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Formalizing an old desire of Einstein, “ψ-epistemic theories” try to reproduce the predictions of quantum
mechanics, while viewing quantum states as ordinary probability distributions over underlying objects called
“ontic states.” Regardless of one’s philosophical views about such theories, the question arises of whether one
can cleanly rule them out by proving no-go theorems analogous to the Bell inequality. In the 1960s, Kochen
and Specker (who first studied these theories) constructed an elegant ψ-epistemic theory for Hilbert space
dimension d = 2, but also showed that any deterministic ψ-epistemic theory must be “measurement contextual”
in dimensions 3 and higher. Last year, the topic attracted renewed attention, when Pusey, Barrett, and Rudolph
(PBR) showed that any ψ-epistemic theory must “behave badly under tensor product.” In this paper, we prove
that even without the Kochen-Specker or PBR assumptions, there are no ψ-epistemic theories in dimensions
d � 3 that satisfy two reasonable conditions: (1) symmetry under unitary transformations and (2) “maximum
nontriviality” (meaning that the probability distributions corresponding to any two nonorthogonal states overlap).
This no-go theorem holds if the ontic space is either the set of quantum states or the set of unitaries. The proof
of this result, in the general case, uses some measure theory and differential geometry. On the other hand, we
also show the surprising result that without the symmetry restriction, one can construct maximally nontrivial
ψ-epistemic theories in every finite dimension d .
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I. INTRODUCTION

Debate has raged for almost a century about the inter-
pretation of the quantum state. Although a quantum state
evolves in a unitary and deterministic manner according to
the Schrödinger equation, measurement is a probabilistic
process in which the state is postulated to collapse to a single
eigenstate. This is often viewed as an unnatural and poorly
understood process.

ψ-epistemic theories have been proposed as alternatives
to standard quantum mechanics. In these theories, a quantum
state merely represents probabilistic information about a “real,
underlying” physical state (called the ontic state). Perhaps
not surprisingly, several no-go theorems have been proven
that strongly constrain the ability of ψ-epistemic theories to
reproduce the predictions of standard quantum mechanics.
Most famously, the Bell inequality [1]—while not usually seen
as a result about ψ-epistemic theories—showed that no such
theory can account for the results of all possible measurements
on an entangled state in a “factorizable” way (i.e., so that
the ontic state has a separate component for each qubit and
measurements of a given qubit only reveal information about
that qubit’s component of the ontic state). Also, the Kochen-
Specker theorem [2] showed that in Hilbert space dimensions
d � 3, no ψ-epistemic theory can be both deterministic and
“noncontextual” (meaning that whether an eigenstate ψ gets
returned as a measurement outcome is independent of which
other states are also in the measurement basis). More recently,
the Pusey-Barrett-Rudolph (PBR) theorem [3] showed that
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nontrivial ψ-epistemic theories are inconsistent, if the ontic
distribution for a product state |ψ〉 ⊗ |φ〉 is simply the tensor
product of the ontic distribution for |ψ〉 with the ontic
distribution for |φ〉. Even more recently, papers by Maroney [4]
and Leifer and Maroney [5] prove the impossibility of a
“maximally ψ-epistemic theory,” in which the overlap of the
ontic distributions for all nonorthogonal states fully accounts
for the uncertainty in distinguishing them via measurements.

In this paper, we study what happens if one drops the Bell,
Kochen-Specker, and PBR assumptions and merely asks for a
ψ-epistemic theory in which the ontic distributions overlap for
all nonorthogonal states. A ψ-epistemic theory is a particular
type of ontological theory of quantum mechanics. Formally, an
ontological theory in d dimensions specifies the following:

(1) a measurable space �, called the ontic space (the
elements λ ∈ � are then the ontic states);

(2) a function mapping each quantum state |ψ〉 ∈ Hd to a
probability measure μψ over �, where Hd is the Hilbert space
in d dimensions;

(3) for each orthonormal measurement basis M =
{φ1, . . . ,φd}, a set of d response functions {ξk,M (λ) ∈ [0,1]},
which give the probability that an ontic state λ would produce
a measurement outcome φk .

The response functions must satisfy the following two
conditions: ∫

�

ξk,M (λ) μψ (λ) dλ = |〈φk|ψ〉|2 , (1)

d∑
i=1

ξi,M (λ) = 1 ∀ λ,M. (2)

Here Eq. (1) says that the ontological theory perfectly
reproduces the predictions of quantum mechanics (i.e., the
Born rule). Meanwhile, Eq. (2) says that the probabilities of
the possible measurement outcomes must always sum to 1,
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even when ontic states are considered individually (rather than
as elements of probability distributions). Note that Eqs. (1)
and (2) are logically independent of each other.1

The conditions above can easily be satisfied by setting
� = CP d−1, the complex projective space consisting of unit
vectors in Hd up to an arbitrary phase, and μψ (λ) = δ(λ − ψ),
where δ is the Dirac delta function and ξk,M (λ) = |〈φk|λ〉|2.
However, that simply gives an uninteresting restatement of
quantum mechanics, since the μψ ’s for different ψ’s have
disjoint supports. An ontological theory in which the μψ ’s
have disjoint supports is known as a ψ-ontic theory [6].
Let Supp(μψ ) ⊆ � be the support of μψ . Then we call an
ontological theory ψ-epistemic if there exist ψ �= φ such that
μψ and μφ have total variation distance less than 1 [6], i.e.,

1

2

∫
�

|μψ (λ) − μφ(λ)|dλ < 1. (3)

If μψ and μφ have total variation distance less than 1, then
we say that |ψ〉 and |φ〉 have “nontrivial overlap.” Otherwise,
we say they have “trivial overlap.” Note that it is possible
for |ψ〉 and |φ〉 to have trivial overlap even if μψ and μφ

have intersecting supports [this can happen if Supp(μψ ) ∩
Supp(μφ) has measure 0].

Note also that if |ψ〉 and |φ〉 are orthogonal, if we set |φ1〉 =
|ψ〉 and |φ2〉 = |φ〉, the conditions |〈φ1|ψ〉| = |〈φ2|φ〉| = 1
and |〈φ2|ψ〉| = |〈φ1|φ〉| = 0 imply that μψ and μφ have trivial
overlap. Hence, we call a theory maximally nontrivial if the
overlap is only trivial for orthogonal states: that is, if all
nonorthogonal states |ψ〉,|φ〉 have nontrivial overlap.

