − qh̄2

8m2c2
∂t [∇(�†�)]. (15)

Comparing with Eq. (3), we find that the probability current density can be defined as

j ≡ ih̄

2m
[(∇�†)� − �†(∇�)] − q

m
A�†� + h̄

2m
[∇ × (�†σ�)] + qh̄

4m2c2
[E × (�†σ�)]

− h̄

4mc2

∂

∂t

[
h̄

2m
∇(�†�)

]
− h̄

4mc2

∂

∂t

[
q

m
A × (�†σ�) − ih̄

2m
[(∇�†) × σ� + �†σ × (∇�)]

]
. (16)

At zeroth order, we recover the Schrödinger current density
along with the usual spin current term h̄

2m
∇ × (�†σ�) [21],

which is the curl of a magnetization vector and therefore does
not appear in the continuity equation. An interpretation of the
current and density corrections at second order is provided in
the forthcoming section.

IV. DISCUSSION AND INTERPRETATION OF
THE SOURCES

The charge and current densities can be rewritten as the
sum of a free part and a bound part:

qρ = qρfree − ∇ · P, (17)

qj = qjfree + ∇ × M + ∂tP, (18)

where

ρfree = �†�, (19)

jfree = ih̄

2m
[(∇�†)� − �†(∇�)] − q

m
A�†�

+ qh̄

4m2c2
[E × (�†σ�)], (20)

M = Mspin = qh

2m
(�†σ�), (21)

Pspin = − qh̄

4mc2

[
q

m
A × (�†σ�) − ih̄

2m
{(∇�†) × σ�

+�†σ × (∇�)}
]
, (22)

PDarwin = − qh̄2

8m2c2
∇(�†�). (23)
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The polarization density P = Pspin + PDarwin has been written
as the sum of a “spin” polarization and a “Darwin” polariza-
tion, hinting at the origin of these two terms. We also note that
the free density does not contain any second-order corrections.
Instead, the free current density displays a correction term that
can be written as (E × Mspin)/2mc2. This term was already
obtained in the past from semirelativistic kinetic models
(Wigner equation) [22].

We will now attempt to provide a physical interpretation of
these terms. Let us start with the spin polarization. We consider
two reference frames moving with a velocity v with respect to
each other. The Lorentz transformations for the magnetization
and polarization vectors read as [23]

P = γ

(
P′ + v × M′

c2

)
− γ 2

1 + γ

(
P′ · v

c

)
v
c
, (24)

M = γ (M′ − v × P′) − γ 2

1 + γ

(
M′ · v

c

)
v
c
, (25)

where γ = (1 − v2/c2)−1/2 is the usual Lorentz factor. For
v � c and |M| � c|P| (electric limit) the above transforma-
tions become

P = P′ + v × M′

c2
, (26)

M = M′. (27)

In the rest frame of the electron (primed variables) there is a
magnetization M′ = Mspin, but no polarization, P′ = 0. Thus,
in the laboratory frame (unprimed variables), we have

P = v × Mspin

c2
, (28)

M = Mspin. (29)

The above line of reasoning is purely classical, in the sense
that v and P are real numbers, not operators. To compare with
the quantum result (22), we define the velocity operator as:
v̂ = (p̂ − qA)/m, and the magnetization operator as

M̂ = qh

2m
σ . (30)

Then we can define a polarization operator:

P̂spin = v̂ × M̂spin

c2

= − qh̄

2m2c2

(
qA × σ − 1

2
p̂ × σ + 1

2
σ × p̂

)
. (31)

Making use of p̂ = −ih̄∇, we obtain the expectation value
of P̂spin,

〈�|P̂spin|�〉 = − qh̄

2m2c2

[
qA × 〈�|σ |�〉

+ ih̄

2
(〈�|∇ × σ |�〉 − 〈�|σ × ∇|�〉)

]
, (32)

which, upon an integration by parts, becomes identical to
the spatial average of the spin polarization vector as defined
in Eq. (22), except for a factor 2. This factor has the same
origin as the well-known Thomas correction in the spin-orbit
Hamiltonian. Thus, we have seen that the spin polarization

is a manifestation of the spin magnetization in the laboratory
frame of reference.

Let us now turn to the Darwin polarization. It is usually
admitted that the Darwin term in the Hamiltonian is a
manifestation of the so-called Zitterbewegung, i.e., a quivering
motion of the electron around its mean path [24]. This is
due to the interference between the positive and negative
energy states, which produce fluctuations of the position of the
particle. In general, this is used to find the Darwin correction
to the Hamiltonian, but here we show that the Zitterbewegung
is also at the origin of the second-order density correction.

