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We introduce a method to reconstruct the density matrix ρ of a system of n qubits and estimate its rank d

from data obtained by quantum-state-tomography measurements repeated m times. The procedure consists of
minimizing the risk of a linear estimator ρ̂ of ρ penalized by a given rank (from 1 to 2n), where ρ̂ is previously
obtained by the moment method. We obtain simultaneously an estimator of the rank and the resulting density
matrix associated to this rank. We establish an upper bound for the error of the penalized estimator, evaluated with
the Frobenius norm, which is of order dn(4/3)n/m and consistent for the estimator of the rank. The proposed
methodology is computationally efficient and is illustrated with some example states and real experimental
data sets.
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I. INTRODUCTION

The experimental study of quantum-mechanical systems
has made huge progress, recently motivated by quantum
information science. Producing and manipulating many-body
quantum-mechanical systems have been relatively easier over
the past decade. One of the most essential goals in such
experiments is to reconstruct quantum states via quantum state
tomography (QST). QST is an experimental process by which
the system is repeatedly measured with different elements of
a positive operator-valued measure (POVM).

Most popular methods for estimating the state from such
data are linear inversion [1,2], maximum likelihood [3–7],
and Bayesian inference [8–10] (we also refer the reader to
Refs. [11,12] and references therein). Recently, different
approaches brought up-to-date statistical techniques into this
field. The estimators are obtained via minimization of a penal-
ized risk. The penalization subjects the estimator to constraints.
In Ref. [13] the penalty is the von Neumann entropy of the
state, whereas Refs. [14,15] use the L1 penalty, also known
as the Lasso matrix estimator, under the assumption that the
state to be estimated has low rank. These last papers assume
that the number of measurements must be minimized in order
to recover all the information that is needed. The idea of
matrix completion is indeed that, under the assumptions that
the actual number of underlying parameters is small (which
is the case under the low-rank assumption), only a fraction of
all possible measurements will be sufficient to recover these
parameters. The choice of the measurements is randomized
and, under additional assumptions, the procedure will recover
the underlying density matrix as well as with the full amount of
measurements (the rates are within logarithmic factors slower
than the rates when all measurements are performed).

In this paper, we suppose that a reasonable amount m (e.g.,
m = 100) of data is available from all possible measurements.
We implement a method to recover the whole density matrix
and estimate its rank from this huge amount of data. This
problem was already considered by Guţă, Kypraios, and

Dryden [16], who proposed a maximum-likelihood estimator
of the state. Our method is relatively easy to implement
and computationally efficient. Its starting point is a linear
estimator obtained by the moment method (also known as the
inversion method), which is projected on the set of matrices
with fixed, known rank. A data-driven procedure helps us
select the optimal rank and minimize the estimator risk in
the Frobenius norm. We proceed by minimizing the risk of the
linear estimator, penalized by the rank. When estimating the
density matrix of an n-qubit system, our final procedure has
the risk (squared Frobenius norm) bounded by dn(4/3)n/m,
where d between 1 and 2n is the rank of the matrix.

The inversion method is known to be computationally easy
but it is less convenient than constrained maximum-likelihood
estimators as it does not produce a density matrix as an output.
We revisit the moment method in our setup and argue that we
can still transform the output into a density matrix, with the
result that the distance to the true state can only be decreased
in the proper norm.

We indicate how to transform the linear estimator into a
physical state with fixed, known rank. Finally, we select the
estimator that fits best to the data in terms of a rank-penalized
error. Additionally, the rank selected by this procedure is a
consistent estimator of the true rank d of the density matrix.

We apply our procedure to the real data issued from
experiments on systems of four to eight ions. Trapped-ion
qubits are a promising candidate for building a quantum
computer. An ion with a single electron in the valence shell is
used. Two qubit states are encoded in two energy levels of the
valence electrons; see Refs. [16–18].

The structure of the paper is as follows. Section II gives
notation and describes the setup of the problem. In Sec. III we
present the moment method. We first change the coordinates
of the density matrix in the basis of Pauli matrices and
vectorize the new matrix. We give properties of the linear
operator, which takes this vector of coefficients to the vector
of probabilities p(a,r). These are the probabilities to get a
certain outcome r from a given measurement indexed by a
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and that we actually estimate from data at our disposal. We
prove the invertibility of the operator, i.e., identifiability of the
model. (The information we measure enables us to uniquely
determine the underlying parameters.) Section IV is dedicated
to the estimation procedure. The linear estimator is obtained by
inversion of the vector of estimated coefficients. We describe
the rank-penalized estimator and study its error bounds.
We study the numerical properties of our procedure on example
states and apply them to experimental real data in Sec. V. The
Appendix is dedicated to proofs.

II. BASIC NOTATION AND SETUP

We have a system of n qubits. This system is represented by
a 2n × 2n density matrix ρ, with coefficients in C. This matrix
is Hermitian (ρ† = ρ), positive semidefinite (ρ � 0), and has
Tr(ρ) = 1. The objective is to estimate ρ from measurements
of many independent systems identically prepared in this state.