In a maximally nontrivial theory, some of the uncertainty of
quantum measurement is explained by the overlap between the
distributions corresponding to nonorthogonal states. Recently,
Maroney [4] and Leifer and Maroney [5] showed that it
is impossible to have a “maximally ψ-epistemic theory” in
which all of the uncertainty is explained by the overlap of
distributions. Specifically, they require that, for all quantum
states |ψ〉,|φ〉, ∫

Supp(μφ )
μψ (λ)dλ = |〈φ|ψ〉|2. (4)

Here we are asking for a much weaker condition, in which only
some of the uncertainty in measurement statistics is explained
by the overlap of distributions, and we do not impose any
conditions on the amount of overlap.

Another property that we might like a ψ-epistemic theory
to satisfy is symmetry. Namely, we call a ψ-epistemic theory
symmetric if � = CP d−1 and the probability distribution
μψ (λ) is symmetric under unitary transformations that fix
|ψ〉, or equivalently, if μψ is a function fψ only of the inner
product2 |〈ψ |λ〉|. We stress that the function fψ is allowed to

1Also, we call an ontological theory deterministic if the response
functions take values only in {0,1}. The Kochen-Specker theorem
then states that, in dimensions d � 3, any deterministic theory must
have response functions that depend nontrivially on M .

2Note that in symmetric theories � = CP d−1, so we can think of
each ontic state λ as corresponding to a quantum state |λ〉 in the
original Hilbert space. This allows us to define quantities such as
|〈ψ |λ〉|.

be different for different ψ’s: Symmetry applies only to each
μψ individually. This makes our no-go theorem for symmetric
theories stronger. If additionally μψ is a fixed function f only
of |〈ψ |λ〉|, then we call the theory strongly symmetric. Note
that, if a theory is strongly symmetric, then in order to apply a
unitary U to a state |ψ〉, one can simply apply U to the ontic
states. So strongly symmetric theories have a clear motivation:
Namely, they allow us to keep the Schrödinger equation as the
time evolution of our system.

A similar notion to symmetry was recently explored by
Hardy [7] and Patra et al. [8]. Given a ψ-epistemic theory, it
is natural to consider the action of unitaries on the ontic states
λ ∈ �. Hardy and Patra et al. define such a theory to obey
“ontic indifference” if for any unitary U such that U |ψ〉 = |ψ〉,
and any λ ∈ Supp(μψ ), we have Uλ = λ. They then show
that no ψ-epistemic theories satisfying ontic indifference exist
in dimensions d � 2. Note that symmetric theories and even
strongly symmetric theories need not obey ontic indifference,
since unitaries can act nontrivially on ontic states in Supp(μψ ).
So the result of Hardy and Patra et al. is incomparable with
ours.

In dimension 2, there exists a strongly symmetric and
maximally nontrivial theory found by Kochen and Specker [2].
In dimensions d � 3, Lewis et al. [9] found a nontrivial
ψ-epistemic theory for all finite d. However, their theory is
not symmetric and is far from being maximally nontrivial.

In this paper, we first give a construction of a maximally
nontrivial ψ-epistemic theory for arbitrary d. Our theory builds
on that of Lewis et al. [9] and was first constructed in a post on
MathOverflow [10]. Unfortunately, this theory is rather unnat-
ural and is not symmetric. We then prove that it is impossible to
construct a maximally nontrivial theory that is symmetric for
Hilbert space dimensions d � 3. Our proof makes extensive
use of the notion of “deficiency” defined by Harrigan and
Rudolph [11]. Furthermore, we extend this work to rule out a
generalization of strongly symmetric theories with � = U (d)
rather than � = CP d−1 in d � 3. Interestingly, none of our
no-go results depend on the specific form of the Born rule, but
rather only on the fact that the probability of obtaining outcome
φ when measuring state ψ is zero when 〈ψ |φ〉 = 0. In short,
if we want maximally nontrivial theories in three or more
dimensions, then we either need an ontic space � other than
� = CP d−1 or � = U (d), or else we need ontic distributions
μψ that “single out preferred directions in Hilbert space.”

II. NONSYMMETRIC, MAXIMALLY
NONTRIVIAL THEORY

By considering � = CP d−1 × [0,1], Lewis et al. [9] found
a deterministic ψ-epistemic theory for all finite d. They
raised as an open problem whether a maximally nontrivial
theory exists. In this section, we answer their question in
the affirmative. Specifically, we first show that, for any two
nonorthogonal states, we can construct a theory such that
their probability distributions overlap. We then take a convex
combination of such theories to obtain a maximally nontrivial
theory.

Lemma 1. Given any two nonorthogonal quantum states
|a〉,|b〉, there exists a ψ-epistemic theory T (a,b) = (�,μ,ξ )
such that μa and μb have nontrivial overlap. Moreover, for
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T (a,b), there exists ε > 0 such that μa′ and μb′ have nontrivial
overlap for all |a′〉, |b′〉 that satisfy

‖a − a′‖,‖b − b′‖ < ε.

Proof. Our ontic state space will be � = CP d−1 × [0,1].
Given an orthonormal basis M = {φ1, . . . ,φd}, we first sort
the φi’s in decreasing order of min(|〈φi |a〉|,|〈φi |b〉|). Then the
outcome of measurement M on ontic state (λ,p) will be the
smallest positive integer i such that

|〈φ1|λ〉|2 + · · · + |〈φi−1|λ〉|2
� p � |〈φ1|λ〉|2 + · · · + |〈φi |λ〉|2. (5)

In other words, ξi,M (|λ〉,p) = 1 if i satisfies the above and no
j < i does and is 0 otherwise. If we assume that μψ (|λ〉,p) =
δ(|λ〉 − |ψ〉) for all p ∈ [0,1], then it can be verified that
T (a,b) is a valid ontological theory, albeit so far a ψ-ontic
one.