To understand how the Darwin term is a manifestation of
this phenomenon, we consider fluctuations δr(t) around the
mean trajectory r(t):

r(t) = r(t) + δr(t). (33)

We expand the probability distribution of the particle
around the mean position. We obtain (neglecting the time
dependence and using Einstein’s summation convention for
simplicity of notation)

ρ(r) = �†(r)�(r) + ∇[�†(r)�(r)] · δr

+ 1

2

∂2[�†(r)�(r)]

∂ri∂rj

δriδrj + · · · (34)

The perturbation due to the Zitterbewegung is ρZ ≡ ρ(r) −
�†(r)�(r). The linear term vanishes when we take the average
and we get

ρZ = ρ(r) − �†(r)�(r) = 1

2

∂2[�†(r)�(r)]

∂ri∂rj

δriδrj . (35)

The amplitude of the oscillations can be estimated to be of
the order of the Compton wavelength, i.e.,

δr2 ∼ h̄2

m2c2
. (36)

Using the above estimate and the fact that the Zitterbewegung
is isotropic, we obtain

ρZ ∼ h̄2

6m2c2
δij

∂2[�†(r)�(r)]

∂ri∂rj

= h̄2

6m2c2
�(�†�). (37)

This yields a polarization density:

PZ = − qh̄2

6m2c2
∇(�†�), (38)

which is to be compared with Eq. (23). The functional
dependence is correct, and even the multiplicative constant
only differs by a factor equal to 3/4. This is of course due to
the crude estimate for the amplitude of the fluctuations.

To conclude this section, we recall that a similar partition
of the density and current into a free and a bound part can
be formally obtained through a Gordon decomposition [23].
The latter is an exact result that re-expresses the 4-current
as the sum of an external (“free”) and an internal (“bound”)
contribution. It can further be shown that the internal part may
be written in terms of a polarization and magnetization density.
Nevertheless, the Gordon decomposition is a formal procedure
that relies on the Dirac bi-spinors. In order to recover our result
(based on two-component Pauli spinors), one should apply a
Foldy-Wouthuysen transformation on the bi-spinor, which is
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not an easy task and has been done only for the lower order
terms. Furthermore, our approach automatically couples the
equation of motion (Dirac) to the field equations (Maxwell),
paving the way to the treatment of the coupled self-consistent
Dirac-Maxwell system (see Sec. VI).

V. CONTINUITY EQUATION

Any meaningful description of a system of charged particles
must obey a conservation law, which is usually written in the
form of a continuity equation. Indeed, Maxwell’s equations
implicitly contain such a continuity equation and therefore
automatically satisfy the conservation of electric charge.

Here, the charge and current densities that we have found at
second order in 1/c constitute the sources of a self-consistent
Dirac-Maxwell theory at the same order which we are trying to
develop. Therefore, they must satisfy the continuity equation,

∂tρ + ∇ · j = 0. (39)

It is easy to show that the same equation must be satisfied by
the free density and current, i.e.,

∂tρ
free + ∇ · jfree = 0. (40)

Using the definitions of the free sources, Eqs. (19) and (20),
we obtain the following continuity equation:

0 = ∂t (�
†�) + ih̄

2m
[(��†)� − �†(��)] − q

m
∇ · (A�†�)

+ qh̄

4m2c2
∇ · [E × (�†σ�)], (41)

where the only second-order correction comes from the free
current.

The above continuity equation refers to the conservation
of charge dictated by the Maxwell equations. But this conser-
vation law should be compatible with the relevant equation
of motion, i.e., the EPE. In order to check this compatibility,
we will next derive the continuity equation either from the
Lagrangian density or directly from the EPE, and show that
both methods yield the same result as Eq. (41).

A. Continuity equation from the extended Pauli equation

This method involves manipulating the Hamiltonian of the
system. From the evolution equation,

ih̄∂t� = Ĥ�, (42)

one can easily deduce that

∂t (�
†�) = 1

ih̄
[�†(Ĥ�) − (Ĥ †�†)�], (43)

where Ĥ is the extended Pauli Hamiltonian [Eq. (5)] where we have neglected the kinetic energy correction (p4 term), and Ĥ †

is its Hermitian conjugate.
We obtain

ih̄∂t (�
†�) = �†(Ĥ�) − (Ĥ †�†)�

= �†
[

1

2m
p̂2� − 1

m
qA · p̂� − qh̄

4m2c2
σ · {(∇φ + ∂tA) × p̂�}

]

−
[

1

2m
p̂2�† + 1

m
qA · p̂�† + qh̄

4m2c2
{(∇φ + ∂tA) × p̂�†} · σ

]
�

+�†
[
− 1

m
p̂ · (qA) − qh̄

4m2c2
σ · (p̂ × ∂tA)

]
�. (44)

The last term p̂ × ∂tA can be written as p̂ × (∇φ + ∂tA)
since the curl of a gradient is zero. Rearranging the terms, we
obtain the same continuity equation as in Eq. (41).

However, we stress that by using this method the actual
sources cannot be obtained, because the magnetization and
polarization terms cancel each other out in the continuity
equation. The Lagrangian procedure detailed in the preceding
sections was therefore necessary to derive the actual sources
that should go into the Maxwell equations.

B. Continuity equation from Noether’s theorem

Noether’s theorem holds a special place in Lagrangian
mechanics. It states that we have a conserved quantity
whenever there is a symmetry in the system (invariance
under some type of transformation). In the present case, the

relevant symmetry is gauge invariance and the corresponding
conserved quantity is the electric charge.

