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Møller scattering and Einstein-Podolsky-Rosen spin correlations
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In this paper we present and discuss the relativistic correlation function in a bipartite system of two electrons,
originating from the e−e− −→ e−e− scattering of a polarized electron beam on an unpolarized target. We also
calculate and investigate the probabilities of the definite outcomes of spin-projection measurements performed by
two observers. The presented results might help in experimentally verifying whether relativistic quantum theory
is able to reproduce the behavior of real quantum systems.
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I. INTRODUCTION

Starting from the pioneering paper by Czachor [1] one can
notice a rise of interest in relativistic aspects of the Einstein-
Podolsky-Rosen–type (EPR-type) correlations in systems of
massive fermions (see, e.g., Refs. [2–13] and references
therein). The behavior of the relativistic correlations is in
general different than in the nonrelativistic case. Theoretical
analysis showed that relativistic correlations for massive
particles may be described by a nonmonotonic function of
particle momenta. This unexpected behavior was first found in
bipartite vector boson systems and spin-1/2 fermion systems
[14,15] and was reflected in the degree of violation of the
Bell-type inequalities, which in some configurations was a
nonmonotonic function of momentum, too. Moreover, it has
been shown that there exist configurations for which the degree
of the inequality violation increases with particle momenta and
reaches its maximal value in the ultrarelativistic limit. Let us
also stress that local extrema do not appear for bipartite photon
systems.

All the results mentioned previously strongly suggest that
the existence of local extrema is a characteristic feature
of relativistic correlations for massive particles. For these
reasons it is important to measure this correlation function
experimentally. Such experiments might be treated as a test
of nonlocal aspects of relativistic quantum theory. Thus, the
question arises of whether the relativistic corrections can be
measured. Our purpose is to show that it is possible to verify
the unexpected predictions of relativistic quantum theory
mentioned above in the nonlocal correlation experiment by
using Møller electrons as the EPR pair.

As far as we know, there have been only three correlation
experiments to date performed by means of massive relativistic
fermions (protons). Their aim was to test Bell-type in-
equalities. These experiments were the Lamehi-Rachti-Mittig
(LRM) experiment [16] performed about thirty years ago at
CEN-Saclay and two recent experiments: the first one at the
Kernfysisch Versneller Instituut (KVI, Holland) by Hamieh
et al. [17] and the second one by Sakai et al. [18] at the RIKEN
Accelerator Research Facility (Japan). In all three experiments
the proton-proton spin correlations were measured. The LRM
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team tested Bell-type inequalities with the use of the low-
energy (13.5 MeV) proton beam, which corresponds to a
proton velocity v ∼ 0.17c. On the other hand, in the KVI
experiment, the spin correlations of proton pairs in a 1S0

intermediate state, obtained from the 12C(d,2He)12B nuclear
charge-exchange reaction, were measured for protons with a
kinetic energy ∼86 MeV (v ∼ 0.4c). Finally, in the RIKEN
experiment the proton pair was created in the 1H(d,2He)n
charge-exchange reaction with a proton energy ∼135 MeV
(v ∼ 0.5c). In all these experiments correlation functions
were measured only for some special configurations and the
results were in agreement with the nonrelativistic quantum
mechanics predictions. From our estimate it follows that in
order to observe a difference between predictions of relativistic
and nonrelativistic quantum mechanics, the kinetic energy
of the EPR particles should be at least of the order of the
particles rest mass. The experiments [16–18] did not meet this
condition.

A realistic experiment can be performed using polarized
electrons undergoing Møller scattering, resulting in a pair of
final-state electrons as EPR particles [19]. Such a state is easily
prepared in a laboratory. Moreover, the state of electrons after
the scattering can be determined experimentally with sufficient
precision. Presently, the corresponding experiment is under
preparation by the QUEST Collaboration [20]. It will use a
polarized electron beam incident on a stationary, unpolarized
target and the Mott polarimetry technique for determining spin
projections of outgoing electrons.

The aim of the present paper is to calculate the correlation
function and the joint probabilities in a bipartite system of
two electrons originating from e−e− −→ e−e− scattering.
To this end we calculate the outgoing density matrix and
the correlation function of a pair of Møller electrons for
arbitrary polarization and momenta of the scattered electrons.
We focus on the case corresponding to the above experimental
method and conditions. In particular, we analyze the degree of
entanglement in this case.

The paper is organized as follows: In Sec. II we discuss
the initial-state preparation procedure and the corresponding
density matrix. In Sec. III we recall the spin operator, for
which the correlation functions and the probabilities will be
calculated. In Sec. IV we give the general formulas for the
correlation functions and the corresponding joint probabilities
for two electrons produced in Møller scattering, and in Sec. V
we discuss the special case of two electrons originating from
the Møller scattering of the electron beam from a stationary
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FIG. 1. First-order Feynman graphs illustrating the process of
Møller scattering e−e− −→ e−e−.

target. In this section we discuss also entanglement of the
state of two electrons in this case. In Sec. VI we study the
behavior of the correlation function and the probabilities for
scattering from a stationary target when spin of the electrons
can be projected onto an arbitrary direction. In particular,
we study the case when the directions on which the spin is
projected are perpendicular to the respective electrons mo-
menta (such a measurement can be realized by means of Mott
polarimetry).