We now claim that there exists an ε > 0 such that, for all
orthonormal bases M = {φ1, . . . ,φd}, there exists an i such
that |〈φi |a〉| � ε and |〈φi |b〉| � ε. Indeed, by the triangle in-
equality, we can let ε = |〈a|b〉|/d, and ε > 0 since |〈a|b〉| > 0.
This means that, for all measurements M and all p ∈ [0,ε],
the outcome is always i = 1 when M is applied to either of
the ontic states (|a〉,p) or (|b〉,p).

Following Lewis et al. [9], we can “mix” the probability
distributions μa and μb, or have them intersect in the region
p ∈ [0,ε], without affecting the Born rule statistics for any
measurement. Explicitly, we can let

Ea,b = {|a〉,|b〉} × [0,ε], (6)

so that all λ ∈ Ea,b give the same measurement outcome φ1 for
all measurements M . Then any probability assigned by μa or
μb to states within Ea,b can be redistributed over Ea,b without
changing the measurement statistics. Thus, we can define μa

such that the weight it originally placed on |a〉 × [0,ε] is now
placed uniformly on Ea,b. More formally, we set

μa(|λ〉,x) =
{

δ(|λ〉 − |a〉) if x > ε,

εμEa,b
(|λ〉,x) if x � ε,

(7)

where μEa,b
is the uniform distribution over Ea,b. We simi-

larly define μb. This then yields a ψ-epistemic theory with
nontrivial overlap between |a〉 and |b〉.

Furthermore, suppose we have |a′〉, |b′〉, such that ‖a − a′‖,
‖b − b′‖ < ε

2 . Then by continuity, we can similarly mix the
distributions μa′ and μb′ , or have them intersect each other
in the region p ∈ [0, ε

2 ], without affecting any measurement
outcome. Note that the procedure of sorting the basis vectors
of M might cause the measurement outcome to change discon-
tinuously. However, this is not a problem since the procedure
depends only on |a〉 and |b〉, which are fixed, and hence
occurs uniformly for all |a′〉 and |b′〉 defined as above. �

Lemma 1 implies that for any two nonorthogonal states |a〉
and |b〉, we can construct a theory where μa′ and μb′ have
nontrivial overlap for all ‖a − a′‖,‖b − b′‖ < ε, for some
ε > 0. To obtain a maximally nontrivial theory, such that any
two nonorthogonal vectors have probability distributions that
overlap, we take a convex combination of such ψ-epistemic
theories.

Given two ψ-epistemic theories T1 = (�1,μ1,ξ1) and T2 =
(�2,μ2,ξ2) and a constant c ∈ (0,1), we define the new theory
cT1 + (1 − c)T2 = (�c,μc,ξc) by setting �c = (�1 × {1}) ∪
(�2 × {2}) and μc = cμ1 + (1 − c)μ2. For any (λ,i) ∈ �c,
we then define ξc to equal ξi on �i .

The following is immediate from the definitions.
Lemma 2. cT1 + (1 − c)T2 is a ψ-epistemic theory. Fur-

thermore, if T1 mixes the probability distributions μa , μb

of two states |a〉 and |b〉, and T2 mixes μa′ and μb′ , then
cT1 + (1 − c)T2 mixes both pairs of distributions, assuming
c �∈ {0,1}.

Note that the ontic state space of a convex combination of
theories contains a copy of each of the original ontic spaces
�1 and �2. If �1 = �2, it is natural to ask if we could get
away with keeping only one copy of the ontic state space.
Unfortunately, the answer, in general, is no. Suppose that we
let �c = �1 = �2, let μc = cμ1 + (1 − c)μ2, and let ξc =
cξ1 + (1 − c)ξ2. Then the probability of measuring outcome i

under measurement M and ontic distribution μcψ
is∫

�

[
cξ1i,M

(λ) + (1 − c)ξ2i,M
(λ)

]
[cμ1ψ

(λ) + (1 − c)μ2ψ
(λ)]dλ,

which will not, in general, reproduce the Born rule due to
unwanted cross terms. This is why it is necessary to keep
two copies of the ontic state space when taking a convex
combination of theories.

Using Lemmas 1 and 2, we now construct a maximally
nontrivial ψ-epistemic theory. Let T (a,b) be the theory
returned by Lemma 1 given |a〉,|b〉 ∈ Hd . Also, for all positive
integers n, let An be a 1/n-net for Hd , that is, a finite subset
An ⊆ Hd such that for all |a〉 ∈ Hd , there exists |a′〉 ∈ An

satisfying ‖a − a′‖ < 1/n. By making small perturbations,
we can ensure that 〈a|b〉 �= 0 for all |a〉,|b〉 ∈ An. Then our
theory T is defined as follows:

T = 6

π2

∞∑
n=1

1

n2

⎛
⎝ 1

|An|2
∑

a,b∈An

T (a,b)

⎞
⎠ . (8)

[Here, in place of 6/(π2n2), we could have chosen any
infinite sequence summing to unity.] This yields a maximally
nontrivial theory, since it can be verified that μa and μb have
nontrivial overlap for all nonorthogonal states |a〉 and |b〉. Note
that the ontic space is now CP d−1 × [0,1] × N, which has the
same cardinality as CP d−1. It is thus possible to map this
theory into a theory that uses � = CP d−1 as its ontic space,
using a bijection between the ontic spaces. However, it is clear
that under such a bijection the theory becomes less symmetric:
The quantum state |a〉 no longer has any association with
the state |a〉 in the ontic space, and the measure is also very
unnatural.

III. NONEXISTENCE OF SYMMETRIC, MAXIMALLY
NONTRIVIAL THEORIES

We now turn to showing that it is impossible to construct a
symmetric maximally nontrivial theory, in dimensions d � 3.
Recall that a theory is called symmetric if

(1) � = CP d−1 and
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(2) for any quantum state |ψ〉, the associated probability
distribution μψ is invariant under unitary transformations that
preserve |ψ〉.

Specifically, if U is a unitary transformation such that
U |ψ〉 = |ψ〉, then we require that μUψ (Uλ) = μψ (λ). This
implies that μψ (λ) is a function only of |〈ψ |λ〉|2: That is,

μψ (λ) = fψ (|〈ψ |λ〉|2) (9)

for some nonnegative function fψ . In other words, the
probability measure μψ associated with state ψ must be a
measure νψ on the unit interval which has been “stretched out”
onto Hd over curves of constant |〈ψ |λ〉|2. If additionally we
assume that for any U , μUψ (Uλ) = μψ (λ), or equivalently that
μψ (λ) = f (|〈ψ |λ〉|2) for some fixed non-negative function f ,
the theory is called strongly symmetric.