Noether’s theorem allows us to calculate the continuity
equation directly from the Lagrangian density and can be
written in a four-vector form as follows:

∂μjμ = ∂μ

(
�† ∂L

∂(∂μ�†)
− ∂L

∂(∂μ�)
�

)
= 0, (45)

where ∂μ = {∂ct ,∇} and the Einstein summation convention
is used. For the continuity equation, only the terms depending
on the derivatives of � and �† are relevant. Thus, we rewrite
the Lagrangian density as

L = L′ + ih̄

2
(�†�̇ − �̇†�)

− 1

2m
[ih̄∂k�

†(−ih̄∂k − qAk)� + ih̄qAk�
†∂k�]
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− qh̄

8m2c2
εijk[�†σi∂jφp̂k� − ∂jφp̂k�

†σi�

+�†σi∂tAj p̂k� − ∂tAj p̂k�
†σi�], (46)

where L′ contains all the remaining terms of the Lagrangian
density.

The time components yields

∂ct

[
�† ∂L

∂(∂ct�†)
− ∂L

∂(∂ct�)
�

]
= −ih̄∂t (�

†�). (47)

For the space components, we have

�† ∂L
∂(∂k�†)

= ih̄

2m
�†(ih̄∂k + qAk)�

− qh̄(ih̄)

8m2c2
εijk(∂jφ + ∂tAj )�†σi� (48)

− ∂L
∂(∂k�)

� = − ih̄

2m
(ih̄∂k�

† − qAk)�

− qh̄(ih̄)

8m2c2
εijk(∂jφ + ∂tAj )�†σi�. (49)

Combining the above terms yields

∂k

[
�† ∂L

∂(∂k�†)
− ∂L

∂(∂k�)
�

]

= ∂k

(ih̄)2

2m
{�†(∂k�) − (∂k�

†)�} + qih̄

m
∂k(Ak�

†�)

−qh̄(ih̄)

4m2c2
εijk∂k[(∂jφ + ∂tAj )�†σi�]

= − (ih̄)2

2m
[(��†)� − �†(��)] + qih̄

m
∇ · (A�†�)

+ qh̄(ih̄)

4m2c2
∇ · [(∇φ + ∂tA) × (�†σ�)]. (50)

Finally, substituting Eqs. (50) and (47) into Eq. (45), we
arrive again at the same continuity Eq. (41).

Again, we stress that the full density and current corrections
could not have been obtained from Noether’s theorem, as the
latter only provides the conservation law (continuity equation),
but not the sources in themselves. That the conservation law
obtained from the Pauli Hamiltonian or Noether’s theorem
actually coincides with the charge conservation that is implicit
in Maxwell’s equations with the second-order sources is an
attractive feature of our model and strengthens our confidence
in its validity.

VI. COUPLED DIRAC-MAXWELL EQUATIONS

So far, we developed and described a model for obtaining
the sources and the equation of motion by dint of a Lagrangian
approach. The resulting equation of motion [extended Pauli
equation (EPE)] is a second order (in 1/c) approximation for
the positive energy states of the Dirac equation.

However, there is some inconsistency here. The charge and
current density were derived by putting together the Pauli and
Maxwell parts of the Lagrangian, i.e., by assuming that the
EPE acts as some sort of source to the Maxwell equations. But
the latter are exact to all orders in 1/c, whereas the EPE is only
valid at second order. While this procedure yields the correct
result as far as the currents and densities are concerned, it

would be desirable to construct a model that treats on the same
footing (i.e., at the same order) both the equation of motion
(Pauli) and the equations for the fields (Maxwell).

It has been known for a long time [17,25–27] that the
Maxwell equations possess two independent nonrelativistic
limits, which correspond to situations where either |E| � c|B|
(electric limit) or |E| � c|B| (magnetic limit). Each of the
two limits is Galilei covariant. In practice, the electric limit
amounts to neglecting the time derivative of the magnetic field
in Faraday’s law of induction, whereas the magnetic limit is
obtained by dropping the displacement current in Ampère’s
equation.

Both limits can be derived in a rigorous and gauge-
independent way by using a nondimensional version of
Maxwell equations [19]. Here, we present a short derivation
that uses SI units and the Lorentz gauge. In the present case,
we are concerned with the electric limit (the magnetic limit is
by construction charge neutral and thus requires the presence
of two mobile species of opposite charge).

The electric limit can be viewed as the case where c → ∞
while ε0 remains finite. We rewrite the Maxwell equations as

−�φ + 1

c2

∂2φ

∂t2
= qρ

ε0
, (51)

−�A + 1

c2

∂2A
∂t2

= qj
ε0c2

. (52)

We then expand all variables in powers of c−2: φ = φ0 + φ2 +
. . . , A = A0 + A2 + . . . , and likewise for ρ and j. We obtain,
at zeroth and second order,

�A0 = 0 (53)

−�φ0 = qρ0

ε0
(54)

−�φ2 + 1

c2

∂2φ0

∂t2
= qρ2

ε0
(55)

−�A2 = qj0

ε0c2
. (56)

If we assume zero boundary conditions at infinity, we have
A0 = 0: There is no magnetic field at leading order, as is
natural in the electric limit.