We use natural units with h̄ = c = 1, the Minkowski metric
tensor ημν = diag(1, −1, −1, −1), and adopt the convention
ε0123 = 1.

II. PREPARATION OF INITIAL STATE

Møller scattering to first order in radiative corrections is
illustrated in the Fig. 1. In high-energy physics the states of
colliding electrons are prepared separately, therefore the initial
state of two electrons (the state before the scattering) has the
product form

ρ in
(τ1,τ2),(τ ′

1,τ
′
2)(q1,q2,q

′
1,q

′
2) = ρ1in

τ1τ
′
1
(q1,q

′
1)ρ2in

τ2,τ
′
2
(q2,q

′
2), (1)

where τi,τ
′
i , i = 1,2 are spin indices which take values ±1/2

while qi , q ′
i denote four-momenta, which are well determined

for the initial electrons. Thus, the matrices ρi in can be written
in the form describing particles with sharp four-momenta,
i.e.,

ρi in
τi τ

′
i
(qi,q

′
i) = 2p0

i

δ3(0)
δ3(qi − pi)δ

3(q′
i − pi)

1

2
(1+ξ i · σ )τiτ

′
i
,

(2)

where ξ i and pi denotes polarization vector and the four-
momentum of the ith electron, respectively; σ = (σ1,σ2,σ3)
and σk are standard Pauli matrices.

The final state after the scattering can be written as

ρ̂out = M̂ρ̂ inM̂†

Tr{M̂ρ̂ inM̂†} , (3)

where M is the scattering amplitude. The denominator
Tr{M̂ρ̂ inM̂†} is proportional to the cross section of the
e−e− −→ e−e− process. Let us stress that transition from the
separable state (2) to the outgoing state (3) is not a unitary
operation (in spite of unitarity of the S matrix). Therefore, we
can expect that for some configurations the outgoing state can
be entangled.

The scattering amplitude matrix element (in the first-order
approximation) is given by [21]

M(λ1,λ2),(τ1,τ2)(r1,r2,q1,q2)

= i(2π )4e2m2

V 2
√

r0
1 r0

2 q0
1q0

2

{
ūλ1 (r1)γμuτ1 (q1)][ūλ2 (r2)γ μuτ2 (q2)]

(q1 − r1)2

− [ūλ1 (r1)γμuτ2 (q2)][ūλ2 (r2)γ μuτ1 (q1)]

(q2 − r1)2

}

×δ4(r1 + r2 − q1 − q2), (4)

where V is the volume element, m is the electron mass, e is the
elementary charge, γμ are the Dirac matrices, uτ (q) designates
the Dirac field amplitude, and bar denotes Dirac conjugation.

The state defined in Eq. (3) is a general state of two electrons
produced in Møller scattering. However, we are interested
in the spin-density matrix describing the final state of two
electrons with well-determined four-momenta; say k1 and k2.
This matrix can be obtained by projecting the general state
given in Eq. (3) onto the subspace spanned by two-particle
states with four-momenta k1 and k2.

Thus, let ρf (p1,p2,ξ 1,ξ 2; k1,k2) be such a density matrix
describing the spin state of two electrons with four-momenta
k1, k2 originating from Møller scattering of initial electrons
with four momenta p1, p2 and polarizations ξ 1 and ξ 2. The
conservation of four-momentum implies

p1 + p2 = k1 + k2. (5)

Taking into account Eqs. (1), (2), and (3), we get the matrix
elements of ρf (p1,p2,ξ 1,ξ 2; k1,k2):

ρ
f

λ1λ2,λ
′
1λ

′
2
(p1,p2,ξ 1,ξ 2; k1,k2) = 1

|F |2
{

1

(p1 − k1)4
Tr[uλ′

1 (k1)ūλ1 (k1)γμ�1(ξ 1,p1)γν] Tr[uλ′
2 (k2)ūλ2 (k2)γ μ�2(ξ 2,p2)γ ν]

+ 1

(p1 − k2)4
Tr[uλ′

1 (k1)ūλ1 (k1)γμ�2(ξ 2,p2)γν] Tr[uλ′
2 (k2)ūλ2 (k2)γ μ�1(ξ 1,p1)γ ν]

− 1

(p1 − k1)2(p1 − k2)2
Tr[uλ′

1 (k1)ūλ1 (k1)γμ�1(ξ 1,p1)γνu
λ′

2 (k2)ūλ2 (k2)γ μ�2(ξ 2,p2)γ ν]