In this section, we first prove several facts about symmetric,
maximally nontrivial theories in general. Using these facts, we
then show that no strongly symmetric, maximally nontrivial
theory exists in dimension 3 or higher. Restricting to the
strongly symmetric case will make the proof considerably
easier. Later we show how to generalize to the “merely”
symmetric case.

As mentioned earlier, Kochen and Specker proved that a
strongly symmetric, maximally nontrivial ψ-epistemic theory
exists in dimension d = 2 [2]. In their theory, which is
illustrated in Fig. 1, the ontic space is � = CP 1, and the
response functions for a given basis M = {φ1,φ2} are

ξ1,M (λ) = 1 if |〈λ|φ1〉| � |〈λ|φ2〉| or 0 otherwise,

(10)

ξ2,M (λ) = 1 if |〈λ|φ2〉| � |〈λ|φ1〉| or 0 otherwise.

(11)

Hence, the response functions are deterministic and partition
the ontic space. Intuitively, the result of a measurement on
any ontic state is the state in the measurement basis to which
it is closest. For any quantum state |ψ〉 ∈ H2, the probability

|
2

|ψ

|
1

FIG. 1. Diagram of maximally nontrivial theory in d = 2 on the
Bloch sphere. The shaded region corresponds to Supp(μψ ).

distribution over � is given by

μψ (λ) =
{

2
π

(|〈λ|ψ〉|2 − 1
2

)
if |〈λ|ψ〉|2 > 1

2 ,

0 otherwise.

It can readily be verified that this theory satisfies the conditions
for a ψ-epistemic theory, and has the properties of being
strongly symmetric and maximally nontrivial. It is also
maximally ψ-epistemic in the sense described by Maroney [4]
and Maroney and Leifer [5].

Given a measurement outcome ψ and a basis M containing
ψ , we define the nonzero set Nonzero(ξψ,M ) to be the set of
ontic states λ such that the response function ξψ,M (λ) gives a
nonzero probability of returning ψ when M is applied:

Nonzero(ξψ,M ) = {λ : ξψ,M (λ) �= 0}. (12)

Clearly in any ψ-epistemic theory, Supp(μψ ) ⊆
Nonzero(ξψ,M ) for any measurement basis M that contains ψ ,
because the state |ψ〉 must return measurement outcome ψ

with probability 1 for any such M . Harrigan and Rudolph [11]
call a ψ-epistemic theory deficient if there exists a quantum
state |ψ〉 and measurement basis M containing ψ such that

Supp(μψ ) � Nonzero(ξψ,M ). (13)

In other words, a theory is deficient if there exists an ontic
state λ such that λ has a nonzero probability of giving the
measurement outcome corresponding to |ψ〉 for some M , even
though λ /∈ Supp(μψ ). This can be thought of as a “one-sided
friendship” between |ψ〉 and λ.

It was first pointed out by Rudolph [12], and later shown by
Harrigan and Rudolph [11], that theories in dimension d � 3
must be deficient. In this section, we prove that as a result of
deficiency, it is impossible to have a symmetric, maximally
nontrivial theory with d � 3. We derive a contradiction by
showing that if the theory is maximally nontrivial, then there
exist orthogonal states |ψ〉,|φ〉 and a measurement basis M

containing |ψ〉, such that if measurement M is performed on
|φ〉, then the outcome |ψ〉 is returned with nonzero probability,
contradicting the laws of quantum mechanics.

We start with a few preliminary results on symmetric,
maximally nontrivial theories. As stated previously, we know
that μψ is generated by stretching a probability measure νψ on
the unit interval over Hd along spheres of constant |〈ψ |λ〉|2.
By the Lebesgue decomposition theorem, νψ can be written
uniquely as a sum of two measures νψ,C and νψ,S , where
νψ,C is absolutely continuous with respect to the Lebesgue
measure over the unit interval, and νψ,S is singular with
respect to that measure. Here when we say νψ,C is “absolutely
continuous” with respect to the Lebesgue measure, we mean
that it assigns zero measure to any set of Lebesgue measure
zero. When we say νψ,S is “singular,” we mean that its support
is confined to a set of Lebesgue measure zero. Similarly, μψ

can be decomposed into its absolutely continuous and singular
parts μψ,C and μψ,S , which are defined, respectively, from
the components νψ,C and νψ,S of νψ . By the Radon-Nikodym
theorem, due to its absolute continuity νψ,C has a probability
density function gψ (x) that is a function, not a pseudofunction
or delta function. To simplify our analysis, first we show that
it is only necessary to look at the absolutely continuous part
of the distribution.

032111-4



ψ-EPISTEMIC THEORIES: THE ROLE OF SYMMETRY PHYSICAL REVIEW A 88, 032111 (2013)

Lemma 3. For any distinct and nonorthogonal states |ψ〉,
|φ〉 in a symmetric, maximally nontrivial theory, μψ,C and
μφ,C have nontrivial overlap.

Proof. Let Sa denote the set of states λ ∈ � with |〈λ|ψ〉|2 =
a. If a = 1, then Sa is a single point with zero μφ measure. For
0 < a < 1, Sa is a (2d − 3)-sphere centered about ψ , and for
a = 0 it is a (2d − 4)-dimensional manifold diffeomorphic
to CP d−1. In both of the latter cases, as φ,ψ are distinct
nonorthogonal states, the distribution of |〈λ|φ〉|2 for λ chosen
uniformly on Sa is absolutely continuous with respect to
the Lebesgue measure on [0,1]. Therefore, the distribution
of |〈λ|φ〉|2 for λ ∈ � chosen according to μψ is absolutely
continuous over |〈λ|ψ〉| < 1.