For each system, the experiment provides random data from
separate measurements of Pauli matrices σx, σy, σz on each
particle. The collection of measurements which are performed
is written

{σa = σa1 ⊗ · · · ⊗ σan
, a ∈ En = {x,y,z}n}, (1)

where a = (a1, . . . ,an) is a vector taking values in En which
identifies the experiment.

The outcome of the experiment is a vector
r ∈ Rn = {−1,1}n. It follows from the basic principles
of quantum mechanics that the outcome of any experiment
indexed by a is actually a random variable, say Ra, and that
its distribution is given by

∀r ∈ Rn,P(Ra = r) = Tr
(
ρ · P a1

r1
⊗ · · · ⊗ P an

rn

)
, (2)

where the matrices P ai
ri

denote the projectors on the eigenvec-
tors of σai

associated to the eigenvalue ri , for all i from 1 to n.
For the sake of simplicity, we introduce the notation

P a
r := P a1

r1
⊗ · · · ⊗ P an

rn
.

As a consequence we have the shorter writing for (2): P(Ra =
r) = Tr(ρ · P a

r ).
The tomographic inversion method for reconstructing ρ

is based on estimating probabilities p(a,r) := P(Ra = r) by
p̂(a,r) from available data and solving the linear system of
equations

p̂(a,r) = Tr
(
ρ̂ · P a

r

)
. (3)

It is known in statistics as the method of moments.
We use in the sequel the following notation:

‖A‖2
F = Tr(A†A) denotes the Frobenius norm and

‖A‖ = supv∈Rd ,|v|2=1 |Av|2 the operator sup-norm for
any d × d Hermitian matrix A; |v|2 is the Euclidean norm of
the vector v ∈ Rd .

In this paper, we give an explicit inversion formula for
solving Eq. (2). Then, we apply the inversion procedure to
Eq. (3) and this provides an unbiased estimator ρ̂ of ρ. Finally,
we project this estimator on the subspace of matrices of rank
k (k between 1 and 2n) and thus choose, without any a priori
assumption, the estimator which best fits the data. This is done
by minimizing the penalized risk

‖R − ρ̂‖2
F + ν · rank(R),

where the minimum is taken over all Hermitian, positive-
semidefinite matrices R. Note that the output is not a proper
density matrix. Our last step will transform the output in
a physical state. The previous optimization program has
an explicit and easy-to-implement solution. The procedure
will also estimate the rank of the matrix which best fits
data. We actually follow here the rank-penalized estimation
method proposed in the slightly different problems of matrix
regression. This problem recently received a lot of attention in
the statistical community [19–22] and Chapter 9 in Ref. [23].
Here, we follow the computation in Ref. [19].

To give such an explicit inversion formula we first change
the coordinates of the matrix ρ into a vector �ρ ∈ R4n on a
convenient basis. The linear inversion also gives information
about the quality of each estimator of the coordinates in �ρ. Thus
we see that we have to perform all measurements σa in order
to recover (some) information on each coordinate of �ρ. Also,
some coordinates are estimated from several measurements
and the accuracy of their estimators is thus better.

To our knowledge, this is the first time that rank-penalized
estimation of a quantum state is performed. Parallel work of
Guţă et al. [16] addresses the same issue via the maximum-
likelihood procedure. Other adaptive methods include matrix
completion for low-rank matrices [14,15,24,25] and for matri-
ces with small von Neumann entropy [13].

III. IDENTIFIABILITY OF THE MODEL

Note that the problem of state tomography with mutually
unbiased bases, described in Sec. II, was considered in
Refs. [26,27]. In this section, we introduce some notation used
throughout the paper and recall some facts that were proved,
for example, in Ref. [27] about the identifiability of the model.

A model is identifiable if, for different values of the un-
derlying parameters, we get different likelihoods (probability
distributions) of our sample data. This is a crucial property
for establishing the most elementary convergence properties
of any estimator.

The first step toward an explicit inversion formula is to
express ρ in the n-qubit Pauli basis. In other words, let us
put Mn = {I, x, y, z}n and σI = I . For all b ∈ Mn, denote,
similarly to Eq. (1),

{σb = σb1 ⊗ · · · ⊗ σbn
, b ∈ Mn}. (4)

Then, we have the following decomposition:

ρ =
∑

b∈Mn

ρb · σb, with ρ(I,...,I ) = 1

2n
.

We can plug this last equation into Eq. (2) to obtain, for
a ∈ En and r ∈ Rn,

P(Ra = r) = Tr
(
ρ · P a

r

)
= Tr

( ∑
b∈Mn

ρb · σb · P a
r

)

=
∑

b∈Mn

ρbTr
[(

σb1 ⊗ · · · ⊗ σbn

)(
P a1

r1
⊗ · · · ⊗ P an

rn

)]

=
∑

b∈Mn

ρb

n∏
j=1

Tr(σbj
P aj

rj
).
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Finally, elementary computations lead to Tr(IP t
s ) = 1 for any

s ∈ {−1,1} and t ∈ {x,y,z}, while Tr(σtP
t ′
s ) = sδt,t ′ for any

s ∈ {−1,1}, (t,t ′) ∈ {x,y,z}2 and δ denotes the Kronecker
symbol.

