
PHYSICAL REVIEW A 88, 032114 (2013)

Role of instabilities in the survival of quantum correlations
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This article surveys quantum correlations dynamics, in the Markovian and non-Markovian regimes, in a system
of two harmonic oscillators connected by a time-dependent coupling and in contact with a common heat bath. The
results show the survival of the quantum correlations, including entanglement, even at very high temperatures,
as well as a remarkable relation between entanglement and the instability of the system. The results also show
that the indirect interaction of the oscillators via a bath significantly enhances the quantum correlations and that
quantum correlations are much more sensitive to the parameters of the oscillators than the temperature of the bath.

DOI: 10.1103/PhysRevA.88.032114 PACS number(s): 03.65.Ud, 42.50.Ar, 03.67.Bg

I. INTRODUCTION

Quantum correlations (QCs) are one of the main features of
quantum mechanics. Since the beginnings of quantum theory,
QCs have played a major role, sometimes being used to
refute the quantum theory, as was done by Einstein, Podolsky,
and Rosen in their celebrated paper [1], and sometimes
remarkably confirming its previsions, as in Bell’s experiments
[2]. Since then, the interest in QCs has not been lost. With the
advent of quantum computation, for which QCs, especially
entanglement, are the main resource, there was a huge interest
in qualifying and quantifying these resources. But soon many
physicists noted that there was one big problem: decoherence.
Decoherence is the mechanism by which a quantum system
loses its coherence, and consequently classical behavior
emerges. Such a mechanism arises from the interaction of
the quantum system with the environment. Therefore, to avoid
decoherence would require a very good isolation and cooling
of the experimental apparatus, or the decoherence time scale
would be so small that we could not observe any quantum
effect at all. Thus the real execution of the quantum computer
became a very difficult task, and it was necessary to find a way
to at least decrease the decoherence effects.

In recent years we have seen several works dealing with the
dynamics of QCs in open quantum systems, especially systems
of qubits [3–8] or harmonic oscillators [9–14] in contact with
the environment. One general conclusion about these works
is that temperature has severe effects on the entanglement
dynamics, making the observation of highly entangled states
in real physical systems a very challenging task. In 2010,
however, a paper by Galve et al. [15] brought some hope. The
authors considered a system of two coupled harmonic oscilla-
tors, with a coupling of the form c(t) = c0 + c1 cos(ωDt), and
in contact with independent heat baths, and they showed the
existence of entangled states even at high temperatures. This
discovery has very important consequences: from a theoretical
point of view, it excludes temperature in the determination
of decoherence, and we can find at least one system in
which there are high temperatures and still a quantum regime.
From an experimental point of view, without the need for a
rigorous cooling apparatus, experiments would be easier and
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less expensive in the laboratory. Finally, the survival of QCs
at high temperatures is a huge step toward the realization of a
quantum computer.

In this paper, we analyze the Markovian and the non-
Markovian dynamics of QCs in a system of two harmonic
oscillators connected by a coupling of the form c(t) = c0 +
c1 cos(ωDt), and in contact with a common heat bath. We show
that the survival of QCs in this system, even at high tempera-
tures, is directly related to the instabilities of the system. This
unstable behavior is especially pronounced when ωD is close to
twice the oscillator frequency ω0. One of the consequences of
this relation between QCs and instabilities is that the QCs are
much more sensitive to variations in the parameters of the sys-
tem than variations in the temperature of the bath. This result is
especially important because in this system, temperature loses
importance in the survival of the QCs. The results also suggest
that the observation of entangled states, contradicting Bohr’s
correspondence principle, is possible for any finite temperature
and even when the number of quanta of the oscillators is very
large. Comparing our results with those of Galve et al., we
find that the indirect interaction of the oscillators via a bath
notoriously contributes to enhancing the QCs.

The paper is organized as follows. In Sec. II, we show the
Hamiltonian of our system and how to obtain its temporal
evolution. We use a path-integral approach in the Markovian
regime and a master equation approach in the non-Markovian
regime. In Sec. III, we briefly discuss the quantum correlation
measures used in this work. In Sec. IV, we show the temporal
evolution of the QCs and their relation with instabilities in
both the Markovian and non-Markovian regimes. Section V
contains concluding remarks.