By our symmetry condition, μφ,S is the product of a singular
measure on [0,1], denoted νφ,S , and the uniform measure on
rings of constant |〈φ|λ〉|2. Since drawing λ from μψ induces an
absolutely continuous measure on |〈φ|λ〉|2, then in particular
μψ has probability zero of producing a state λ with |〈φ|λ〉|2 ∈
Supp(νφ,S), because Supp(νφ,S) is a set of measure zero. This
implies that μψ has probability zero of producing a state λ ∈
Supp(μφ,S). Hence, there is zero overlap between μψ and
μφ,S . In particular, μψ,C and μψ,S have zero overlap with
μφ,S . Similarly, μφ,C and μφ,S have zero overlap with μψ,S .

This shows that the overlap between μφ,C and μψ,C equals
that between μφ and μψ , which is nonzero for maximally
nontrivial theories. �

From now on, we assume μψ is generated only from the
absolutely continuous part νψ,C , so that μψ has as probability
density function fψ (|〈ψ |λ〉|2) where fψ is a function, not a
pseudofunction. We can do this without loss of generality,
as our proof will not depend on the normalization of the
probability distributions, and will only use facts about the
absolutely continuous components of the measures.

Next, let the distance between two states ψ and φ be defined
by their scaled radial distance (also called the Fubini-Study
metric):

‖ψ − φ‖ = 2

π
arccos(|〈ψ |φ〉|).

For any state |ψ〉 ∈ Hd , with probability distribution μψ (λ) =
fψ (|〈ψ |λ〉|2), we define the radius of μψ to be the distance
between |ψ〉 and the furthest away state at which μψ has
substantial density:

rψ = sup

{
r : ∀ δ > 0

∫
λ:r−δ<‖ψ−λ‖<r

μψ (λ) dλ > 0

}
. (14)

Lemma 4. For a symmetric theory, given any two states
|ψ〉,|φ〉, we have ‖ψ − φ‖ � rψ + rφ if and only if |ψ〉 and
|φ〉 have trivial overlap.

Proof. Suppose that ‖ψ − φ‖ � rψ + rφ but |ψ〉 and
|φ〉 have nontrivial overlap. Then Supp(μψ ) ∩ Supp(μφ) has
nonzero measure, and for any λ in that set, the triangle inequal-
ity implies that rψ + rφ � ‖ψ − λ‖ + ‖φ − λ‖ � ‖ψ − φ‖.
Thus, rψ and rφ satisfy rψ + rφ = ‖ψ − φ‖, which is a
contradiction since ‖ψ − λ‖ + ‖φ − λ‖ = ‖ψ − φ‖ only on
a set of measure zero.

Now suppose that ‖ψ − φ‖ < rψ + rφ . Consider λint, an
ontic state which lies at the intersection of rings of radii rψ and
rφ about ψ and φ, respectively. In other words ‖ψ − λint‖ = rψ

and ‖φ − λint‖ = rφ . Such a λint exists because ‖ψ − φ‖ <

rψ + rφ . Then in the neighborhood of λint, we claim that μψ

and μφ have nontrivial overlap.
To show this, we define a set B of positive measure, on

which μψ and μφ are “equivalent” to the Lebesgue measure,
in the sense that if S ⊆ B has positive Lebesgue measure, then
S has positive measure under both μψ and μφ . This implies
that ψ and φ have nontrivial overlap on B.

By the symmetry condition, each μψ is a product measure
between a measure νψ on [0,1] and a uniform measure on
surfaces of constant |〈ψ |λ〉|. Let u and v be the normal
vectors to surfaces of constant |〈ψ |λ〉| and |〈φ|λ〉| at |λint〉,
respectively. Note that u (v) is equal to the tangent vector to
the geodesic running from ψ (φ) to λint evaluated at λint. Since
‖ψ − φ‖ < rψ + rφ , these are distinct geodesics, so u and v

are linearly independent.
Since CP d−1 is a smooth Riemannian manifold, u and v

form a local coordinate system in the ε neighborhood of |α〉,
which we denote Nε(|α〉). If we associate coordinates x1, x2

with u and v, the integral over Nε(|α〉) can be parameterized
as ∫

g(x1,x2,y1, . . . ,y2d−4)dx1dx2dy1, . . . ,dy2d−4.

Here g is the square root of the metric, which is strictly
positive in the neighborhood of |λint〉. Also, dxi is the Lebesgue
integral over the coordinate xi , and the yi are coordinates
corresponding to the remaining 2d − 4 dimensions of the
space.

Now consider the set

B = Nε(|α〉) ∩ Supp(μψ ) ∩ Supp(μφ).

Trivially, μψ and μφ are equivalent to the Lebesgue measure
on B. Note that Supp(μψ ) is a union of surfaces S1 of constant
|〈λ|ψ〉| which are perpendicular to u at α. If ε is sufficiently
small these surfaces have negligible curvature, so they look
like orthogonal hyperplanes in the x1 coordinate system. Let
ε1 be the Lebesgue measure on Supp(μψ )

⋂
B. Let S2 and

ε2 be defined similarly for φ. If the surfaces S1, S2 had zero
curvature, the Lebesgue measure of B would simply be the
product of the measures ε1ε2, since x1 and x2 are orthogonal
coordinates. Since the surfaces have slight curvature, and the
coordinates xi are not truly orthogonal, the above calculation
has to be changed slightly. Specifically, for sufficiently small
ε the Lebesgue measure of B can be approximated by gε1ε2,
where g is the square root of the metric at λint. This quantity
is strictly positive since each εi > 0 by the definition of r ,
the metric g is strictly positive, and μφ and μφ are absolutely
continuous with respect to the Lebesgue measure. Hence, B

has positive Lebesgue measure. �
Corollary 1. If |ψ〉 and |φ〉 are orthogonal, then rψ +

rφ � 1.
Proof. If 〈ψ |φ〉 = 0, then ‖ψ − φ‖ = 1. Since any orthog-

onal |ψ〉 and |φ〉 have trivial overlap, Lemma 4 implies that
rψ + rφ � 1. �

Lemma 5. Given any maximally nontrivial and symmetric
theory in d � 3, for any state |ψ〉 ∈ Hd , we have rψ = 1

2 .
Proof. We first show that rψ � 1

2 for all |ψ〉 ∈ Hd , which
we illustrate on the left side of Fig. 2 for the case where d = 3.
Suppose there exists |ψ〉 such that rψ = 1

2 + ε for some ε > 0.
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FIG. 2. From left to right are pictorial representations of the proof that rψ � 1
2 in dimension 3, the proof that rψ = 1

2 , and the form
of the μψ ’s that we ultimately deduce (with rψ = 1

2 for all |ψ〉 ∈ Hd ). The shaded regions are the supports of the respective probability
distributions.