For any b ∈ Mn, we denote Eb = {j ∈ {1, . . . ,n} : bj =
I }. The above calculation leads to the following fact, which
we use later.

Fact 1. For a ∈ En, and r ∈ Rn, we have

P(Ra = r) =
∑

b∈Mn

ρb ·
∏
j �∈Eb

rj I(aj = bj ).

Let us consider, for example, b = (x, . . . ,x); then the as-
sociated set Eb is empty and P(R(x,...,x) = r) is the only
probability depending on ρ(x,...,x) among other coefficients.
Therefore, only the measurement (σx, . . . ,σx) will bring in-
formation on this coefficient. However, if b = (I,I,x, . . . ,x),
the set Eb contains two points. There are 32 measurements
{(σx, . . . ,σx), . . . ,(σz,σz,σx, . . . ,σx)} that will bring partial
information on ρb. This means that a coefficient ρb is estimated
with higher accuracy as the size of the set Eb increases.

For the sake of brevity, let us put it in vector form:

�ρ := (ρb)b∈Mn ,

p := (p(r,a))(r,a)∈(Rn×En) = (P(Ra = r))(r,a)∈(Rn×En).

Our objective is to study the invertibility of the operator

R4n → R6n

,

�ρ 
→ p.

Thanks to Fact 1, this operator is linear. It can then be
represented by a matrix P = [P(r,a),b](r,a)∈(Rn×En),b∈Mn , and
we then have

∀(r,a) ∈ (Rn × En), p(r,a) =
∑

b∈Mn

ρbP(r,a),b, (5)

and from Fact 1 we know that

P(r,a),b =
∏
j �∈Eb

rj I(aj = bj ).

We want to solve the linear equation P �ρ = p. Recall that Eb is
the set of indices where the vector b has an I operator. Denote
by d(b) the cardinality of the set Eb.

Proposition 1. The matrix PT P is a diagonal matrix with
nonzero coefficients given by

(PT P)b,b = 3d(b) 2n.

As a consequence the operator is invertible, and the equation
P �ρ = p has a unique solution:

�ρ = (PT P)−1PT p.

In other words, we can reconstruct �ρ = (ρb)b∈Mn from p in
the following way:

ρb = 1

3d(b)2n

∑
(r,a)∈(Rn×En)

p(r,a)P(r,a),b.

This formula confirms the intuition that the larger is d(b), the
more measurements σa contribute to recover the coefficient
ρb. We expect higher accuracy for estimating ρb when d(b) is
large.

IV. ESTIMATION PROCEDURE AND ERROR BOUNDS

In practice, we do not observe P(Ra = r) for any a and r.
For any a, we have a set of m independent experiments, whose
outcomes are denoted by Ra,i , 1 � i � m. Our setup is that
the Ra,i are independent, identically distributed (i.i.d.) random
variables, distributed as Ra.

We then have a natural estimator for p(r,a) = P(Ra = r):

p̂(r,a) = 1

m

m∑
i=1

δRa,i ,r.

We can of course write p̂ = (p̂(r,a))(r,a)∈(Rn×En).

A. Linear estimator

We apply the inversion formula to the estimated vector p̂.
Following Proposition 1 we can define

�̂ρ = (PT P)−1PT p̂. (6)

Put differently,

ρ̂b = 1

3d(b)2n

∑
(r,a)∈(Rn×En)

p̂(r,a)P(r,a),b,

and then the linear estimator obtained by inversion is

ρ̂ =
∑

b∈Mn

ρ̂bσb. (7)

The next result gives asymptotic properties of the estimator
�̂ρ of �ρ.

Proposition 2. The estimator �̂ρ of �ρ, defined in Eq. (6), has
the following properties:

(1) It is unbiased; that is, E[ �̂ρ] = �ρ.
(2) It has variance bounded as follows:

Var(ρ̂b) � 1

3d(b)4nm
.

(3) For any ε > 0,

P

⎛
⎝‖ρ̂ − ρ‖2 � 4

√
2

(
4

3

)n
n ln(2) − ln(ε)

m

⎞
⎠ � ε.

Note again that the accuracy for estimating ρb is higher when
d(b) is large. Indeed, in this case more measurements bring
partial information on ρb.

The concentration inequality gives a bound on the norm
| �̂ρ − �ρ|∞ which is valid with high probability. This quantity
is related to ‖ρ̂ − ρ‖ in a way that is explained later on. The
bound we obtained above depends on ln(2n), which is expected
as 4n − 1 is the total number of parameters of a full rank
system. This factor appears in the Hoeffding inequality that
we use in order to prove this bound.