II. THE MODEL AND ITS SOLUTION

Our model is described by the following Hamiltonian:

H = HS + HB + HI , (1)

where

HS =
∑
i=1,2

[
P 2

i

2m
+ mω2

0

2
X2

i

]
+ c(t)X1X2 (2)

is the system Hamiltonian, c(t)/m = c0 + c1 cos(ωDt)
being a time-dependent coupling between oscillators
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1 and 2,

HB =
∞∑
k

[
p2

k

2mk

+ mkω
2
k

2
x2

k

]
(3)

is the bath Hamiltonian, and

HI =
∞∑

k=1

[
−ckxk(X1 + X2) + c2

k

2mkω
2
k

(X1 + X2)2

]
(4)

is the interaction Hamiltonian. The Hamiltonian (1) is bilinear
in the field operators of the system. This implies that if we
prepare the system in a Gaussian state, it will remain in a
Gaussian state indefinitely [16]. Given that all the information
about the QCs in a Gaussian state is contained in the covariance
matrix, by now our main interest is in the temporal evolution
of the covariance matrix.

Defining the new variables,

X± = (X1 ± X2)/
√

2, P± = (P1 ± P2)/
√

2, (5)

the Hamiltonian can be written in the following way:

H = H+ + H−, (6)

where H+ is given by

H+ = P 2
+

2m
+ m�2

+(t)

2
X2

+

+
∞∑

k=1

[
p2

k

2mk

+ mkω
2
k

2

(
xk −

√
2ck

mkω
2
k

X+

)2]
, (7)

and �2
±(t) = ω2

0 ± c0 ± c1 cos(ωDt). The Hamiltonian (7)
describes a parametric oscillator coupled to a bath. The last
term in the Hamiltonian (6) is given by

H− = P 2
−

2m
+ m�2

−(t)

2
X2

− (8)

and describes a free parametric oscillator. Given that the
Hamiltonian is separable, we can treat the two oscillators
independently.

A. The classical parametric oscillator

Before studying the quantum parametric oscillators in
Hamiltonian (6), we will first consider the classical dissipative
parametric oscillator. The equation of motion for such a
system is

mẍ + mγ ẋ + mω2(t)x = 0, (9)

where ω2(t) = ω2
0 + ε cos(ωDt) and γ is the friction

coefficient. Defining the adimensional parameters,

t̃ = ωDt

2
, ε̃ = 2c1

ω2
D

, ω̃0 = 2ω0

ωD

, γ̃ = 2γ

ωD

, (10)

we can write the equation of motion in the following way:

ẍ + γ̃ ẋ + ω̃2(t̃)x = 0, (11)

where ω̃2 = ω̃2
0 + 2ε̃ cos(2t̃). As we are going to use only

adimensional parameters from now on, we will omit the tilde
for convenience. Defining y = x exp(−γ t/2) and substituting
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FIG. 1. Stability diagram for the Mathieu equation with a renor-
malized frequency ω2

R = ω2
0 − γ 2/4. In the black areas we have at

least one unstable solution.

in Eq. (11), we get

ÿ +
[
ω2

0 − γ 2

4
+ 2ε cos(2t)

]
y = 0. (12)

This is a Mathieu equation with a renormalized angular
frequency ω2

R = ω2
0 − γ 2/4, and for such an equation we

can use the results of the Floquet theory for differential
equations [17]. In particular, a possible set of linearly
independent solutions for the Mathieu equation are the
Floquet solutions, which can be written as

ϕ1(t) = eiνtp(t), ϕ2(t) = ϕ1(−t), (13)

where p(t) is a function of period π and ν is the so called
Mathieu characteristic exponent. The characteristic exponent
ν governs the stability of the solutions of the Mathieu
equation. Whenever Im{ν} �= 0, there is at least one unstable
solution. In Fig. 1, we have the stability diagram for Eq. (12).

For calculation purposes, a more convenient set of solutions
satisfy the following initial conditions:

φ1(t0) = 0, φ̇1(t0) = 1,
(14)

φ2(t0) = 1, φ̇2(t0) = 0.

As the Wronskian of the Mathieu equation is time-
independent [18], this is a set of linearly independent solutions.
The solutions φ1(t) and φ2(t) can be obtained via numerical
integration of Eq. (12).

B. The quantum parametric oscillator

The quantum parametric oscillator is described by the
following adimensional Hamiltonian operator:

H̃ = P̃ 2

2
+ ω̃2(t̃)

2
X̃2, (15)

where P̃ =
√

2
h̄mωD

P̂ , X̃ =
√

mωD

2h̄ X̂, and ω̃2(t) = ω̃2
0 +

2ε̃ cos(2t̃). We can study the dynamics of the quantum
parametric oscillator using the Schrödinger equation with the
Hamiltonian (15), but as we are interested in the time evolution
of the covariance matrix, we can be more pragmatic and use
the Ehrenfest theorem to get the following set of coupled
differential equations relating the elements of the covariance
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matrix:

σ̇xx = 2σxp, σ̇xp = σpp − ω2(t)σxx,
(16)

σ̇pp = −2ω2(t)σxp.