From Corollary 1, for all |φ〉 orthogonal to |ψ〉, we have rφ �
1
2 − ε. In dimension d � 3, there exist nonorthogonal states
|φ〉, |φ′〉 such that 〈ψ |φ〉 = 〈ψ |φ′〉 = 0 and |φ〉 �= |φ′〉. Then
rφ + rφ′ � 1 − 2ε. If we choose |φ〉, |φ′〉 such that 1 − 2ε <

‖φ − φ′‖ < 1, then from Lemma 4, we have that μφ and μφ′

have trivial overlap even though 〈φ|φ′〉 �= 0. This contradicts
the theory being maximally nontrivial.

We now show that rψ � 1
2 for all |ψ〉 ∈ Hd , as illustrated

in the center of Fig. 2. Suppose there exists |ψ〉 such that
rψ = 1

2 − ε for some ε > 0. Since rψ ′ � 1
2 for all |ψ ′〉 ∈ Hd ,

thus, rψ + rψ ′ � 1 − ε. If we choose |ψ〉, |ψ ′〉 such that
1 − ε < ‖ψ − ψ ′‖ < 1, then μψ and μψ ′ have trivial overlap
from Lemma 4 even though 〈ψ |ψ ′〉 �= 0. This again contradicts
maximum nontriviality. �

This immediately implies the following.
Corollary 2. In dimensions d � 3, a symmetric ψ-epistemic

theory is maximally nontrivial if and only if for any state |ψ〉
and for all δ > 0 the measure μψ integrated over the following
region is nonzero:{

λ : 1
2 � |〈ψ |λ〉|2 � 1

2 + δ
}
. (15)

Moreover, Supp(μψ ) has measure zero on the set of λ such
that |〈ψ |λ〉|2 < 1

2 .
Proof. By Lemma 5, for any state |ψ〉 we have rψ = 1

2 . By
rewriting the distance between states in terms of their inner
product, the corollary follows from the definition of rψ in
Eq. (14). �

In Lemma 5, we showed that the radius rψ of every state ψ

in a maximally nontrivial symmetric theory is 1
2 . We now use

this to show that a certain set of ontic states is deficient. Recall
that we say a set S is deficient for measurement M if S is not
in Supp(μφi

) for any φi ∈ M .
Corollary 3. Given any symmetric, maximally nontrivial

ψ-epistemic theory in d � 3, for any measurement basis
M = {φi}di=1, the region

RM = {
λ : |〈φi |λ〉|2 < 1

2 ,i = 1, . . . ,d
}

is deficient except on a set of measure zero. (Note that, by
elementary geometry, RM has positive measure if and only if
d � 3.)

Proof. By Corollary 2, for all i = 1, . . . ,d, the set Supp(μφi
)

must have measure zero over the region RM . However, Eq. (2)
implies that any λ ∈ RM must be in Nonzero(ξi,M ) for some i

even if it is not in Supp(μφi
). This means that RM is deficient

except possibly on a set of measure zero. �
In general, deficiency occurs in any theory in d � 3 even

without the symmetry assumption, as proved by Harrigan
and Rudolph [11] using the Kochen-Specker theorem [2]. In
Corollary 3, we showed that symmetry implies a specific type
of deficiency.

To show that no strongly symmetric, maximally nontrivial
theory exists, we first prove two simple results for ψ-epistemic
theories in general. These results will help us to derive a
contradiction for strongly symmetric, maximally nontrivial
theories.

Lemma 6. Given any two orthogonal states |φ〉 and |ψ〉,
the set Supp(μφ) ∩ Nonzero(ξψ,M ) has measure zero for all
measurements M that contain ψ .

Proof. Suppose to the contrary that Supp(μφ) ∩
Nonzero(ξψ,M ) has positive measure for some measurement M
containing ψ . Then by definition, if the state |φ〉 is measured
using M , the outcome corresponding to |ψ〉 is returned
with nonzero probability. However, since |〈ψ |φ〉|2 = 0, this
contradicts the Born rule [Eq. (1)]. �

Lemma 7. For any α ∈ �, let Bε(α) = {λ : ‖λ − α‖ < ε}
be an ε ball around α for some ε > 0. Given a measurement
basis M = {φi}di=1, there exists some j such that∫

Bε(α)
ξj,M (λ) dλ > 0. (16)

Proof. For any such α ∈ � the following holds:

∫
Bε(α)

d∑
i=1

ξi,M (λ) dλ =
∫

Bε(α)
1 dλ > 0.

This then implies that there exists some j such that∫
Bε(α)

ξj,M (λ) dλ > 0. �

Using these two results, we can now prove that in dimen-
sion d � 3, there exists no strongly symmetric, maximally
nontrivial ψ-epistemic theory.

Theorem 1. There exists no strongly symmetric, maximally
nontrivial ψ-epistemic theory in dimension d � 3.

Proof. Suppose we have a symmetric, maximally nontrivial
theory in dimension d � 3, and we fix a measurement basis
M = {φi}di=1. From Corollary 3, there exists a deficiency
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FIG. 3. Pictorial representation of the deficiency region for d = 3.
The shaded regions are the supports of the respective probability
measures, and the middle unshaded region RM is deficient.

region given by

RM = {
λ : |〈φi |λ〉|2 < 1

2 ,i = 1, . . . ,d
}
,

perhaps minus a set of measure zero. This is illustrated in
Fig. 3 for the case where d = 3.

Consider |α〉 = 1√
d

(|φ1〉 + · · · + |φd〉), which is contained
in the deficiency region. Given ε > 0, let Bε(α) = {λ : ‖λ −
α‖ < ε} be the ε ball around |α〉. We choose ε such that Bε(α) is
contained in RM . From Lemma 7, there exists some j such that
B := Bε(α) ∩ Nonzero(ξj,M ) has nonzero measure. Without
loss of generality, we assume that j = 1.