B. Rank-penalized estimator

We investigate low-rank estimates of ρ defined in Eq. (7).
From now on, we follow closely the results in Ref. [19]
which were obtained for a matrix regression model, with some
differences as our model is different. Let us, for a positive real
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value ν study the estimator:

ρ̂ν = arg min
R

[‖R − ρ̂‖2
F + ν · rank(R)

]
, (8)

where the minimum is taken over all Hermitian matrices R.
To compute the solution of this optimization program, we may
write it in a more convenient form since

min
R

[‖R − ρ̂‖2
F + ν · rank(R)

]
= min

k
min

R:rank(R)=k

[‖R − ρ̂‖2
F + ν · k

]
. (9)

An efficient algorithm is available to solve the minimization
program (9) as a spectral-based decomposition algorithm
provided in Ref. [28]. Let us denote by R̂k the matrix such
that ‖R̂k − ρ̂‖2

F = minR:rank(R)=k

[‖R − ρ̂‖2
F + ν · k

]
. This is

a projection of the linear estimator on the space of matrices
with fixed (given) rank k. Our procedure selects automatically
out of data the rank k̂. We see in the sequel that the
estimators R̂k̂ and ρ̂ν actually coincide. We study the statistical
performance from a numerical point of view later on.

Theorem 1. For any θ > 0 put c(θ ) = 1 + 2/θ . We have, in
the event {ν � (1 + θ )‖ρ̂ − ρ‖2}, that

‖ρ̂ν − ρ‖2
F � min

k

⎧⎨
⎩c2(θ )

∑
j>k

λ2
j (ρ) + 2c(θ )νk

⎫⎬
⎭ ,

where λj (ρ) for j = 1, . . . ,2n are the eigenvalues of ρ ordered
decreasingly.

Note that, if rank(ρ) = d, for some d between 1 and 2n,
then the previous inequality becomes

‖ρ̂ν − ρ‖2
F � 2c(θ )νd.

Let us study the choice of ν in Theorem 1 such that the
probability of the event {ν � (1 + θ )‖ρ̂ − ρ‖2} is small. By
putting together the previous theorem and Proposition 2, we
get the following result.

Corollary 1. For any θ > 0 put c(θ ) = 1 + 2/θ and for
some small ε > 0 choose

ν(θ,ε) = 32(1 + θ )

(
4

3

)n
n ln(2) − ln(ε)

m
.

Then, we have

‖ρ̂ν(θ,ε) − ρ‖2
F � min

k

⎧⎨
⎩c2(θ )

∑
j>k

λ2
j (ρ) + 2c(θ )νk

⎫⎬
⎭ ,

with probability larger than 1 − ε.
Again, if the true rank of the underlying system is d, we

can write that, for any θ > 0 and for some small ε > 0,

‖ρ̂ν − ρ‖2
F � 64c(θ )(1 + θ )d

(
4

3

)n
n ln(2) − ln(ε)

m
,

with probability larger than 1 − ε. If ‖ · ‖1 denotes the trace
norm of a matrix, we have ‖M‖1 � 2

n
2 ‖M‖F for any matrix

M of size 2n × 2n. So, we deduce from the previous bound
that

‖ρ̂ν − ρ‖2
1 � 64c(θ )(1 + θ )d

(
8

3

)n
n ln(2) − ln(ε)

m
.

The next result states the properties of k̂, the rank of the
final estimator ρ̂ν .

Corollary 2. If there exists k such that λk(ρ) > (1 + δ)
√

ν

and λk+1(ρ) < (1 − δ)
√

ν for some δ in (0,1], then

P(k̂ = k) � 1 − P(‖ρ̂ − ρ‖ � δ
√

ν).

From an asymptotic point of view, this corollary means that,
if d is the rank of the underlying matrix ρ, then our procedure
is consistent in finding the rank as the number m of data per
measurement increase. Indeed, as

√
ν is an upper bound of

the norm ‖ρ̂ − ρ‖, it tends to 0 asymptotically and therefore
the assumptions of the previous corollary will be checked for
k = d. With a finite sample, we deduce from the previous
result that k̂ actually evaluates the first eigenvalue which is
above a threshold related to the largest eigenvalue of the
noise ρ̂ − ρ.

V. NUMERICAL PERFORMANCE OF THE PROCEDURE

In this section we implement an efficient procedure to
solve the optimization problem (9) from the previous section.
Indeed, the estimator ρ̂ is considered as an input from now on.
It is computed very efficiently via linear operations and the
real issue here is how to project this estimator on a subspace
of matrices with smaller unknown rank in an optimal way.
We are interested in two aspects of the method: its ability to
select the rank correctly and the correct choice of the penalty.
First, we explore the penalized procedure on example data and
tune the parameter ν conveniently. In this way, we evaluate the
performance of the linear estimator and of the rank selector.
We then apply the method on real data sets.

The algorithm for solving (9) is given in Ref. [28]. We
adapt it to our context and obtain the following simple five-step
procedure:

Algorithm. The inputs for the algorithm are the linear
estimator ρ̂ and a positive value of the tuning parameter ν.
The outputs of the algorithm are an estimation k̂ of the rank
and an approximation R̂k̂ of the state matrix.