− 1

(p1 − k1)2(p1 − k2)2
Tr[uλ′

1 (k1)ūλ1 (k1)γμ�2(ξ 2,p2)γνu
λ′

2 (k2)ūλ2 (k2)γ μ�1(ξ 1,p1)γ ν]

}
. (6)

In the above equation we have used the notation

�i(ξ i ,pi) = u(pi) 1
2 (1+ξ i · σ )ū(pi), (7)

032116-2



MØLLER SCATTERING AND EINSTEIN-PODOLSKY-ROSEN . . . PHYSICAL REVIEW A 88, 032116 (2013)

where u(pi) stands for a 4 × 2 matrix: u(pi) = [u1/2(pi),u−1/2(pi)]. The normalization factor |F |2 can be calculated by tracing
out the spin indices in the numerator of Eq. (7) and is given by the following formula:

|F |2 = 1

4m2

{
1

(p1 − k1)4
Tr[(k1γ + m 1)γμ�1(ξ 1,p1)γν] Tr[(k2γ + m 1)γ μ�2(ξ 2,p2)γ ν]

+ 1

(p1 − k2)4
Tr[(k1γ + m 1)γμ�2(ξ 2,p2)γν] Tr[(k2γ + m 1)γ μ�1(ξ 1,p1)γ ν]

− 1

(p1 − k1)2(p1 − k2)2
Tr[(k1γ + m 1)γμ�1(ξ 1,p1)γν(k2γ + m 1)γ μ�2(ξ 2,p2)γ ν]

− 1

(p1 − k1)2(p1 − k2)2
Tr[(k1γ + m 1)γμ�2(ξ 2,p2)γν(k2γ + m 1)γ μ�1(ξ 1,p1)γ ν]

}
, (8)

where kiγ = k
μ

i γμ, piγ = p
μ

i γμ, i = 1,2.
The matrix �i(ξ i ,pi) defined in Eq. (7) can be written as [7]

�i(ξ i ,pi) = 1

4

(
piγ

m
+ 1

)(
1+2γ 5 wiγ

m

)
, (9)

where the components of the four-vectors wi are given by

w0
i = pi · ξ i

2
, wi = 1

2

[
mξ i + pi(pi · ξ i)

m + p0
i

]
. (10)

As before, the quantities with index i correspond to the ith particle.
If we write |F |2 in the form

|F |2 = 1

4m2

[
K1

(p1 − k1)4
+ K2

(p1 − k2)4
− K3

(p1 − k1)2(p1 − k2)2

]
, (11)

then after simple but tedious calculations we get

K1 = 2

m2
{2[m2 − (k1p1)][m2 − 4(w1w2)] + (p1p2)2 + (k1p2)2 − 4(k1w1)(k2w2)}, (12a)

K2 = 2

m2
{2[m2 − (k2p1)][m2 − 4(w1w2)] + (p1p2)2 + (k1p1)2 − 4(k2w1)(k1w2)}, (12b)

K3 = 8[(p1p2) + (w1w2)] − 4

m2
[4(p1p2)(w1w2) + (p1p2)2] + 8

m4
{(p1w2)[(k2p1)(k2w1) + (k1p1)(k1w1)]

+ (p2w1)[(k2p1)(k1w2) + (k1p1)(k2w2)] − (p1p2)[(k1w1)(k2w2) + (k1w2)(k2w1) + (p1w2)(p2w1)]

− (w1w2)[(k1p1)2 + (k2p1)2 − (p1p2)2]}, (12c)

where p1p2, p1k2, . . . designate Minkowski scalar products.
Hence, inserting Eqs. (12) into Eq. (9) we get finally

|F |2 = 1

8m4(m2 − k1p1)2(m2 − k2p1)2
([(p1p2)2 + (k1p2)2 − 4(k1w1)(k2w2)](m2 − k2p1)2

+ [(p1p2)2 + (k1p1)2 − 4(k2w1)(k1w2)](m2 − k1p1)2)

+ 1

4m2(m2 − k1p1)(m2 − k2p1)

(
m2 + 2(w1w2) − 3(p1p2) + 1

m2
(p1p2)2

+ 2

m4
{−(p1w2)[(k2w1)(k2p1) + (k1w1)(k1p1)] − (p2w1)[(k1w2)(k2p1) + (k2w2)(k1p1)]

+ (p1p2)[(k1w2)(k2w1) + (k2w2)(k1w1) + (p1w2)(p2w1)] + (w1w2)[(k1p1)2 + (k2p1)2 − (p1p2)2]}
)

. (13)

The term |F |2 is related to the differential cross section for
e−e− −→ e−e− scattering as follows:

dσ = 4πe4m4

s(s − 4m2)
|F |2dt

dϕ

2π
, (14)

where s and t are two of three Mandelstam variables:

s = (p1 + p2)2, t = (p1 − k1)2, u = (p1 − k2)2. (15)