These equations can be decoupled and we get a third-order
differential equation for σxx ,

...
σ xx + 4ω2(t)σ̇xx + 2

{
d

dt
ω2(t)

}
σxx = 0. (17)

Preparing the system in an initial state with variances σ 0
xx ,

σ 0
xp, and σ 0

pp, the general solution of Eq. (17) can be written in
terms of φ1(t) and φ2(t), defined in Eq. (14), as

σxx(t) = σ 0
ppφ2

1(t) + σ 0
xpφ1(t)φ2(t) + σ 0

xxφ
2
2(t). (18)

Thus from Eqs. (16) we get

σxp(t) = σ 0
ppφ1(t)φ̇1(t) + σ 0

xp[φ1(t)φ̇2(t) + φ̇1(t)φ2(t)]

+ σ 0
xxφ2(t)φ̇2(t) (19)

and

σpp(t) = σ 0
ppφ̇2

1(t) + σ 0
xpφ̇1(t)φ̇2(t) + σ 0

xxφ̇
2
2(t). (20)

C. The dissipative quantum parametric oscillator

The Hamiltonian operator of the dissipative quantum
parametric oscillator is

Ĥ = P̂ 2

2m
+ mω2(t)

2
X̂2

+
∞∑

k=1

[
p̂2

k

2mk

+ mkω
2
k

2

(
x̂k −

√
2ck

mkω
2
k

X̂

)2]
, (21)

where ω2(t) = ω2
0 + ε cos(ωDt). We will make the hypothesis

that for t � t0, the density operator that describes the total
system (oscillator + bath) is factorizable, so we can write it as
ρ̂osc+B = ρ̂osc ⊗ ρ̂B . This implies that the parametric oscillator
and the bath starts to interact in t = t0. The bath consists of an
infinite number of oscillators, and the spectral density of the
bath, defined as

I (ω) = π

2

N∑
k=0

c2
k

mkωk

δ(ω − ωk), (22)

has all the information about the bath necessary to study the
dynamics of the parametric oscillator. Moreover, the spectral
density defines a time scale in which memory effects are
relevant, leading to two specific regimes: the Markovian
regime, where memory effects are negligible, and the non-
Markovian, where memory effects must be considered.

1. The Markovian regime

In the Markovian regime, we use the following spectral
density:

I (ω) =
{

mγω if ω � ωC,

0 if ω > ωC,
(23)

where ω−1
C gives the time scale in which the memory of

the system is important. In the Markovian regime, ωC must

be big enough so that the above-mentioned time scale is
much smaller than the time scale considered in this work.
For this specific spectral density, we can use the path-integral
method of Feynman and Vernon. This method, in principle,
can be applied to more general Hamiltonians and to arbitrary
spectral densities, but for this spectral density in particular the
calculations can be done. For a factorizable initial state, the
reduced density operator with respect to the oscillator at time
t is given by

ρosc(xf ,yf ,t) =
∫

dx0dy0J (xf ,yf ,t ; x0,y0,t0)ρosc(x0,y0,t0),

(24)

where

J (xf ,yf ,t |x0,y0,t0)

=
∫

Dx

∫
Dy exp

{
i

h̄
[S(x) − S(y)]

}
F(x,y) (25)

is called the superpropagator,

S(x) =
∫ t

t0

m

2
{ẋ2 − [ω2 + ε cos(ωDt)]x2}dt (26)

is the action of the parametric oscillator, calculated in the
classical path linking x0 to xf , and

F(x,y)

= exp

{
−π

i

h̄

∫ t

t0

dτ

∫ τ

t0

ds[x(τ ) − y(τ )]I (ω) sin ω(τ − s)

× [x(s) + y(s)] − π

h̄

∫ t

t0

dτ

∫ τ

t0

ds[x(τ ) − y(τ )]

× I (ω) cot

(
h̄ω

2KBT

)
cos ω(τ − s)[x(s) − y(s)]

}
(27)

is called the influence functional of the bath on the system.
The double path integral in Eq. (25) is quadratic, so it can be
done exactly [19], and the result is

J (xf ,yf ,t |x0,y0,t0)

= 1

N (t)
exp

{
i

h̄
[S(xcl) − S(ycl)]

}
F(xcl,ycl), (28)

where N (t) is a normalization factor determined such that
Tr[ρ(t)] = 1, and xcl and ycl correspond to the classical paths
linking xi to xf and yi to yf , respectively. Defining q = x − y

and Q = x + y, these classical paths are determined by the
following differential equations:

Q̈ + 2γ Q̇ + ω2(t)Q = 0, q̈ − 2γ q̇ + ω2(t)q = 0, (29)

which are formally identical to the equation of motion of the
classical dissipative parametric oscillator. Thus the solutions
of Eqs. (29), with the appropriate boundary conditions at t0
and t , are