(1) Compute the eigenvectors V = [v1, . . . ,v2n ] corre-
sponding to the eigenvalues of the matrix ρ̂	ρ̂ sorted in
decreasing order.

(2) Let U = ρ̂V .
(3) For k = 1, . . . ,2n, let Vk and Uk be the restrictions to

their k first columns of V and U , respectively.
(4) For k = 1, . . . ,2n, compute the estimators R̂k = UkV

	
k .

(5) Compute the final solution R̂k̂ , where, for a given
positive value ν, k̂ is defined as the minimizer in k over
{1, . . . ,2n} of

‖R̂k − ρ̂‖2
F + ν · k.

The constant k in the above procedure plays the role of
the rank and then R̂k is the best approximation of ρ̂ with a
matrix of rank k. As a consequence, this approach provides an
estimation of both the matrix ρ and its rank d by R̂k̂ and k̂,
respectively.

Obviously, this solution is strongly related to the value of
the tuning parameter ν. Before dealing with how to calibrate
this parameter, let us present a property that should help us to
reduce the computational cost of the method.
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The above algorithm is simple but requires the computation
of 2n matrices in steps 3 and 4. We present here an alternative
which makes it possible to compute only the matrix R̂k that
corresponds to k = k̂ and then reduce the storage requirements.

Remember that k̂ is the value of k minimizing the quantity
in step 5 of the above algorithm. Let λ1(ρ̂) > λ2(ρ̂) > · · · be
the ordered eigenvalues of

√
ρ̂	ρ̂. According to Proposition 1

of Ref. [19], it turns out that k̂ is the largest k such that the
eigenvalue λk(ρ̂) exceeds the threshold

√
ν:

k̂ = max{k : λk(ρ̂) �
√

ν}. (10)

As a consequence, one can compute the eigenvalues of the
matrix

√
ρ̂	ρ̂ and set k̂ as in Eq. (10). This value is then used

to compute the best solution R̂k̂ thanks to steps 1–4 in the
above algorithm, with the major difference that we restrict
steps 3 and 4 to only k = k̂.

A. Example data

We build artificial density matrices ρ with a given rank
d in {1, . . . ,6}. These matrices are 2n × 2n with n = 4
and 5. To construct such a matrix, we take ρ as Dd =
1
d

diag(1 · · · 10 · · · 0), the diagonal matrix with its first d

diagonal terms equal 1/d, whereas the others equal zero.
We aim at testing how often we select the right rank based

on the method illustrated in Eq. (10) as a function of the rank
d, and of the number m of repetitions of the measurements we
have in hand. Our algorithm depends on the tuning parameter
ν. We use and compare two different values of the threshold
ν: denote by ν(1)

n and ν(2)
n the values the parameter ν provided

in Theorem 1 and Corollary 1, respectively. That is,

ν(1)
n = ‖ρ̂ − ρ‖2 and

(11)

ν(2)
n = 32(1 + θ )

(
4

3

)n
n ln(2)

m
.

As established in Theorem 1, if the tuning parameter ν is of
order of the parameter ν(1)

n , the solution of our algorithm is
an accurate estimate of ρ. We emphasize the fact that ν(1)

n

is nothing but the estimation error of our linear estimator
ρ̂. We study this error below. On the other hand, the
parameter ν(2)

n is an upper bound of ν(1)
n that ensures that the

accuracy of estimation remains valid with high probability (cf.
Corollary 1). The main advantage of ν(2)

n is that it is completely
known by the practitioner, which is not the case of ν(1)

n .

1. Rank estimation

Our first goal consists of illustrating the estimation power
of our method in selecting the true rank d based on the cali-
brations of ν given by Eq. (11). We provide some conclusions
on the number of repetitions, m, of the measurements needed
to recover the right rank as a function of this rank. Figure 1
illustrates the evolution of the selection power of our method
based on ν(1)

n (blue stars) on the one hand, and based on ν(2)
n

(green squares) on the other hand.
Two conclusions can be made. First, the method based on

ν(1)
n is powerful. It almost always selects the right rank. It

outperforms the algorithm based on ν(2)
n . This is an interesting

observation. Indeed, ν(2)
n is an upper bound of ν(1)

n . It seems
that this bound is too large and can be used only for particular
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FIG. 1. (Color online) Frequency of good selection of the true
rank d , based on Eq. (10) with ν = ν(1)

n (green squares) and with
ν = ν(2)

n (blue stars). The results are established for 20 repetitions. A
value equal to 1 in the y axis means that the method always selects
the good rank, whereas 0 means that it always fails. Left, m = 50
measurements; right, m = 100 measurements.

settings. Note, however, that in the variable selection literature,
the calibration of the tuning parameter is a major issue and is
often fixed by cross-validation (or other well-known methods).
We have chosen here to illustrate only the result based on our
theory and we provide later an instruction to properly calibrate
the tuning parameter ν.