III. RELATIVISTIC SPIN OPERATOR

Consider the spin square operator which can be uniquely
defined in terms of the generators of the Poincaré group as

Ŝ
2 = − 1

m2
ŴμŴμ, (16)

where Ŵμ is the Pauli-Lubanski four-vector and Ŵμ =
1
2εναβμP̂ν Ĵαβ and Ĵαβ are the generators of the Lorentz group.
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Assuming linearity in the components of Ŵμ one can easily
derive the formula for the spin operator in the enveloping
algebra of the Lie algebra of the Poincaré group. In fact,
demanding that the spin operator transform like a vector under
rotations and like a pseudovector under reflections, commute
with spacetime observables, and fulfill the standard canonical
commutation relations, we obtain the spin operator

Ŝ = 1

m

(
Ŵ − Ŵ 0 P̂

P̂ 0 + m

)
. (17)

Its action S on the spin indices is given by the Pauli matrices,
i.e.,

S = σ

2
, (18a)

whereas in the bispinor basis the action takes the form

S = − 1

2m

[
−p0γ 5γ 0γ + p

p0 + m
γ 5γ 0(p · γ )

+ iγ 0(p × γ )

]
. (18b)

The operator (17) coincides with the spin observable
defined in the quantum-field-theory framework [8]. Moreover,
it has been shown [22] that the spin operator (17) is equivalent
to the action of the mean-spin operator introduced by Foldy
and Wouthuysen [23]. In the Dirac theory, the spin operator

is not uniquely defined. For an exhaustive discussion of this
problem see Refs. [22] and [24] and references therein.

IV. PROBABILITIES AND CORRELATION FUNCTION

Now let two observers, Alice and Bob, perform mea-
surements on the scattered electrons. We assume that Alice
measures the (normalized to 1) spin projection of the electron
with four-momentum k1 on direction a while Bob measures
the (normalized to 1) spin projection of the electron with
four-momentum k2 on direction b. The probability of receiving
outcome a by Alice and b by Bob (a,b = ±1) is given by the
following formula:

Pab(p1,p2,ξ 1,ξ 2; k1,k2; a,b)

=
∑

λ1,λ2,λ
′
1,λ

′
2

ρ
f

λ1λ2,λ
′
1λ

′
2
(p1,p2,ξ 1,ξ 2; k1,k2)

×πa
λ′

1λ1
(a)πb

λ′
2λ2

(b), (19)

where π±1(n), n = a,b, are the projectors from the spectral
decomposition of the operator 2n · S (in the one-particle spin
basis) corresponding to the eigenvalues ±1, respectively. Since
the matrix of the spin operator S in the spin basis is 1

2σ (see,
e.g., Ref. [8]), we have

π±1(n) = 1
2 (1±n · σ ). (20)

Inserting Eqs. (7) and (20) into Eq. (19) we get

Pab(p1,p2,ξ 1,ξ 2; k1,k2; a,b) = 1

|F |2
{

1

(p1 − k1)4
Tr[�a(k1,a)γμ�1(ξ 1,p1)γν] Tr[�b(k2,b)γ μ�2(ξ 2,p2)γ ν]

+ 1

(p1 − k2)4
Tr[�a(k1,a)γμ�2(ξ 2,p2)γν] Tr[�b(k2,b)γ μ�1(ξ 1,p1)γ ν]

− 1

(p1 − k1)2(p1 − k2)2
Tr[(�a(k1,a)γμ�1(ξ 1,p1)γν�

b(k2,b)γ μ�2(ξ 2,p2)γ ν]

− 1

(p1 − k1)2(p1 − k2)2
Tr

[
�a(k1,a)γμ�2(ξ 2,p2)γν�

b(k2,b)γ μ�1(ξ 1,p1)γ ν
]}

, (21)

with

�±1(ki,n) = u(ki)π
±1(n)ū(ki) (22)

being the counterparts of π±1(n) in the bispinor basis and |F |2 given in Eq. (14).
With the help of the probabilities given in Eq. (19) we can define the correlation function

C(p1,p2,ξ 1,ξ 2; k1,k2; a,b) =
∑

a,b=±1

abPab(p1,p2,ξ 1,ξ 2; k1,k2; a,b) =
∑

λ1,λ2,λ
′
1,λ

′
2

ρ
f

λ1λ2,λ
′
1λ

′
2
(p1,p2,ξ 1,ξ 2,k1,k2)

× (a · σ )λ′
1λ1 (b · σ )λ′

2λ2 , (23)

which together with Eq. (7) yields the general form

C(p1,p2,ξ 1,ξ 2; k1,k2; a,b) = 1

|F |2
{

1

(p1 − k1)4
Tr[S(k1,a)γμ�1(ξ 1,p1)γν] Tr[S(k2,b)γ μ�2(ξ 2,p2)γ ν]