Q(s) = Q0u1(t,s) + Qf u2(t,s),
(30)

q(s) = q0v1(t,s) + qf v2(t,s),
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where

u1(t,s) = f2(s) − f1(s)f2(t)/f1(t),

u2(t,s) = f1(s)/f1(t), v1(t,s) = u1(t,s)eγ s, (31)

v2(t,s) = u2(t,s)eγ (s−t),

and fi(t) = e−γ tφ1(t), with φi(t) defined in Eqs. (14).
Substituting Eq. (30) in Eq. (24), we get the following

expression for the superpropagator:

J (Qf ,qf ,t ; Qi,qi,0)

= 1

N (t)
exp{i[b4(t)Qf qf − b3(t)Qf qi + b2(t)Qiqf

− b1(t)Qiqi]} exp
{−{

a11(t)q2
i + [a12(t) + a21(t)]qiqf

+ a22(t)q2
f

}}
, (32)

where

aij (t) = 1

2

∫ t

t0

∫ t

t0

vi(t,τ )K(τ − s)vj (t,s)dτ ds, (33)

b1(t) = u̇1(t,0)/2, (34)

b2(t) = u̇1(t,t)/2, (35)

b3(t) = u̇2(t,0)/2, (36)

b4(t) = u̇2(t,t)/2, (37)

and u̇1(t,t0) = ∂u/∂s|s=t0 . Now we can obtain the time
evolution of the density operator using Eq. (24). A more
complete treatment of the quantum parametric oscillator in
the Markovian regime can be found in Ref. [20].

2. The non-Markovian regime

To study the non-Markovian regime, we could just consider
a value of ωC comparable to the frequencies of the oscillators.
However, some steps of the derivation of the path-integral
approach were based on the hypothesis of a very high value
for ωC , and the derivation using smaller values for ωC is
not a trivial task. Thus we opted to study the non-Markovian
regime using a master equation approach. For this purpose, we
will first write the Hamiltonian of the dissipative parametric
quantum oscillator, Eq. (21), in terms of the annihilation
operators of the system,

â =
√

mω0

2h̄

(
X̂ + iP̂

mω0

)
,

(38)

b̂k =
√

mωk

2h̄

(
x̂k + ip̂k

mkωk

)
,

and the result is Ĥ = ĤS + ĤB + ĤI , where

ĤS = λ(t)

2
â2 + λ∗(t)

2
â†2 + ω(t)â†â, (39)

ĤB =
∑

k

ωkb̂
†
kb̂k, (40)

and

ĤI =
∑

k

gk(â + â†)(b̂k + b̂
†
k). (41)

The parameters of the total Hamiltonian are

λ(t) = c0 + c1 cos(ωDt)

2ω0
+ 1

2ω0

∫ ∞

0

I (ω′)
ω′ dω′, (42)

ω(t) = ω0 + λ(t), (43)

and

gk = ck

2
√

mmkωk

. (44)

For the above Hamiltonian, Chang and Law proposed a
master equation in Ref. [21],

d

dt
ρ̂ = −i[ĤS(t) + �ĤS(t),ρ̂] − γ1(t)(â†âρ̂ + ρ̂â†â

− 2âρ̂â†) − γ2(t)(ââ†ρ̂ + ρ̂ââ† − 2ρ̂â†â)

− γ3(t)(â2ρ̂ + ρ̂â2 − 2âρ̂â)

− γ ∗
3 (t)(â†2ρ̂ + ρ̂â†2 − 2â†ρ̂â†), (45)

where �ĤS = �λ(t)
2 â2 + �λ∗(t)

2 â†2 + �ω(t)â†â. Thus the
whole problem comes down to calculating the functions γi(t),
�λ(t), and �ω(t). Given the linearity of the Hamiltonian, the
operator â in the Heisenberg picture can be written as [21]

â(t) = G(t)â(0) + L∗(t)â†(0) + F̂ (t), (46)

where F̂ (t) = ∑
k[μk(t)b̂k(0) + νk(t)b̂†k(0)] and the equations

satisfied by G(t), L(t), and F̂ (t) are

Ġ(t) = −iλ∗(t)L(t) − iω(t)G(t)

−
∫ t

0
dsK(t − s)[G(s) + L(s)], (47)

L̇(t) = iλ(t)G(t) + iω(t)L(t)

+
∫ t

0
dsK(t − s)[G(s) + L(s)], (48)

d

dt
F̂ (t) = −iω(t)F̂ (t) −

∫ t

0
dsK(t − s)[F̂ (s) + F̂ †(s)]

− iλ∗(t)F̂ †(t) − i
∑

k

gk[b̂k(0)e−iωkt + b̂
†
k(0)eiωkt ].