The second conclusion goes in the direction of this
instruction. As expected, the selection power of the method
(based on both ν(1)

n and ν(2)
n ) increases when the number

of repetitions, m, of the measurements increases. Compare
the graph for m = 50 repetitions to the graph for m = 100
repetitions in Fig. 1. Moreover, for ranks smaller than some
values, the methods always select the good rank. For larger
ranks, they perform poorly. For instance, with m = 50 (a small
number of measurements), we observe that the algorithm based
on ν(2)

n performs poorly when the rank d � 4, whereas the
algorithm based on ν(1)

n is still excellent.
Actually, the bad selection when d is large does not mean

that the methods perform poorly. Indeed our definition of the
matrix ρ implies that the eigenvalues of the matrix decrease
with d. They are equal to 1/d. Therefore, if

√
ν is of the same

order as 1/d, finding the exact rank becomes difficult since
this calibration suggests that the eigenvalues are of the same
order of magnitude as the error. Hence, in such a situation, our
method adapts to the context and finds the effective rank of ρ.
As an example, let us consider our study with n = 4, m = 50,
and d = 6. Based on 20 repetitions of the experiment, we
obtain a maximal value of ν(1)

n = ‖ρ̂ − ρ‖2 equal to 0.132.
This value is quite close to 0.167, the value of the eigenvalues
of ρ. This explains the fact that our method based on ν(1)

n

failed in one iteration (among 20) to find the good rank. In this
context ν(2)

n is much larger than 0.167 and then our method
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FIG. 2. (Color online) Evaluation of the operator norm
√

ν
(1)
n =

‖ρ̂ − ρ‖. The results are established for 20 repetitions. Top, n = 4,
m = 50 repetitions of the measurements; we compare the errors when
d takes values between 1 and 6. Middle, n = 5, m = 100; we compare
the errors when d takes values between 1 and 6. Bottom, the rank
equals d = 4 and we compare the error for m = 50 and 100.

does not select the correct rank with this calibration in this
setting.

Let us also mention that we explored numerous experiments
with other choices of the density matrix ρ. The same conclu-
sion remains valid. When the error of the linear estimator ρ̂

which is given by ν(1)
n = ‖ρ̂ − ρ‖2 is close to the square of the

smallest eigenvalue of ρ, finding the exact rank is a difficult
task. However, the method based on ν(1)

n is still good, but it
fails sometimes. We produced data from physically meaningful
states: the GHZ state and the W state for n = 4 qubits, as
well as a statistical mixture Md,p = p ∗ |GHZ〉 + (1 − p) ∗
Dd , for d = 3 and p = 0.2. Note that the rank of Md,p

is 4.

2. Calibration of the tuning parameter ν

The quantity ν(1)
n = ‖ρ̂ − ρ‖2 seems to be very impor-

tant to provide a good estimation of the rank d (or more
precisely of the effective rank). Then it is interesting to
observe how this quantity behaves. Figure 2 (top, m = 50 and
d = 4, and middle, m = 100 and d = 5) illustrates how ν(1)

n

varies when the rank increases. Except for d = 1, it seems
that the value of ν(1)

n is quite stable. These graphics are
obtained with particular values of the parameters m and d,
but similar illustrations can be obtained if these parameters
change.

The main observation according to the parameter ν is
that it decreases with m (see Fig. 2, bottom) and is actually
independent of the rank d (with some strange behavior when
d = 1). This is in accordance with the definition of ν(2)

n which
is an upper bound of ν(1)

n .

B. Real-data analysis

In the next paragraph, we propose a two-step instruction for
practitioners to use our method in order to estimate a matrix ρ

(and its rank d) obtained from the data Ra,i we have in hand
with a ∈ {x,y,z} and i ∈ {1, . . . ,m}.

Real-data algorithm. For the inputs, for any measurement
a ∈ {x,y,z} we observe Ra,i , i = 1, . . . ,m. The outputs are
k̂ and R̂k̂ , estimations of the rank d and ρ, respectively. The
procedure starts with the linear estimator ρ̂ and consists of two
steps:

(a) Use ρ̂ to simulate repeatedly data with the same parame-
ters n and m as the original problem. Use the data to compute
synthetic linear estimators and the mean operator norm of
these estimators. They provide an evaluation of the tuning
parameter ν̃(1)

n .
(b) Find k̂ using Eq. (10) and construct R̂k̂ .

We have applied the method to real data sets concerning
systems of four to six ions, which are Smolin states further
manipulated. In Fig. 3 we plot the eigenvalues of the linear
estimator and the threshold given by the penalty. In each case,
the method selects a rank equal to 2.

VI. CONCLUSIONS

We present here a method for reconstructing the quantum
state of a system of n qubits from all measurements, each
repeated m times. Such an experiment produces a huge amount
of data to exploit in an efficient way.

We revisit the inversion method and write an explicit
formula for what is here called the linear estimator. This
procedure does not produce a proper quantum state and has
other well-known inconveniences. We consider projection of
this state on the subspace of matrices with fixed rank and
give an algorithm to select from data the rank which best
suits the given quantum system. The method is very fast,
as it comes down to choosing the eigenvalues larger than
some threshold, which also appears in the penalty term. This
threshold is of the same order as the error of the linear
estimator. Its computation is crucial for good selection of the
correct rank and it can be time consuming. Our algorithm also
provides a consistent estimator of the true rank of the quantum
system.