+ 1

(p1 − k2)4
Tr[S(k1,a)γμ�2(ξ 2,p2)γν] Tr[S(k2,b)γ μ�1(ξ 1,p1)γ ν]

− 1

(p1 − k1)2(p1 − k2)2
Tr[(S(k1,a)γμ�1(ξ 1,p1)γνS(k2,b)γ μ�2(ξ 2,p2)γ ν]

− 1

(p1 − k1)2(p1 − k2)2
Tr[S(k1,a)γμ�2(ξ 2,p2)γνS(k2,b)γ μ�1(ξ 1,p1)γ ν]

}
. (24)
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FIG. 2. Negativity of the state ρf of two electrons originating
from scattering from an unpolarized target as a function of beam
kinetic energy T and an angle at which the first electron is scattered,
θ1. Beam polarized along Z axis, |ξ 1| = 1.

V. SCATTERING FROM A STATIONARY TARGET

Now let us discuss a special case of an electron beam scat-
tering from an unpolarized stationary target, w2 = 0, p2 = 0,
which could be considered as the simplest experimental setup
for generating electron pairs for the correlation experiment.
Under these conditions Eq. (14) reduces to

|F |2 = 1

4m4
(
k0

1 − m
)2(

k0
1 − p0

1

)2

× {
k0

1

(
m + p0

1

)[
m2 − 4mp0

1 − 2
(
p0

1

)2]
−2

(
k0

1

)3(
m + p0

1

) + 3
(
k0

1

)2
p0

1

(
2m + p0

1

)
+(

k0
1

)4 + p0
1

[−m3 + 4m2p0
1 + (p0

1)3
]}

. (25)
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FIG. 3. Sections of the surface presented in Fig. 2 for fixed values
of beam kinetic energy: T = 0.5 MeV (dashed line), T = 2 MeV
(dotted line), T = 15 MeV (solid line).

In terms of the Mandelstam variables (15) the above equation
takes the form

|F |2 = 1

4m4

{
1

t2

[
s2 + u2

2
+ 4m2(t − m2)

]

+ 1

u2

[
s2 + t2

2
+ 4m2(u − m2)

]

+ 4

tu

(
s

2
− m2

)(
s

2
− 3m2

)}
. (26)

The above formula coincides with the results obtained in Ref.
[25]. We should note that it does not depend on the beam
polarization.

A. Entanglement of initial state

The scattered Møller state of two electrons is not an
irreducible singlet or triplet state but rather a mixture of these
states (more precisely, the density matrix is in this case a
reducible Wigner-Eckart tensor operator). We have assumed
that the state of two electrons before scattering, Eq. (1), is
separable. But it does not mean that the state after scattering,
ρf (p1,p2,ξ 1,ξ 2,k1,k2) given in Eq. (7), is separable, too. We
analyze the degree of entanglement of the state ρf originating
from the scattering from an unpolarized target. To this end
we calculate the value of entanglement measure for this state.
We use the negativity introduced in Ref. [26]. The explicit
form of the matrix ρf (p1,p2 = (m,0),ξ 1,ξ 2 = 0,k1,k2) is
complicated, therefore in Figs. 2, 3, and 4 we present only the
plots of numerically calculated negativity under some choice
of parameters. The parametrization utilized for the plots is
given in Appendix A. The behavior of negativity for other
choices of beam polarization is qualitatively similar.

VI. CORRELATION FUNCTION FOR SCATTERING
FROM A TARGET

After some calculation we can also derive a formula for the
correlation function for scattering from a target. Namely, we

0 5 10 15 20
0.00
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0.15

0.20
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N
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iv
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ρ

f

FIG. 4. Sections of the surface presented in Fig. 2 for fixed values
of scattering angle of the first electron: θ1 = 0.3 rad (dashed line),
θ1 = 0.5 rad (dotted line), θ1 = 0.6 rad (solid line).
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have

C(p1; k1,k2; a,b) = ((
k0

1
2 − m2

){
2(a · b)

(
k0

1 − p0
1

)[
k0

1
3 − k0

1
2(

3m + 2p0
1

) + k0
1

(
m2 + 6p0

1m + p0
1

2) + m
(
2m2 − 5p0

1m − 3p0
1

2)]
+ (a · p1)

[
(b · p1)

(
k0

1 − p0
1

)(
k0

1 − 2m − p0
1

) − (b · k2)
(
2k0

1
2 − 3mk0

1 + p0
1k

0
1 − 2m2 − 3p0

1
2 + 5mp0

1

)]}
+ (a · k1)

{
(b · k2)

[
4k0

1
4 − 8k0

1
3(

m + p0
1

) − k0
1

2(
5m2 − 28p0

1m − 17p0
1

2)
+ k0

1

(
9m3 − 11p0

1m
2 − 33p0

1
2
m − 13p0

1
3) + m

(
2m3 − 11p0

1m
2 + 14p0

1
2
m + 15p0

1
3)]