(49)

Using a Green’s function approach in Eq. (49), it can be
written as

F̂ (t) = −i

∫ t

0
ds[�1(t,s) − �∗

2 (t,s)]

×
∑

k

gk[b̂k(0)e−iωks + b̂
†
k(0)eiωks], (50)

where the �i(t,s) functions are determined by the following
integro-differential equations:

d

dτ
�(τ + s,s) + iM(τ + s)�(τ + s,s)

+
∫ τ

0
ds ′K(τ − s ′)�(s + s ′,s) = 0, (51)
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where

�(t,s) = −i

[
�1(t,s) �∗

2 (t,s)

�2(t,s) �∗
1 (t,s)

]
, (52)

M(t) =
[

ω(t) λ∗(t)

−λ(t) −ω(t)

]
, (53)

and

K(τ ) = −2i

∫ ∞

0
dωI (ω) sin(ωτ )

[
1 1

−1 −1

]
. (54)

Comparing the equations of motion obtained using Eqs. (45)
and (46), it can be shown that the functions γi(t), �λ(t),
and �ω(t) can be written in terms of L(t), G(t), and
the bath correlation functions 〈F̂ (t)F̂ (t)〉, 〈F̂ (t)F̂ †(t)〉, and
〈F̂ †(t)F̂ (t)〉. The expressions for γi(t), �λ(t), and �ω(t) are
too cumbersome and will not be shown here, but they can be
found in Ref. [21]. Therefore, as is common in non-Markovian
dynamics, we have a set of integro-differential equations to
solve. We have solved these equations numerically, using the
algorithm presented in Ref. [22]. Due to the numerical method
used, we have used, for convenience, the following spectral
density with smooth regularization:

I (ω) = mγω exp

{
−

(
ω

ωC

)2}
. (55)

The reader may be asking why we do not just use the master
equation approach to study our system in the Markovian and
non-Markovian regimes, as the former could be obtained just
taking the limit ωC → ∞. Indeed we can do that, but the
calculations involved in the path-integral approach are much
more efficient than the calculations involved in the master
equation approach. Thus calculating the Markovian behavior
using the former method, besides saving computation time,
gives us a way to compare the obtained results via completely
different methods.

III. QCs IN GAUSSIAN STATES

Gaussian states are completely determined by their first
and second moments. As the first moments can be made zero
by local unitary transformations, the QCs in a Gaussian state
depend only on its second moments, i.e., on the covariance
matrix σ . For a bipartite system, the covariance matrix is
defined as σi,j = 〈(RiRj + RjRi)〉/2 + 〈Ri〉〈Rj 〉, and it has
the following generic form:

σ =
[

α γ T

γ β

]
, (56)

where R = {X1,P1,X2,P2} and each greek letter is a 2 × 2
matrix. By virtue of the constraints imposed by the symmetry
property and the uncertainty principle, the QCs can be written
in terms of four quantities [23],

A = det[α], C = det[γ ], B = det[β], D = det[σ ],

(57)

which are called symplectic invariants. As the positive partial
transposition (PPT) criterion is a necessary and sufficient
condition for the separability in Gaussian states [24], the entan-
glement can be measured via logarithmic negativity (En) [25],

En =
{

0 if ν̃− � 1/2,

log(2ν̃−) if ν̃− < 1/2,
(58)

where 2ν2
± = �̃ ±

√
�̃2 − 4D and �̃ = A + B − 2C.

It would be interesting also to calculate the quantum
discord, but there is no analytic expression available for
Gaussian states. However, there is an approximation to the
quantum discord in Gaussian states: the Gaussian discord
(GD) [26], which is given by

GD(A : B) = f (
√

B) − f (ν+) − f (ν−) + I (A,B,C,D),

(59)

where f (x) = (x + 1
2 ) ln(x + 1

2 ) − (x − 1
2 ) ln(x − 1

2 ) and

I (A,B,C,D) =
⎧⎨
⎩

2C2+(B−1)(D−A)+2|C|
√

C2+(B−1)(D−A)
(B−1)2 if (D − AB)2 � (1 + B)C2(A + D);

AB−C2+D−
√

C4+(D−AB)2−2C2(AB+D)
2B

otherwise.
(60)

IV. RESULTS

In the results presented here, we have used the adimensional
time τ = ω0t , and the parameters of the system were put
in terms of ω0 and T0 = h̄ω0/KB . We have considered that
both oscillators are initially in the coherent state |α〉, where
α = (1 + i)/

√
2, and we have used γ = 0.005ω0/

√
2. In the

Markovian regime, ωC = 200ω0. We have also defined two rel-
evant parameters to the study of the QCs: τR , which is the value
of τ after which the system is always in an entangled state, and
r , which is the average velocity of the entanglement growth.