In terms of the electric and magnetic fields, we have at
zeroth order,

∇ · E0 = qρ0

ε0
, (57)

∇ × E0 = ∇ · B0 = ∇ × B0, (58)

so that B0 = 0 and E0 = −∇φ0, which immediately yields
Eqs. (53)–(54). At second order, one finds

∇ · E2 = qρ2

ε0
, (59)

∇ × E2 = ∂B2

∂t
, (60)

∇ · B2 = 0, (61)

∇ × B2 = qj0

ε0c2
+ 1

c2

∂E0

∂t
. (62)
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Using E2 = −∇φ2 − ∂tA2 and the Lorentz gauge condition,

∇ · A2 + 1

c2

∂φ0

∂t
= 0, (63)

we obtain Eqs. (55) and (56).
By taking the divergence of Eq. (62), we obtain the

continuity equation at zeroth order,

∂ρ0

∂t
+ ∇ · j0 = 0. (64)

The continuity equation at second order,

∂ρ2

∂t
+ ∇ · j2 = 0, (65)

can likewise be obtained by pursuing the expansion to fourth
order.

We can now try to match the above sources with those
that we found with the general Lagrangian approach, i.e.,
Eqs. (19)–(23). For the charge density, it is clear that ρ0

coincides with the free density, while ρ2 can be identified
with the bound density. For the current things are subtler, as
the free current contains zeroth order as well as second-order
terms. We have

qj0 = ih̄

2m
[(∇�†)� − �†(∇�)]︸ ︷︷ ︸

qjfree
0

+∇ × M︸ ︷︷ ︸
qjbound

0

, (66)

qj2 = − q

m
A2�

†� − qh̄

4m2c2
[∇φ0 × (�†σ�)]︸ ︷︷ ︸

qjfree
2

+ ∂tP︸︷︷︸
qjbound

2

, (67)

where we have indicated explicitly the order of the potentials.
Furthermore, note that the term depending on the vector
potential in Pspin [Eq. (22)] can be neglected because it is
of higher order.

In principle, only the current j0 should go into Ampère’s
Eq. (56). However, by doing so the continuity Eq. (41) would
no longer be satisfied, which is an undesirable property. For
this reason, we shall keep both the zeroth- and second-order
currents in Ampère’s equation, even though this introduces
some spurious fourth-order terms. By doing so, the Maxwell
equations become

A0 = 0 (68)

−�φ0 = qρ0

ε0
, (69)

−�φ2 + 1

c2

∂2φ0

∂t2
= qρ2

ε0
, (70)

−�A2 = q

ε0c2
(j0 + j2). (71)

We are now able to write down a family of useful models
that can be viewed as self-consistent expansions of the original
Dirac-Maxwell equations to second order in 1/c.

A. Purely internal electromagnetic fields

If we assume that the electromagnetic fields are purely
internal (i.e., self-consistent) and take into account that A0 =
0, we obtain the following extended Pauli Hamiltonian (we

neglect the constant mc2):

Ĥ = q(φ0 + φ2) + p̂2

2m
− q

2m
(p̂ · A2 + A2 · p̂)

+ qh̄

2m
σ · ∇ × A2 − qh̄2

8m2c2
�φ0 − qh̄

4m2c2
σ · ∇φ0 × p̂,

(72)

which is to be coupled to the reduced Maxwell Eqs. (69)–(71).
Using Noether’s theorem or manipulating the correspond-

ing EPE yields the continuity equation as

0 = ∂t (�
†�) + ih̄

2m
[(��†)� − �†(��)] − q

m
∇ · (A2�

†�)

+ qh̄

4m2c2
∇ · [∇φ0 × (�†σ�)], (73)

which is consistent with

∂(ρ0 + ρ2)

∂t
+ ∇ · (j0 + j2) = 0, (74)

the currents being defined as in Eqs. (66) and (67).

B. Internal and external electromagnetic fields

If some external electromagnetic fields are also present
(e.g., laser pulse), these can be assumed to be of zeroth order.
For the scalar potential, nothing needs to be changed, as φ

already contains a zeroth-order term: One just rewrites φ0 =
φint

0 + φext
0 .

In contrast, for the vector potential we now have a
zeroth-order term A0 = Aext

0 and cannot anymore make the
simplifications leading to Eq. (72). Thus we stick with the full
Hamiltonian of Eq. (6) (although in the second-order terms
one can neglect the self-consistent vector potential A2) and
the corresponding continuity Eq. (41). The sources to be used
in the reduced Maxwell equations are those of Eqs. (19)–(23).

C. Minimal self-consistent model

We have seen that self-consistent electric effects appear
at zeroth order in the Maxwell equations, whereas magnetic
effects are of second order. It may then be reasonable
(if not mathematically rigorous) to neglect self-consistent
electrostatic corrections at second order. We shall see that this
entails significant simplifications in the resulting equations.