− (b · p1)
(
k0

1 − p0
1

)[
2k0

1
3 − k0

1
2(

5m + 7p0
1

) − k0
1

(
m2 − 18p0

1m − 5p0
1

2)
+m

(
6m2 − 11p0

1m − 7p0
1

2)]}){
2
(
k0

1 + m
)(

k0
1 − 2m − p0

1

)[
k0

1
4 − 2k0

1
3(

m + p0
1

) + 3p0
1k

0
1

2(
2m + p0

1

)
+ k0

1

(
m + p0

1

)(
m2 − 4p0

1m − 2p0
1

2) − p0
1

(
m3 − 4p0

1m
2 − p0

1
3)]}−1

. (27)

A. Mott polarimetry

A measurement of the spin projection can be realized by means of Mott polarimetry. The method is sensitive only to the spin
projection on a direction perpendicular to the Mott scattering plane (i.e., a ⊥ k1, b ⊥ k2). In such a special case the formula (27)
reduces to a simpler form:

C(p1; k1,k2; a,b) = ((
k0

1 − m
)(

k0
1 − p0

1

){
2(a · b)

[−k0
1

(
m + p0

1

) + k0
1

2 − m
(
m − 3p0

1

)] + (a · p1)(b · p1)
})

× {
2
[
k0

1

(
m3 − 3m2p0

1 − 6mp0
1

2 − 2p0
1

3) − 2k0
1

3(
m + p0

1

)
+ 3k0

1
2
p0

1

(
2m + p0

1

) + k0
1

4 − p0
1

(
m3 − 4m2p0

1 − p0
1

3)]}−1
. (28)

Notice that the correlation function (28) does not depend on
the beam polarization.

In Fig. 5 one can see a set of plots showing the dependence
of the correlation function on the angle θ1 at which the first
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FIG. 5. Correlation function vs the angle at which one of the electrons is scattered for beam kinetic energy T = 0.5 MeV (dashed line),
T = 2 MeV (dotted line), and T = 15 MeV (solid line); a and b in the scattering plane and (a) a ⊥ k1 and b ⊥ k2 (Mott polarimetry);
(b) ∠(a,k1) = π/4 and ∠(b,k2) = π/12; (c) a ⊥ k1 and b||k2; (d) a||k1 and b||k2.

032116-6



MØLLER SCATTERING AND EINSTEIN-PODOLSKY-ROSEN . . . PHYSICAL REVIEW A 88, 032116 (2013)

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

T MeV

Co
rr

el
at

io
n

fu
nc

ti
on

(a)

0 5 10 15 20
0.50

0.52

0.54

0.56

0.58

0.60

0.62

T MeV

Co
rr

el
at

io
n

fu
nc

ti
on

(b)

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

T MeV

Co
rr

el
at

io
n

fu
nc

ti
on

(c)

0 5 10 15 20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

T MeV

Co
rr

el
at

io
n

fu
nc

ti
on

(d)

FIG. 6. Correlation function vs beam kinetic energy for a and b in the scattering plane; equal final-state momenta (symmetric scattering—see
Appendix B) (a) a ⊥ k1 and b ⊥ k2 (Mott polarimetry); (b) ∠(a,k1) = π/4 and ∠(b,k2) = π/12; (c) a ⊥ k1 and b||k2; (d) a||k1 and b||k2.
Note that for panels (a) and (b) the correlation function is nonmonotonic and in panel (d) it is increasing with energy.
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FIG. 7. Correlation function vs the angle between the scattering plane and the b direction for beam kinetic energy T = 0.5 MeV (dashed
line), T = 2 MeV (dotted line), and T = 15 MeV (solid line); a in the scattering plane, equal final-state momenta (symmetric scattering—see
Appendix B) (a) a ⊥ k1 and b ⊥ k2 (Mott polarimetry); (b) ∠(a,k1) = π/4 and ∠(b,k2) = π/12; (c) a ⊥ k1 and b||k2; (d) a||k1 and b||k2.
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FIG. 8. Probabilities P++, P−−, P+−, P−+ vs the beam kinetic energy; a and b in the scattering plane, equal final-state momenta (symmetric
scattering—see Appendix B). Individual plots show the probabilities for (a) unpolarized beam (implies P++ = P−− and P+− = P−+); (b) beam
polarized 85% along X axis (implies P++ = P−−); (c) beam polarized 85% along Y axis (implies P+− = P−+); (d) beam polarized 85% along
Z axis (implies P++ = P−− and P+− = P−+).

electron is scattered [compare with parametrization given in
Appendix A, especially Eq. (A3)] for the beam kinetic energy
T = 15 MeV. Figure 5(a) shows the case of a ⊥ k1 and
b ⊥ k2 (such a measurement can be achieved by means of
Mott polarimetry). Figure 5(b) corresponds to ∠(a,k1) = π/4
and ∠(b,k2) = π/12, Fig. 5(c) to a ⊥ k1 and b||k2, and

Fig. 5(d) to a||k1 and b||k2. All the above figures have local
maxima for the case of θ1 = θ2 (symmetric scattering).