In Fig. 2, we have the time evolution of the En and the
GD. The results show that even at very high temperatures the
system remains entangled for long times (by which we mean

τ � 1). Let us take a closer look at Fig. 2(a). After some time,
the En curve is approximately linear in τ (if we disregard
the small oscillations). This behavior repeats itself whenever
we have small values for c0 and c1, and if we fit this line,
we can estimate r as being its angular coefficient and τR as
being the value of τ at which the line crosses the τ axis. In
general, these estimates for τR and r are reliable only for small
values of c0 and c1. With respect to the GD, we can note
that it initially shows a fast increase. For some τ < τR , the
GD starts to decrease, and only after the entanglement birth
(τ ≈ τR) does it increase again. The maximum value reached
by the GD in this first region (τ < τR) is directly proportional
to the value of τR . We have observed this behavior in all our
simulations. We do not have a conclusive explanation for this
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FIG. 2. (Color online) QCs against τ in the Markovian regime
for c1 = 0.4ω2

0 (I, blue curve), c1 = 0.3ω2
0 (II, red curve), and

c1 = 0.2ω2
0 (III, green curve). In all the curves, T = 100T0, c0 = 0,

and ωD = 2ω0.

counterintuitive behavior. It is important to observe that the
GD is always different from zero.

In Figs. 3 and 4, we show a more quantitative treatment of
τR and r . In Fig. 3(a), we have plotted τR against T , and the
data show that τR is a monotonically increasing function of
T . The data also suggest a logarithmic dependence in T . We
have done a linear fit in ln(T ) and the result is in the same
figure. In Fig. 3(b), we have plotted τR against c1, and the
data show that τR is a monotonically decreasing function of
c1. When c1 tends to infinity, τR tends to zero, and when c1

tends to zero, τR tends to infinity. This suggests a linear fit
in some power of c−1

1 . We have done a linear fit in c−1
1 , and

the result is in the same figure. In Fig. 4(a), we have plotted r

versus T . Here we cannot see any dependence of r on T . This
is confirmed by the inaccurate and very small value obtained
for the angular coefficient in the linear fit done in T . However,
in Fig. 4(b) there is clearly a linear dependence of r in c1. The
accurate linear fit that was done confirms this observation. It
is interesting to note that in all these figures, we could observe
entanglement at very high temperatures. These dependences
of τR and r in T and c1 were observed in all simulations done,
even with very high values of T . There is no guarantee that
these relations are valid for much bigger values of τ . However,
at least for the values of τ simulated, we note important
consequences. The first is that the entanglement dynamics is
more sensitive to variations in the coupling parameter c1 than
in the temperature T . Furthermore, it is important to observe
that these dependences imply that even for very large values of
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FIG. 3. (Color online) (a) τR against T at c1 = 0.2ω2
0, c0 = 0, and

ωD = 2ω0. The fitted curve is τR = (10.4 ± 0.2) ln(T/T0) − (25.9 ±
0.8). (b) τR against c1 at T = 100T0, c0 = 0, and ωD = 2ω0. The
fitted curve is τR = (6.6 ± 0.1)(c1/ω

2
0)−1 − (9.9 ± 0.7). Both graphs

were obtained in the Markovian regime.
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FIG. 4. (Color online) (a) r against T for c1 = 0.2ω2
0 and ωD =

2ω0. The fitted curve is r = (1.7 ± 0.9) × 10−6T/T0 + (6.97 ±
0.02) × 10−2. (b) r against c1 for T = 100T0 and ωD = 2ω0. The
fitted curve is r = (0.350 ± 0.007)c1/ω

2
0 + (8 ± 4) × 10−4. Both

graphs were obtained in the Markovian regime.

T , there is still a value τ = τR after which the system is in an
entangled state, and the “entanglement growth parameter” r is
not modified if we compare it with the case of a much smaller
heat bath temperature.

When we look at the QCs dependence in ωD , an interesting
behavior is observed. The QCs are extremely sensitive to
variations in ωD , and this sensitivity is related to the instability
of the system. In Fig. 5(a), we have the imaginary part of
ν, the Mathieu characteristic exponent, against ωD for both
modes (that is, the “+” and the “−” mode), while in Fig. 5(b)
we have plotted En against τ for different values of ωD .
Our calculations have shown that only for ωD = 1.96ω0 and
ωD = 2ω0, which are values that lead to unstable behavior
(because Im{ν} �= 0), we observe entanglement for long times.
This behavior has repeated itself in all calculations done. It is
important to note that whenever we have c0 = 0 and γ 
 ω0,
we have this kind of graph for Im{ν}, the only difference
being that for smaller values of c1, the peaks observed become
smaller and narrower around their centers. This implies that,
given c0 = 0 and γ 
 ω0, whenever ωD = 2ω0, the system
will be in an unstable dynamics. This tells us that in all the
other graphs presented before, the system was in an unstable
dynamics, and that is why we could observe entanglement.
But until now, we have not considered the effect of adding a
static coupling (c0 �= 0) in this system. In Fig. 6(a), we have
the imaginary part of ν against ωD , but now with c0 = 0.05ω2