Our theoretical results provide a penalty term ν which has
good asymptotic properties but our numerical results show that
it is too large for most examples. Therefore, we give an idea
about how to evaluate more closely the threshold by Monte
Carlo computation. This step can be time consuming but we
can still improve on numerical efficiency (parallel computing,
etc.).

In practice, the method works very well for large systems
of small ranks, with significant eigenvalues. Indeed, there is a
trade-off between the amount of data which will give a small
estimation error (and threshold) and the smallest eigenvalue
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FIG. 3. (Color online) Eigenvalues of the linear estimator in
increasing order and the penalty choice; m = 100 and n = 4, 5, or 6,
respectively.

that can be detected above this threshold. Neglecting eigen-
values comes down to reducing the number of parameters
to estimate and reducing the variance, whereas large rank
will increase the number of parameters and reduce the
estimation bias.
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APPENDIX

Proof of Proposition 1. Actually, we can compute

(PT P)b1,b2 =
∑
(r,a)

∏
j �∈Eb1

rj I(aj = b1,j )
∏

k �∈Eb2

rk I(ak = b2,k).

In the case b1 = b2 = b, we have

(PT P)b,b =
∑
(r,a)

⎛
⎝ ∏

j �∈Eb

rj I(aj = bj )

⎞
⎠2

=
∑
(r,a)

∏
j �∈Eb

I(aj = bj ) = 3d(b)2n.

In the case b1 �= b2, we have either Eb1 = Eb2 or Eb1 �= Eb2 .
If we suppose Eb1 = Eb2 ,∏

j �∈Eb1

rj I(aj = b1,j )
∏

k �∈Eb2

rk I(ak = b2,k) = 0.

Indeed, if this is not 0 it means a = b1 = b2 outside the set
Eb1 , that is, b1 = b2, which contradicts our assumption.

If we suppose Eb1 �= Eb2 , we have either b1 �= b2 on the
set EC

b1
∩ EC

b1
and in this case one indicator in the product is

bound to be 0, or we have b1 ��= b2 on the set EC
b1

∩ EC
b1

. In this
last case, take j0 in the symmetric difference of sets Eb1
Eb2 .
Then,

(PT P)b1,b2

=
∑
(r,a)

∏
j �∈Eb1

rj I(aj = b1,j )
∏

k �∈Eb2

rk I(ak = b2,k)

=
∑
(r,a)

∏
j �∈Eb1

I(aj = b1,j )
∏

k �∈Eb2

I(ak = b2,k)
∏

j∈Eb1 
Eb2

rj

=
∑

rj0 ∈{−1,1}
rj0

∑
r�=rj0

∑
a

∏
j �∈Eb1

I(aj = b1,j )

×
∏

k �∈Eb2

I(ak = b2,k)
∏

j∈Eb1 
Eb2 /j0

rj = 0. �

Proof of Proposition 2. It is easy to see that �̂ρ is an unbiased
estimator. We write its variance as follows:

Var(ρ̂b) = 1

32d(b)4n

∑
a∈En

Var

(∑
r∈Rn

1

m

m∑
i=1

δRa,i ,rP(r,a),b

)

= 1

32d(b)4nm2

∑
a∈En

∑
r∈Rn

mp(r,a)P2
(r,a),b

− 1

32d(b)4nm2

∑
a∈En

m

(∑
r∈Rn

p(r,a)P(r,a),b

)2

= 1

32d(b)4nm

∑
(r,a)∈(Rn×En)

p(r,a)

∏
j �∈Eb

I(aj = bj )

− 1

m

∑
a∈En

⎛
⎝ 1

3d(b)2n

∑
r∈Rn

p(r,a)

∏
j �∈Eb

rj I(aj = bj )

⎞
⎠2

� 1

3d(b)4nm
.

Finally, let us prove the last point. We use the following
result due to Ref. [29].

Theorem 2: Matrix Hoeffding’s inequality [29]. Let
X1, . . . ,Xp be independent centered self-adjoint random
matrices with values in Cd×d , and let us assume that there
are deterministic self-adjoint matrices A1, . . . ,Ap such that,
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for all i ∈ {1, . . . ,p}, A2
i − X2

i is almost surely non-negative.
Then, for all t > 0,

P

(∥∥∥∥
p∑

i=1

Xi

∥∥∥∥2

� t

)
� d exp

(−t2

8σ 2

)

where σ 2 = ‖∑p

k=1 A2
k‖.

We have

ρ̂ − ρ =
∑

b

(ρ̂b − ρb)σb

=
∑

b

∑
r

∑
a

P(r,a),b

3d(b)2n
(p̂r,a − pr,a)σb

=
∑

b

∑
r

∑
a

∑
i

P(r,a),b

3d(b)2nm
(1Ri,a=r − pr,a)σb

=
∑

a

∑
i

∑
b

∑
r

P(r,a),b

3d(b)2n
(1Ri,a=r − pr,a)σb︸ ︷︷ ︸

=:Xi,a

.