Figure 6 shows the dependence of the correlation function
on the beam kinetic energy for vectors a and b in the
scattering plane and for the case of symmetric scattering (see
Appendix B). Figure 6(a) corresponds to a ⊥ k1 and b ⊥ k2
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FIG. 9. Left-hand side of the CHSH inequality [Eq. (30)] as a function of energy in the case of Møller scattering from a stationary target.
We consider two configurations in which vectors a, b, c, d are determined according to Eqs. (A9) and (A10) with the following values of
angles: α = 2.513 rad, α′ = 0.241 rad, β = 4.366 rad, β ′ = −1.130 rad, γ = 0.879 rad, γ ′ = −0.109 rad, δ = 0 rad, δ′ = −1.570 rad (solid
line), and α = 0.911 rad, α′ = 0.706 rad, β = 0 rad, β ′ = −0.141 rad, γ = 0.062 rad, γ ′ = 0.251 rad, δ = 5.811 rad, δ′ = −0.204 rad (dashed
line). In panel (a) the scattering angle θ1 = 0.782 rad, in panel (b) the scattering angle θ1 = 0.298 rad.
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(Mott polarimetry)—we point out that for low beam energies
the value of the correlation function dynamically varies, which
is reflected in two local extrema. Figure 6(b) corresponds
to ∠(a,k1) = π/4 and ∠(b,k2) = π/12 and has maximum
for T = 6.41 MeV. Figure 6(c) corresponds to a ⊥ k1 and
b||k2 and decreases monotonically from the maximal value
1 for T = 0 and Fig. 6(d) corresponding to a||k1 and b||k2

monotonically rises.
In Fig. 7 one can see the set of figures showing the

dependence of the correlation function on the angle β

at which the vector b lies with respect to the scattering
plane for the symmetric-scattering case (see Appendix B).
Again Fig. 7(a) corresponds to a ⊥ k1 and b ⊥ k2 (Mott
polarimetry), Fig. 7(b) to ∠(a,k1) = π/4 and ∠(b,k2) =
π/12, Fig. 7(c) to a ⊥ k1 and b||k2, and Fig. 7(d) to a||k1 and
b||k2.

B. Probabilities

The experimental method assumes counting of coinci-
dences of spin-projection outcomes ++, +−, −+, −−
(denoted by N++, N−−, N+−, N−+) which, when divided
by the number of events (N ), gives the joint probabilities
of obtaining specific results by Alice and Bob (P++, P−−,
P+−, P−+). Thus, the joint probabilities Pab are more primary
quantities than the correlation function and are going to be
measured directly. The experimental correlation function can
be calculated as

Cexpt(a,b) = N++ + N−− − N+− − N−+
N

(29)

and contains less information about behavior of the real
quantum systems than the probabilities themselves.

Because of the complexity of the explicit formulas for the
probabilities we do not include them in the present paper. The
behavior of the probabilities is shown in Fig. 8.

In Fig. 8 one can see the dependence of the probabilities
P++, P−−, P+−, P−+ on the beam kinetic energy in the case
of symmetric scattering (see Appendix B) for a and b lying
in the scattering plane and for the beam polarization vector ξ

equal to ξ = (0,0,0) [Fig. 8(a)], ξ = 0.85(1,0,0) [Fig. 8(b)],
ξ = 0.85(0,1,0) [Fig. 8(c)], and ξ = 0.85(0,0,1) [Fig. 8(d)].
We point out that although the beam polarization does not
affect the shape of the correlation function it has influence on
the behavior of the probabilities.

C. Bell-type inequalities

Having at our disposal the general correlation function we
can also discuss Bell-type inequalities in the case of Møller
scattering. Violation of such inequalities can be treated as
a signature of the fact that correlations are really quantum
and cannot be reproduced in any local realistic theory [27].
We consider here the Clauser-Horne-Shimony-Holt (CHSH)
inequality [28] which has the form

|C(p1; k1,k2; a,b) − C(p1; k1,k2; a,d) + C(p1; k1,k2; c,b)

+ C(p1; k1,k2; c,d)| � 2. (30)

For the correlation function given in Eq. (27) there exist such
configurations that the CHSH inequality (30) is violated and
such that this inequality holds. In Fig. 9 we have plotted the

left-hand side of the CHSH inequality as a function of energy
for two chosen configurations and for two energy scales. Let
us notice that the region where the CHSH inequality is violated
corresponds to the region where the entanglement measure has
a relatively big value (cf. Fig. 2).

VII. CONCLUSIONS

In this paper we have derived and analyzed formulas for
the correlation function and joint probabilities in a bipartite
system of two relativistic electrons produced in scattering
experiments. The correlation functions and the probabili-
ties have been calculated in the state originating from the
e−e− −→ e−e− Møller scattering. We have also analyzed the
entanglement of the two-electron final state. Finally, we have
discussed briefly the CHSH inequality in this case. We showed
that for some configurations the inequality is violated.