0.
We observe that the intervals of instability of the “+” and “−”
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FIG. 5. (Color online) (a) Im{ν} against ωD for c0 = 0 and c1 =
0.1ω2

0 for the “−” mode (I, green curve) and the “+” mode (II, blue
curve). (b) QCs against τ in the Markovian regime for ωD = 1.94ω0

(III, green curve), ωD = 1.96ω0 (II, red curve), and ωD = 2ω0 (I,
blue curve). All the curves were obtained with T = 100T0, c0 = 0,
and c1 = 0.1ω2

0.
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FIG. 6. (Color online) (a) Im{ν} against ωD for the “−” mode (I,
green curve) and the “+” mode (II, blue curve). (b) QCs against τ in
the Markovian regime for ωD = 1.96ω0 (I, blue curve), ωD = 2.04ω0

(II, red curve), and ωD = 1.8ω0 (III, green curve). In all the curves,
T = 100T0, c0 = 0.05ω2

0, and c1 = 0.1ω2
0.

modes are not the same anymore. As c0 appears with a different
sign in the equations of each of the “+” and “−” modes, it
causes a left shift in the green curve and a right shift in the blue
curve. As long as the instability regions of the two modes are
no longer the same, we can study the entanglement dynamics
when only one mode shows unstable behavior. In Fig. 6(b)
we have En for different values of ωD , and the results show
that only for ωD = 1.96ω0, which is the value that leads to an
unstable behavior in the “−” mode, we observe entanglement
for long times.

In the general case in which we have arbitrary values for the
three coupling parameters, c0, c1, and ωD , all the simulations
showed that we only observe entanglement at high tempera-
tures and for long times when the “−” mode has an unstable
dynamics. This relation between the QCs and instabilities
explains why the QCs seem to be so much more sensitive
to the oscillator parameters than the bath parameters. In fact, ν
does not depend on T (ν depends on γ , but γ 
 ω0 in realistic
situations, so it does not make any difference), therefore we
expect the system to be less sensitive to variations in T .

Until now, all the results presented were in the Markovian
regime. In Fig. 7, we have the QCs in the non-Markovian and
in the Markovian regimes. Comparing the two regimes, we
can see that for smaller values of ωC , the En have reached
bigger values. Moreover, for ωC = 5ω0 we practically have
the same results of the Markovian regime. We can explain the
relation between En and ωC if we take a look at the density
spectrum for two different values of ωC . For smallers values,

III, IV

II

I    (a)

0 5 10 15 20 25 30
0

1

2

3

4

Τ

En

III, IV

II

I    (b)

0 5 10 15 20 25 30
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Τ

G
D

FIG. 7. (Color online) QCs against τ in the non-Markovian
regime for ωC = 0.5ω0 (I, blue curve), ωC = 1.0ω0 (II, red curve),
and ωC = 5.0ω0 (III, green curve). The dashed curve (IV) refers to the
Markovian regime. In all the curves, T = 10T0, c1 = 0.2ω2

0, c0 = 0,
and ωD = 2ω0.

the system behaves as if it were more weakly coupled to the
bath, so we can expect that decoherence effects would be more
discreet. The relation between stability and QCs observed in
the Markovian regime remains valid in the non-Markovian
regime; the instability of the “−” mode is the necessary and
sufficient condition to observe entanglement at long times and
high temperatures. In the non-Markovian regime, the linear
behavior of the En curve is not verified, so we cannot use the
definitions of τR and r used before. However, redefining τR as
the value of τ in which was observed the last revival of the
entanglement, we can find the same dependence on ln(T ) and
c−1

1 that was found in the Markovian regime.
The dynamics of the entanglement of two (time inde-

pendently) coupled harmonic oscillators in contact with a
common heat bath in the Markovian [14] and in the non-
Markovian [12,13] regimes has already been considered.
(Actually, in Ref. [12], the authors have done the rotating-wave
approximation in the interaction Hamiltonian. In our work, we
do not make this approximation.) In Ref. [14], the authors
show that a steady state of entanglement for such a system
depends crucially on the initial state of the oscillators, while
in Refs. [12,13], An et al. show that by taking a two-mode
squeezed state for an initial state, it is possible to reach an
entangled steady state (with an environment that is assumed
to be at zero temperature). Our results show that if c1 = 0
and c0 �= 0, as the system is going to be stable (at least for
c0 < ω2

0), we will not measure any entanglement for a long
time. Given that we consider a high-temperature environment
and we use coherent states as initial states for the oscillators,
there is no inconsistency between our results and the results
in Ref. [12]. In Ref. [13], however, the authors find smaller
measures for the entanglement in the non-Markovian regime
if compared with the Markovian regime. Our results go in the
opposite way, and we believe that the choice of the initial state
is crucial to this behavior.