The relevant Hamiltonian becomes, neglecting φ2 in
Eq. (72),

Ĥ = qφ0 + p̂2

2m
− q

2m
(p̂ · A2 + A2 · p̂) + qh̄

2m
σ · ∇ × A2

− qh̄2

8m2c2
�φ0 − qh̄

4m2c2
σ · ∇φ0 × p̂, (75)

whereas for the Maxwell equations we have

−�φ0 = qρ0

ε0
, (76)

−�A2 = q

ε0c2

(
j0 + jfree

2

)
. (77)

We see that the Maxwell equations now reduce to a set of two
elliptic (i.e., Poisson-like) equations where no time derivatives
appear. The last term in the current is needed to ensure that the
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continuity equation derived from the Hamiltonian (75) [i.e.,
Eq. (73)] is consistent with

∂ρ0

∂t
+ ∇ · (j0 + jfree

2

) = 0. (78)

Another welcome property of the above set of equations is
that the particle density is simply defined as ρ0 = �†�, as in
the Schrödinger or Pauli equations.

Finally, one can show that the self-consistent vector
potential A2, when re-injected into the Hamiltonian (75),
yields all the terms that are present in the Breit equation
for a many-electron system in the mean-field approximation
(spin-spin, spin-same-orbit, spin-other-orbit interactions, etc.).
Thus, a lot of physically important information is already
captured by such a simplified model. This issue will be
investigated in a future work.

VII. CONCLUSION

Relativistic effects can have an impact on the electron
dynamics in heavy atoms, dense plasmas, and condensed-
matter systems excited with intense and ultrafast laser pulses.
In particular, the electron spin can couple not only to the
electric field of the static nuclei (this is the ordinary spin-orbit
coupling), but also to the self-consistent mean field generated
by all other electrons, or directly to the magnetic and electric
fields of the incident laser pulse. In view of this complex variety
of possible physical mechanisms, it may be necessary to go
beyond the lowest order description of an electron with spin,
i.e., the Pauli equation, sometimes supplemented by an ad-hoc
spin-orbit term.

The purpose of this paper was to derive a self-consistent
mean-field model that incorporates quantum, spin, and rela-
tivistic effects up to second order in 1/c. We started from the
second-order Hamiltonian derived from the Dirac equation
through a Foldy-Wouthuysen transformation. We called the
corresponding equation of motion the “extended Pauli equa-
tion” (EPE). Then we constructed a Lagrangian density that
reproduces the EPE via the Euler-Lagrange equations.

In order to couple the EPE to the Maxwell equations,
we added the standard electromagnetic Lagrangian to the
Lagrangian for the EPE. The advantage of this approach is
that, when recovering the Maxwell equations from the full
Lagrangian density through the Euler-Lagrange equations, one
automatically gets the expressions for the sources (charge and
current densities) up to second order.

A physical interpretation was given for each new term
appearing in the sources. At zeroth order, one recovers the
standard expressions for the Schrödinger density and current.
The second-order sources contain a free current correction,
as well as other terms that can be written in the form of a
polarization and a magnetization density. The magnetization
is linked to the divergence-free “spin current” that already
appears in the standard Pauli equation. The polarization terms
can be split into a “Darwin” part and a “spin” part. The
former originates from the relativistic Zitterbewegung (fast
oscillations of the electron trajectory around its mean value),
which causes the density to smear out on a distance of the
order of the Compton wavelength. The spin polarization was

interpreted as a Lorentz transformation of the magnetization
density in the rest frame of the electron.

The charge density and current were derived by putting
together the Pauli and the Maxwell parts of the Lagrangian,
i.e., by assuming that the EPE acts as some sort of source to
the Maxwell equations. But the latter are exact to all orders
in 1/c, whereas the EPE is only valid up to second order. In
order to treat on the same footing (i.e., at the same order) both
the equation of motion (Pauli) and the equations for the fields
(Maxwell), we also expanded the Maxwell equations to second
order in 1/c. With this procedure, we were able to construct
a fully self-consistent set of equations that are valid at second
order and respect some appropriate conservation laws. Several
versions of such a model were discussed.

The models that we have derived should be useful, for
instance, for applications to dense and weakly degenerate
electron plasmas created via intense laser pulses. Energetic
electrons are routinely observed in such plasmas and their
relativistic velocities can be used to modify the properties of
incident radiation [28]. Other possible areas of applications
involve inertial confinement fusion [29] and astrophysical
plasmas [30], as well as nanometric systems (nanoparticles,
thin films) excited with ultrashort laser pulses in the femto- or
attosecond domain [5].

Finally, it should be noted that the models discussed in this
paper are limited to the mean-field approximation, although,
in contrast to most other such models, the magnetic mean
field is also included. Going beyond the mean-field approx-
imation would require appropriate exchange and correlation
functionals [10,23], which are notoriously difficult to obtain
in the relativistic regime. Their semirelativistic expansion and
compatibility with the reduced Maxwell equations will also
need to be examined.
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APPENDIX A: RELATIVISTIC MASS CORRECTION

To include the relativistic mass correction term to the
Lagrangian density, we use the form 〈�|p̂2p̂2|�〉. This is
similar to the way the term (p̂ − qA)2/2m is used in the
original Lagrangian density, i.e., 〈�|(p̂ − qA) · (p̂ − qA)|�〉.
We use the following highly reduced Pauli equation to compute
the contribution of this term:

ih̄∂t� = (p̂ − qA)4

8m3c2
�. (A1)

The Lagrangian density for this Pauli equation coupled to the
Maxwell equations is