Our analysis and results can serve as the theoretical basis
for the experimental test of predictions of relativistic quantum
theory in EPR-type experiments. It seems that such a test
will be possible in the experiment prepared by the QUEST
Collaboration mentioned in the introduction.
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APPENDIX A: PARAMETRIZATION USED

Let us analyze the kinematical situation in the case of
electron beam scattering from the stationary target, i.e., p2 =
(m,0,0,0) (see Fig. 10). Without loss of generality we can
assume that the beam propagates along the X direction and
the scattered electrons move in the XY plane. Conservation of
four-momentum implies that there are only two independent
kinematical variables. As these independent variables we
choose the energy of the incoming electron p0

1 and the
angle θ1 at which the electron with four-momentum k1 is
scattered. Those two variables unambiguously determine other

'

'

FIG. 10. Møller scattering in the case of electron beam scattering
from the stationary target: p1 = k1 + k2, m + p0

1 = k0
1 + k0

2 ; arbitrary
a and b.
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kinematical variables, and the corresponding formulas are the
following:

p1 =
√(

p0
1

)2 − m2

⎛
⎜⎝

1

0

0

⎞
⎟⎠, (A1)

k0
1 = m

p0
1 + m + (

p0
1 − m

)
cos2 θ1

p0
1 + m − (

p0
1 − m

)
cos2 θ1

, (A2)

k1 =
2m

√(
p0

1

)2 − m2 cos θ1

p0
1 + m − (

p0
1 − m

)
cos2 θ1

⎛
⎜⎝

cos θ1

sin θ1

0

⎞
⎟⎠, (A3)

k0
2 = p0

1

(
p0

1 + m
)

sin2 θ1 + 2m2 cos2 θ1

p0
1 + m − (

p0
1 − m

)
cos2 θ1

, (A4)

k2 = |k2|

⎛
⎜⎝

cos θ2

− sin θ2

0

⎞
⎟⎠, (A5)

where

|k2| =
√(

p0
1 + m

)2
sin2 θ1 + 4m2 cos2 θ1

p0
1 + m − (

p0
1 − m

)
cos2 θ1

√(
p0

1

)2− m2 sin θ1,

(A6)

and

cos θ2 =
(
p0

1 + m
)

sin θ1√(
p0

1 + m
)2

sin2 θ1 + 4m2 cos2 θ1

, (A7)

sin θ2 = 2m cos θ1√(
p0

1 + m
)2

sin2 θ1 + 4m2 cos2 θ1

. (A8)

The (unit) directions a and b on which the spin projections
are measured are arbitrary (Fig. 10). We use the following
parametrization of the vectors a and b:

a =

⎛
⎜⎝

cos α cos (α′ + θ1)

cos α sin (α′ + θ1)

sin α

⎞
⎟⎠, (A9)

b =

⎛
⎜⎝

cos β cos (β ′ − θ2)

cos β sin (β ′ − θ2)

sin β

⎞
⎟⎠, (A10)

where α′,β ′ ∈ 〈0,π〉, α,β ∈ 〈0,2π〉. If the measurement is
based on Mott scattering, a and b must be perpendicular to k1

and k2, respectively. This condition corresponds to the choice
α′ = β ′ = π/2 in Eqs. (A9) and(A10). The polarization vector
of the beam is parametrized as follows:

ξ = |ξ |

⎛
⎜⎝

cos χ

sin χ cos ψ

sin χ sin ψ

⎞
⎟⎠, (A11)

where |ξ | ∈ 〈0,1〉, χ ∈ 〈0,π〉, ψ ∈ 〈0,2π〉.

APPENDIX B: SYMMETRIC PARAMETRIZATION

Let us now analyze a case of the symmetric scattering,
i.e., θ1 = θ2 = θ (see Fig. 10). Again we assume that the
beam (in direction X) impinges on a stationary target [ p2 =
m(0,0,0)] and the scattering takes place in the XY plane.
In such a case k1 = k2 and four-momentum conservation
implies

k0
1 = k0

2 = m + p0

2
, (B1)

k1 = 1

2

⎛
⎜⎝

√
p02 − m2√

2m(p0 − m)
0

⎞
⎟⎠, (B2)

k2 = 1

2

⎛
⎜⎝

√
p02 − m2

−
√

2m(p0 − m)

0

⎞
⎟⎠. (B3)

Notice that the parametrization of ki depends on p0
1 which

also means the dependence on the beam kinetic energy T .
This implies that for every T the angle θ takes different
value.
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[7] P. Caban and J. Rembieliński, Phys. Rev. A 72, 012103

(2005).
[8] P. Caban and J. Rembieliński, Phys. Rev. A 74, 042103
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