Let ν be the measure obtained by averaging μψ over all
states |ψ〉 orthogonal to |φ1〉, and let A be the set of all λ such
that |〈φ1|λ〉|2 < 1

2 . Since the theory is strongly symmetric, ν

must be a function only of |〈φ1|λ〉|2. Moreover, each of the
measures μψ assigns positive measure to the region of states λ

such that |〈ψ |λ〉|2 is close to 1
2 ; hence, the averaged measure

ν assigns positive measure to every open subset of A, and
therefore in particular to B. This contradicts Lemma 6, which
implies that each of the averaged measures μψ must assign
zero measure to Nonzero(ξ1,M ) and hence B. �

A. Proof of generalized no-go theorem

We now generalize our proof of Theorem 1 to the “merely”
symmetric case, where the probability distributions μψ can
vary with ψ . First note that our previous proof does not
immediately carry over. Since the probability distributions can
vary as ψ changes, it is possible that the distributions for states
orthogonal to φ1 might be able to “evade” the set B in the proof
of Theorem 1, which returns answer φ1 under measurement
M , while maintaining some density near their outer radii.

To see how this might occur, consider the following one-
dimensional example: Let � = R be the real line. Construct
B ⊆ [0,1] to be a “fat Cantor set” on [0,1] as follows. Initially
set B = [0,1]. In step 1, remove the middle 1/4 of this interval
so that B = [0, 3

8 ] ∪ [ 5
8 ,1]. At the ith step, remove the middle

1
22i of each of the 2i remaining intervals. Continue indefinitely.
The resulting set B is called a “fat Cantor set” because it
is nowhere dense (so contains no intervals), yet has positive
Lebesgue measure on [0,1].

For each point x ∈ R, let μx be the uniform distribution
on [x − 1,x + 1] with B removed. Then μx is absolutely
continuous with respect to the Lebesgue measure for all x ∈ R,
and furthermore has positive measure on [1 + x − ε,1 + x]

for all ε > 0. However, despite the fact that B has positive
measure, the distributions μx never intersect B. The worry is
that our distributions in CP d−1 could likewise evade the set
B in our proof, foiling our contradiction. This worry is related
to a variant of the Kakeya/Besicovitch problem, as we discuss
in Sec. IV.

We can extend Theorem 1 without solving a Kakeya-like
problem, but to do so we need a result about the differential
geometry of CP d−1. Interestingly, we use the fact that we
are working in a complex Hilbert space; we believe the proof
could be adapted to a real Hilbert space, but it would be much
less convenient.

Discussing the differential geometry of CP d−1 is easiest
if we first pick a gauge for CP d−1, that is, if we pick a
representative from each equivalence class of vectors which
differ only by a global phase. We use the following gauge: Let
|α〉 = 1√

d
(|φ1〉 + · · · + |φd〉). For each equivalence class, we

pick a representative u such that 〈α|u〉 is real and positive. This
uniquely identifies representatives for all equivalence classes
of states, except those orthogonal to α. Moreover, this way
of choosing a gauge is continuous and smooth near α; more
precisely, equivalence classes which are close to one another
have representatives which are also close to one another. This
allows us to integrate over the manifold near α using these
representatives. Using this gauge, we now prove the following.

Lemma 8. Let M be a measurement basis {φi}, let |α〉 be
defined as above, and let d � 3. Then there exist d vectors
u1, . . . ,ud in CP d−1 such that

(i) 〈ui |φi〉 = 0 for all i;
(ii) 〈ui |α〉 = 1√

2
for all i;

(iii) the tangent vectors ti to the geodesics from ui to α are
linearly independent at α when the tangent space is viewed as
a real vector space.

Proof. Let a =
√

d
2(d−1)2 and b =

√
d−2

4(d−1) . Then we define

u1, . . . ,ud−2 as follows:

ui =
⎛
⎝∑

j �=i

a|φj 〉
⎞
⎠ + ib|φi+1〉 − ib|φi+2〉.

For the last two vectors, we set

ud−1 =
⎛
⎝ ∑

j �=d−1

a|φj 〉
⎞
⎠ + ib|φd〉 − ib|φ1〉,

ud =
⎛
⎝∑

j �=d

a|φj 〉
⎞
⎠ + b|φ1〉 − b|φ2〉.

Note that the coefficients in ud are all real, unlike for the other
d − 1 vectors. It is straightforward to verify that 〈ui |φi〉 = 0
and 〈ui |α〉 = 1√

2
for all i. Furthermore, we can compute the

tangent vectors ti as follows. The geodesics from |ui〉 to |α〉 in
the Fubini-Study metric can be parameterized by

γ (t) = cos(t)|vi〉 + sin(t)|α〉,
where vi is the normalized component of ui orthogonal to
α, that is vi = k (ui − 〈α|ui〉α) for some real normalization
constant k. These geodesics lie entirely within our choice of
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gauge. Therefore, ti is the projection of γ ′(t)|t=π/2 onto the
plane orthogonal to α, which is

ti = ui − 〈α|ui〉α.

Since ti is in the tangent space, its normalization is irrelevant.
Also, since our gauge is fixed, there is no ambiguity involving
the global phase of ui or ti .

We now verify that the ti’s are linearly independent.
Suppose that c1t1 + · · · + cd td = 0, with ci real. Note that
〈α|ui〉α has all real coefficients, so a coefficient of ti is
imaginary if and only if the corresponding coefficient of
ui is imaginary. Since c1t1 + · · · + cd td = 0, in particular
the imaginary terms in |φi〉 must sum to zero for all i.
For i = 3 . . . d, only the terms ci−2ti−2 and ci−1ti−1 contain
imaginary multiples of |φi〉. Hence, this constraint implies
ci−2 = ci−1. Additionally, c1t1 is the only term containing
an imaginary multiple of |φ2〉, so we must have c1 = 0.
Therefore, c1 = c2 = · · · = cd−2 = 0. Since cd−1td−1 is the
only term containing an imaginary multiple of |φ1〉, we must
have cd−1 = 0, and hence cd = 0 as well. Therefore, the ti’s
are linearly independent. �

Note that in a real Hilbert space, the analogous statement to
Lemma 8 is false because the dimension of the tangent space
at α is only d − 1. In a complex Hilbert space the dimension of
the tangent space is 2d − 2, so the tangent space can contain
d linearly independent vectors assuming d � 2.