Note that the Xi,a, for i ∈ {1, . . . ,m} and a ∈ En, are i.i.d.
self-adjoint centered random matrices. Moreover, we have

‖Xi,a‖ =
∥∥∥∥∥∑

b

∑
r

P(r,a),b

3d(b)2nm
(1Ri,a=r − pr,a)σb

∥∥∥∥∥
�

∑
b

∑
r

∣∣∣∣ P(r,a),b

3d(b)2nm

∣∣∣∣ |1Ri,a=r − pr,a| ‖σb‖︸︷︷︸
=1

=
∑

b

∣∣∣∣ P(r,a),b

3d(b)2nm

∣∣∣∣ ∑
r

|1Ri,a=r − pr,a|︸ ︷︷ ︸
�2

= 2

2nm

∑
b

1

3d(b)

∏
j /∈Eb

1aj =bj

� 2

2nm

n∑
�=0

∑
b such that
d(b) = �

∀j /∈ Eb,aj = bj

1

3�

= 2

2nm

n∑
�=0

(
�

n

)
1

3�
= 2

2nm

(
1 + 1

3

)n

= 2

m

(
2

3

)n

.

This proves that A2
i,a − X2

i,a is non-negative where Ai,a =
2
m

(
2
3

)n
I . So we can apply Theorem 2, and we have

σ 2 =
∥∥∥∥ ∑

i,a

A2
i,a

∥∥∥∥ = 4

m

(
4

3

)n

and so

P
(‖ρ̂ − ρ‖2 � t

) = P

(∥∥∥∥∑
i,a

Xi,a

∥∥∥∥2

� t

)

� 2n exp

(−t2m

32

(
3

4

)n)
.

We put

ε = 2n exp

(−t2m

32

(
3

4

)n)
,

this leads to:

P

⎛
⎝‖ρ̂ − ρ‖2 � 4

√
2

(
4

3

)n
n ln(2) − ln(ε)

m

⎞
⎠ � ε. �

Proof of Theorem 1. From the definition (8) of our estimator,
we have, for any Hermitian, a positive semidefinite matrix R,

‖ρ̂ν − ρ̂‖2
F + νrank(ρ̂ν) � ‖R − ρ̂‖2

F + νrank(R).

We deduce that

‖ρ̂ν − ρ‖2
F � ‖R − ρ‖2

F + 2Tr[(ρ̂ − ρ)	(R − ρ̂ν)]

+ν[rank(R) − rank(ρ̂ν)]

� ‖R − ρ‖2
F

+ 2νrank(R) + 2‖ρ̂ − ρ‖ × ‖R − ρ̂ν‖1

−ν[rank(R) + rank(ρ̂ν)].

Further on, we have

‖R − ρ̂ν‖1 � [rank(R) + rank(ρ̂ν)]1/2‖R − ρ̂ν‖F

� [rank(R) + rank(ρ̂ν)]1/2

×(‖ρ − ρ̂ν‖F + ‖R − ρ‖F ).

We apply two times the inequality 2A · B � εA2 + ε−1B2

for any real numbers A,B and ε > 0. We actually use ε =
1 + θ/2 and ε = θ/2, respectively, and get

‖ρ̂ν − ρ‖2
F � ‖R − ρ‖2

F + 2νrank(R)

− ν[rank(R) + rank(ρ̂ν)]

+ (1 + θ )[rank(R) + rank(ρ̂ν)]‖ρ̂ − ρ‖2

+
(

1 + θ

2

)−1

‖ρ̂ν − ρ‖2
F +

(
θ

2

)−1

‖R − ρ‖2
F .

By rearranging the previous terms, we get that for any
Hermitian matrix R

‖ρ̂ν − ρ‖2
F � c2(θ )‖R − ρ‖2

F + 2c(θ )νrank(R),

provided that ν � (1 + θ )‖ρ̂ − ρ‖2. By following Ref. [19],
the least possible value for ‖R − ρ‖2

F is
∑

j>k λ2
j (ρ) if the

matrices R have rank k. Moreover, this value is obviously
attained by the projection of ρ on the space of the eigenvectors
associated to the k largest eigenvalues. This helps us conclude
the proof of the theorem. �

Proof of Corollary 2. Recall that k̂ is the largest k such that
λk(ρ̂) � √

ν. We have

P(k̂ �= k) = P(λk(ρ̂) �
√

ν or λk+1(ρ̂) �
√

ν).

Now, λk(ρ) � λk(ρ̂) + ‖ρ̂ − ρ‖ and λk+1(ρ) � λk+1(ρ̂) −
‖ρ̂ − ρ‖. Thus,

P(k̂ �= k) � P(‖ρ̂ − ρ‖ � min{λk(ρ) − √
ν,

√
ν − λk+1(ρ)})

and this is smaller than P(‖ρ̂ − ρ‖ � δ
√

ν), by the assump-
tions of Corollary 2. �
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