L = ih̄

2
(�†�̇ − �̇†�) + 1

8m3c2
(−p̂i − qAi)(−p̂i − qAi)�

†

× (p̂j − qAj )(p̂j − qAj )� + ε0

2
(∂kφ)2

− ε0

2c2
(∂tφ)2 − 1

2μ0
(∂jAk)2 + 1

2μ0c2
(∂tAk)2. (A2)
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One can easily check that the probability density will not change. Thus, we rewrite the Lagrangian density as one
consisting of terms containing only the Maxwell terms for the vector field and the relativistic correction:

L = L′ − 1

2μ0
(∂jAk)2 + 1

2μ0c2
(∂tAk)2 + 1

8m3c2
(p̂i + qAi)(p̂i + qAi)�

†(p̂j − qAj )(p̂j − qAj )�, (A3)

where L′ contains all remaining terms. The momentum operator can act on both the vector potential and the wave function.
Simplifying and putting the p̂i p̂i�

†p̂j p̂j� term in L′, gives

L = L′ − 1

2μ0
(∂jAk)2 + 1

2μ0c2
(∂tAk)2 + 1

8m3c2
[p̂i p̂i�

†q2AjAj� + q2AiAi�
†p̂j p̂j�]

+ 1

8m3c2
[{2qAip̂i + (p̂iqAi) + q2AiAi}�†{q2AjAj − 2qAj p̂j − (p̂j qAj )}�]. (A4)

The Euler-Lagrange equations for Ak will give the corresponding component of the current density. However, we must be
careful when we calculate these terms, since there are two indices i and j . Computing for a single component (say, the kth

component) will give a δik and δjk . We obtain

∂L
∂Ak

= 1

8m3c2
[8q2(qA · qA)�†�Ak + 4ih̄q2{qA · [�†(∇�) − (∇�†)�]}Ak]

+ 1

8m3c2
{−2qih̄(qA · qA)[(∂k�

†)� − �†(∂k�)] − 2(qih̄)2(∇ · A)∂k(�†�)}

+ 1

8m3c2
{−4(qih̄)2[(∂k�

†)(A · ∇�) + (A · ∇�†)(∂k�)]} + 1

8m3c2
2(qih̄)2[Ak�

†(��) + (��†)Ak�]. (A5)

For the time-derivative components of the Euler-Lagrange equations, we have

∂t

∂L
∂(∂tAk)

= 1

μ0c2
∂2
t Ak. (A6)

For the spatial derivatives, when we calculate the components with the index i, we replace j by i. Thus,

∂L
∂(∂jAk)

= − 1

μ0
∂jAk + 1

8m3c2
δjk[−qih̄�†{q2(A · A) + 2qih̄A · ∇ + qih̄(∇ · A)}�]

+ 1

8m3c2
δjk[{q2A · A − 2qih̄A · ∇ − qih̄(∇ · A)}�†qih̄�]. (A7)

Simplifying, one obtains

∂j

∂L
∂(∂jAk)

= − (qih̄)2

4m3c2
∂k[{�†(A · ∇�) + (A · ∇�†)�} + (∇ · A)�†�] − 1

μ0
�Ak. (A8)

Substituting these terms in the Euler-Lagrange equation and rearranging,

8m3c2

{
− 1

μ0
�Ak + 1

μ0c2
∂2
t Ak

}
= 2(qih̄)2∂k∇ · (A�†�) + 8q2(qA · qA)�†�Ak + 4ih̄q2{qA · [�†(∇�) − (∇�†)�]}Ak

− 2qih̄(qA · qA)[(∂k�
†)� − �†(∂k�)] − 2(qih̄)2[(∂k�

†){∇ · (A�)} + {∇ · (A�†)}(∂k�)]

− 2(qih̄)2[(A · ∇�†)(∂k�) + (∂k�
†)(A · ∇�)] + 2(qih̄)2{Ak�

†(��) + (��†)Ak�}
= 8m3c2qjk. (A9)

Converting to vector form and rewriting the current, we get the relativistic mass correction to the current density,

jrel = qh̄2

4m3c2
[(∇�†)∇ · (A�) + ∇ · (A�†)(∇�) + (A · ∇�†)(∇�) + (∇�†)(A · ∇�)]

− qh̄2

4m3c2
∇{∇ · (A�†�)} + q3

m3c2
(A · A)(�†A�) + ih̄q2A

2m3c2
[�†(A · ∇�) − (A · ∇�†)�]

− q2ih̄

2m3c2
(A · A)[(∇�†)� − �†(∇�)] − qh̄2

4m3c2
[�†(��) + (��†)�]A. (A10)

This correction is algebraically cumbersome and its practi-
cal usefulness in numerical computations may be questioned.
It must be pointed out that all terms in jrel depend on the

vector potential at least linearly. As we have seen that the self-
consistent (internal) vector potential is a second-order quantity,
we conclude that, for a purely self-consistent magnetic field,
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jrel does not contain any contribution at second order. Things
could be different, of course, in the case of an external magnetic
field, which can be arbitrarily large.