The results obtained so far relate entanglement to instabili-
ties, which in the case of parametric oscillators translates into
oscillations whose amplitudes are proportional to exp(Im{ν}t).
Thus one would expect that the system is taken to states in
which the energy freely increases with time. Figure 8 shows
the mean energy of the system in units of h̄ω0 in two situations
in which entanglement for long times has been observed, i.e.,
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FIG. 8. (Color online) Mean energy of the system in units of h̄ω0.
The blue (I) curve refers to the case in which c1 = 0.4ω2

0, c0 = 0,
ωD = 2ω0, and T = 100T0 in the Markovian regime (which is the
same situation found in Fig. 2 for the blue curve), and the red (II) curve
refers to c1 = 0.2ω2

0, c0 = 0, ωD = 2ω0, ωC = 0.5ω0, and T = 10T0

in the non-Markovian regime (which is the same situation found in
Fig. 7 for the blue curve).
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the blue curve in Fig. 2 and the blue curve in Fig. 7. We
can see that the mean energy increases monotonically with
time for both curves. Therefore, the system is taken to a
highly energetic entangled state. This is especially important
because it confirms that the quantum behavior is not exclusive
to systems described by very small parameters, as is claimed in
the correspondence principle. The results suggest that even if
the mean energy of the system is composed by a macroscopic
number of excitations, the system still can be found in an
entangled state.

Another point that deserves attention is that we could not
observe a steady state of entanglement for which En �= 0 in
any of our simulations. Indeed, nothing prevents the system
from reaching a steady state for much bigger values of τ than
we could simulate. However, it would not surprise us if the
system never reached a steady state. We must remember that
the classical analog of our system can present instability in the
Lyapunov sense. So there is no guarantee that our system will
reach a steady state. And as we deal with a continuous variable
entanglement, there is no superior bound for En; it can keep
growing indefinitely.

V. CONCLUSIONS

In this work, we have considered two harmonic oscillators
connected by a coupling of the type c(t) = c0 + c1 cos(ωDt)
and in contact with a common heat bath. We have studied this
system in both the Markovian and non-Markovian regimes.
In general, in the times simulated, we could obtain high
values for the En and GD, even at very high temperatures.
The values reached by the En were significatively bigger
than the values obtained in Ref. [15], where the oscillators
were coupled to independent heat baths. This suggests that the
indirect interaction of the oscillators via the heat bath, despite
not being sufficient to entangle the oscillators by itself, plays
an important role in the dynamics of the QCs. In the times
simulated, no entangled steady state was observed.

The results show that, in the times simulated, the instabil-
ities of the system have a crucial and close relationship with
the dynamics of the QCs. We have observed that the instability

in the “−” mode is a necessary and sufficient condition for
the existence of entangled states at high temperatures and
for long times. This implies that, for the kind of coupling
considered here, the ratio ωD/ω0 is extremely important,
very small variations of this ratio can change the system
from a stable to an unstable dynamics, or vice versa. The
case ωD/ω0 = 2 is especially important because whenever
c0 = 0 (and γ 
 ω0), this ratio leads to unstable dynamics.
In particular, for small values of c1 and c0, we could find two
parameters that characterize the entanglement: the revival time
τR and the entanglement growth velocity r . The results show
that τR is linear in ln(T ) and in c−1

1 , while r is linear in c1 and
has no dependence in T . The dependence of these parameters
in T is especially important because it implies the possibility
of observing entangled states at arbitrarily high temperature.
In general, these results show that the oscillator parameters
are much more relevant to the QCs dynamics than the bath
parameters. With respect to the GD, it is more robust than the
En in the sense that it always has a nonzero measure for τ > 0
in all simulations done.

In the non-Markovian regime, we could obtain higher
values for the QCs than those obtained in the Markovian
regime. This increase is explained by the fact that the smaller
the ωC value is, the more weakly the system is coupled to
the environment. Consequently, decoherence effects are less
pronounced. The relation between QCs and the instability of
the “−” mode observed in the Markovian regime is still valid
in the non-Markovian regime.

Lastly, we have shown that the system reaches highly
energetic entangled states, suggesting that the observation
of entanglement in states with a macroscopic number of
excitations is in principle possible.
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