APPENDIX B: DERIVATION OF THE EXTENDED PAULI
EQUATION FROM THE LAGRANGIAN DENSITY

Here we show that the Lagrangian density provided in
Eq. (10) does return the EPE when we consider the Euler-
Lagrange equations for �†.

Computing each term of the Euler-Lagrange equations
yields

∂L
∂�† = ih̄

2
�̇ − (mc2 + qφ)� + 1

2m
qA · (p̂ − qA)�

+
[

qh̄

2m
εijkσi∂jAk − qh̄2

8m2c2
∂2
k φ − qh̄2

8m2c2
∂t∂kAk

]
�

+ εijk

[
qh̄

4m2c2
σi∂jφqAk + qh̄

4m2c2
σi∂tAjqAk

]
�

− qh̄

8m2c2
εijk[�†σi(∂jφ + ∂tAj )p̂k�], (B1)

∂t

∂L
∂(∂t�†)

= − ih̄

2
∂t�, (B2)

∂k

∂L
∂(∂k�†)

= 1

2m
p̂ · (p̂ − qA)�

− qh̄

8m2c2
p̂ · [(∇φ + ∂tA) × (σ�)]. (B3)

When we combine the above terms and insert them into
Eq. (12), we obtain, after some algebra,

ih̄�̇ = (mc2 + qφ)� + (p̂ − qA)2

2m
� − qh̄

2m
σ · (∇ × A)�

+ qh̄2

8m2c2
�φ� + qh̄2

8m2c2
∇ · ∂tA�

+ qh̄

4m2c2
σ · {(∇φ + ∂tA) × (p̂ − qA)} �

− qh̄

8m2c2
σ · (p̂ × ∂tA)�, (B4)

which is the expected EPE. The conjugate of the EPE is
obtained by taking the Euler-Lagrange equation for �.

APPENDIX C: LANDAU’S VARIATIONAL METHOD

In Ref. [21], Landau showed how to obtain the charge and
current densities for the Pauli equation at lowest order, using a
variational method. In this appendix, we prove that Landau’s
method can be generalized to the EPE (second order in 1/c)
and that the resulting charge and current densities are identical
to those obtained with our Lagrangian approach.

The Lagrangian method developed in the main body of this
work is nevertheless much simpler to implement. The main
reason is that the Lagrangian approach uses a single scalar
function of the various fields, whereas Landau’s method is
based on the expectation value of the energy, which involves
computing complicated integrals.

1. Landau’s result at zeroth order

Landau considered a single electron with spin interacting
with a magnetic field, described by its vector potential A. The
starting point is to assume that an elementary variation of
the expectation value of the energy can be associated with an
elementary variation of the electromagnetic energy, so that one
can write

δ 〈H 〉 = −
∫

qj · δAdτ, (C1)

where
∫

dτ = ∫
d3r

∫
dt denotes integration over space and

time, and the expectation value of the energy 〈H 〉 is

〈H 〉 =
∫

�†H�dτ =
∫

�†
[

(p − qA)2

2m
− qh̄

2m
σ · B

]
�dτ.

(C2)

Computing the variation of the mean energy, we get

δ 〈H 〉 =
∫

�†
[

− q

2m
(p · δA + δA · p)

+ q2

m
A · δA − qh

2m
σ · (∇ × δA)

]
�dτ. (C3)

Using p = −ih̄∇ and integrating by parts, yields

δ 〈H 〉 = −
∫

q

[
ih̄

2m
(�∇�† − �†∇�)

− q

m
�†�A + h̄

2m
∇ × (�†σ�)

]
· δAdτ. (C4)

Identifying the integrand on the right-hand side of Eq. (C4)
with that of Eq. (C1), gives the correct expression for the Pauli
current density,

j = ih̄

2m
(�∇�† − �†∇�) − q

m
�†�A + h̄

2m
∇ × (�†σ�).

2. Extensions to second order

We now consider a Hamiltonian H (φ,A) in the presence
of an electromagnetic field described by the scalar and vector
potentials (φ,A):

H (φ,A) = (p − qA)2

2m
+ qφ − qh̄

2m
σ · (∇ × A) − qh̄2

8m2c2
∇·E

− qh̄

8m2c2
σ · [E × (p − qA) − (p − qA) × E] .

(C5)

As before, we assume that an elementary variation of the
expectation value of the energy can be associated with an
elementary variation of the electromagnetic energy:

δ〈H (φ,A)〉 =
∫

q(ρδφ − j · δA)dτ. (C6)

We compute the left-hand side of Eq. (C6) by evaluating
separately the variation with respect to the scalar potential
δφH (φ,A) and the variation with respect to the vector potential
δAH (φ,A). The elementary variation of the electric field can
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be written as δE = −∇δφ − ∂t δA, which leads to

δφH = qδφ + qh̄2

8m2c2
∇ · ∇δφ + qh̄

8m2c2
σ · [∇δφ × (p − qA) − (p − qA) × ∇δφ] , (C7)

δAH = − q

2m
(p · δA + δA · p) + q2

m
A · δA − qh

2m
σ · (∇ × δA) + q2h̄

8m2c2
σ · (E × δA − δA × E)

+ qh̄2

8m2c2
∇ · (∂t δA) + qh̄

8m2c2
σ · [∂t δA × (p − qA) − (p − qA) × ∂tδA] . (C8)

Taking the expectation value, we obtain for the variation with respect to φ:

〈δφH 〉 =
∫

�†
{
qδφ + qh̄2

8m2c2
∇ · ∇δφ + qh̄

8m2c2
σ · [∇δφ × (p − qA) − (p − qA) × ∇δφ]

}
�dτ

=
∫

q�†�δφdτ + qh̄2

8m2c2

∫
�†(∇ · ∇δφ)�dτ − q2h̄

4m2c2

∫
�†σ · (∇δφ × A) �dτ

− iqh̄2

8m2c2

∫
�†σ · [∇δφ × ∇ − ∇ × (∇δφ)] �dτ. (C9)

Using the identities,
∫

dτ�†∇ · (∇δφ)� =
∫

dτ∇ · ∇(�†�)δφ,∫
dτ�†σ · (∇δφ × A) � =

∫
dτ [∇ · (�†σ� × A)]δφ,∫

dτ�†σ · [∇δφ × ∇ − ∇ × (∇δφ)] � =
∫

dτ [∇ · (�†σ × ∇� + ∇�† × σ�)]δφ,

one can rewrite Eq. (C9) in the following fashion:

〈δφH 〉 =
∫

q

[
�†� + h̄2

8m2c2
�(�†�) − qh̄

4m2c2
∇ · (�†σ� × A) − ih̄2

8m2c2
∇ · (�†σ × ∇� + ∇�† × σ�)

]
δφdτ. (C10)

In accordance with Eq. (C6), the variation of the expectation value of the energy with φ must equal the corresponding variation
in the electrostatic energy, i.e.,

δφ〈H (φ,A)〉 =
∫

qρδφdτ. (C11)

Comparing with Eq. (C10) yields the density at second order in 1/c:

ρ = �†� + h̄2

8m2c2
�(�†�) − qh̄

4m2c2
∇ · (�†σ� × A) − ih̄2

8m2c2
∇ · (�†σ × ∇� + ∇�† × σ�), (C12)

which is identical to the expression that we found using the Lagrangian approach, Eq. (14).
Let us now turn to the current density. For the variation with respect to A, we get from Eq. (C8),

〈δAH 〉 =
∫

�†
[

− q

2m
(p · δA + δA · p) + q2

m
A · δA − qh

2m
σ · (∇ × δA) + q2h̄

8m2c2
σ · (E × δA − δA × E)

+ qh̄2

8m2c2
∇ · ∂tδA + qh̄

8m2c2
σ · {∂t δA × (p − qA) − (p − qA) × ∂tδA}

]
�dτ

= −
∫

q�†
[

ih̄

2m
(�∇�† − �†∇�) − q

m
�†�A + h̄

2m
∇ × (�†σ�)

]
· δAdτ + qh̄2

8m2c2

∫
�†� (∇ · ∂t δA) dτ

− iqh̄2

8m2c2

∫
�†σ · (∂tδA × ∇ − ∇ × ∂tδA) �dτ − q2h̄

4m2c2

∫
�†σ · (∂t δA × A) �dτ

+ q2h̄

4m2c2

∫
(�†σ�) · (E × δA) dτ. (C13)
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Using the identities, ∫
dτ�†�

(
∇ · ∂δA

∂t

)
=

∫
dτ

∂

∂t
[∇(�†�)] · δA,

∫
dτ�†σ ·

(
∂δA
∂t

× ∇ − ∇ × ∂δA
∂t

)
� =

∫
dτ

[
∂

∂t
(�†σ × ∇� + ∇�† × σ�)

]
· δA,

∫
dτ�†σ ·

(
∂δA
∂t

× A
)

� =
∫

dτ

[
∂

∂t
(�†σ� × A)

]
· δA,

∫
dτ (�†σ�) · (E × δA) =

∫
dτ [(�†σ�) × E] · δA,

Eq. (C13) can be written as

〈δAH 〉 = −
∫

q�†
[

ih̄

2m
(�∇�† − �†∇�) − q

m
�†�A + h̄

2m
∇ × (�†σ�) − h̄2

8m2c2

∂

∂t
∇(�†�)

+ ih̄2

8m2c2

∂

∂t
(�†σ × ∇� + ∇�† × σ�) + qh̄

4m2c2

∂

∂t
(�†σ� × A) − qh̄

4m2c2
(�†σ�) × E

]
· δAdτ.

The variation of the expectation value of the energy with A must equal the corresponding variation in the magnetic
energy, i.e.,

δA〈H (φ,A)〉 = −q

∫
j · δAdτ, (C14)

which leads to the probability current density up to second order in 1/c:

j = ih̄

2m
(�∇�† − �†∇�) − q

m
�†�A + h̄

2m
∇ × (�†σ�) − qh̄

4m2c2
(�†σ�) × E

− h̄2

8m2c2

∂

∂t
∇(�†�) + ih̄2

8m2c2

∂

∂t
[�†σ × ∇� + ∇�† × σ�] + qh̄

4m2c2

∂

∂t
(�†σ� × A).

This expression is identical to the one obtained with the Lagrangian method, Eq. (16).
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