We now show that Lemma 8 implies the existence of a set
B of positive measure, on which every μui

is “equivalent”
to the Lebesgue measure, in the sense that if S ⊆ B has
positive Lebesgue measure, then S has positive measure under
each μui

.
Lemma 9. Let ui and |α〉 be as defined in Lemma 8. Then

there exists a set B in the neighborhood of |α〉, of positive
Lebesgue measure, such that the μui

are equivalent to the
Lebesgue measure on B.

Proof. Consider

B = Nε(|α〉) ∩ Supp
(
μu1

) ∩ Supp
(
μu2

) ∩ · · · ∩ Supp
(
μud

)
,

where Nε(|α〉) denotes the ε neighborhood of α. For suffi-
ciently small ε, one can show that B has the desired properties
using the same techniques as in the proof of Lemma 4. �

From these two lemmas, the proof of our main theorem
follows, since the orthogonality of each ui to φi (together with
the Born rule) implies that the set B cannot give any outcome
with positive probability under the measurement M = {φi}.
However, each element in B must give some outcome under
measurement.

Theorem 2. There exists no symmetric, maximally nontriv-
ial ψ-epistemic theory in dimension d � 3.

Proof. By Lemmas 8 and 9, there is a measurement basis
M = {φ1, . . . ,φd} and vectors u1, . . . ,ud such that each ui is
orthogonal to φi .

Furthermore, there is a set B of positive measure such
that each μui

is equivalent to the Lebesgue measure on B.
Therefore, by the Born rule, for each i we must have∫

B

μui
(λ)ξi,M (λ)dλ = 0.

Since each μui
is equivalent to the Lebesgue measure on B,

this implies ∫
B

ξi,M (λ)dλ = 0.

However, also, since
∑

i ξi,M (λ) = 1 for each state λ, we have
that ∑

i

∫
B

ξi,M (λ)dλ =
∫

B

dλ > 0,

which is a contradiction. �

B. Extending the proof to � = U(d)

We now rule out a generalization of strongly symmetric,
maximally nontrivial theories with a larger ontic space, namely
� = U (d).

Recall that a theory is strongly symmetric if � = CP d−1

and μUψ (Uλ) = μψ (λ) for all unitaries U . A theory is
(weakly) symmetric if μUψ (Uλ) = μψ (λ) only for those U

such that Uψ = ψ .
We can generalize the definition of strong symmetry to any

ontic space � on which the unitary group has an action. We
define a theory to be strongly symmetric with ontic space �

and action a : U (d) × � → � if μUψ (a(U,λ)) = μψ (λ) for
all unitaries U . In other words, for all U and ψ , the following
two distributions on λ are identical: Draw λ from μUψ , or draw
λ′ from μψ and then set λ = a(U,λ′). Strongly symmetric
theories admit a natural dynamics, since applying a unitary to
a quantum state is equivalent to applying the unitary to the
ontic states via the action a.

A natural choice of � in this context is U (d), the symmetry
group of the d-dimensional Hilbert space. The unitary group
U (d) has a natural action on itself by left multiplication.
We now show that there are no strongly symmetric, maxi-
mally nontrivial theories with � = U (d) and with the action
a(U,λ) = Uλ given by left multiplication.

Our proof proceeds similarly to the proof above. Assume
there exists a strongly symmetric, maximally nontrivial theory
with � = U (d). We find a set of quantum states {1,2,3},
such that the μj

have nontrivial joint overlap, by which
we mean that Supp(1) ∩ Supp(2) ∩ Supp(3) has positive
measure. We then create an orthonormal basis {e1, . . . ,ed} such
that for all i, there exists a j such that 〈ei |j 〉 = 0. Therefore,
if measured in the basis {ei}, the ontic states in S cannot give
output ei for any i by the Born rule, which contradicts the fact
that they must give some outcome under measurement.

To show this, we first need to characterize strongly
symmetric theories with � = U (d). We now show that the
probability distributions μψ of any strongly symmetric theory
are fully characterized by some probability measure ν on
CP d−1. In the following, we denote ontic states M,N ∈ U (d)
with Latin characters and quantum states λ,ψ,φ ∈ CP d−1

with Greek characters.
Lemma 10. Let π = (�,μ,ξ ) be a strongly symmetric

theory with � = U (d) and with action a given by left
multiplication. Then there exists a probability measure ν on
CP d−1 which fully characterizes the probability distributions
μψ for all ψ . In particular, to draw a sample M from μψ , one
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can first draw λ ∈ CP d−1 from ν, and then draw M uniformly
(according to the Haar measure) such that M†ψ = λ.

Proof. Suppose we draw M from μψ . Let νψ be the
distribution on CP d−1 induced by M†ψ .

Suppose that Uψ = ψ for some unitary U . Then by
symmetry, μψ must be invariant under applying U . Note that
if M†ψ = λ, then (UM)†ψ = M†U †ψ = M†ψ = λ as well.

Let μψ,λ be the measure over M’s obtained by starting from
μψ and then conditioning on M†ψ = λ. By the above obser-
vation, if μψ is invariant under every such U , then μψ,λ must
also be invariant under U for every λ. In particular, this implies
that μψ,λ must be the uniform (Haar) measure on matrices M

such that M†ψ = λ. Therefore, to draw a sample M from μψ ,
one can first draw λ from νψ , and then draw M uniformly
(according to the Haar measure) such that M†ψ = λ.

Now suppose that Uψ = φ. Let M be drawn from μφ and
N be drawn from μψ . By strong symmetry, the distribution of
UN is the same as the distribution of M . However, we also
know that (UN )†φ = N †U †φ = N †ψ . Hence, the induced
distribution of (UN )†φ is the same as the induced distribution
of N †ψ . However, by strong symmetry the former distribution
is νφ , and the latter distribution is νψ . Hence, νψ = νφ = ν for
all φ and ψ as desired. �

By the Lebesgue decomposition theorem, ν can be uniquely
decomposed as ν = νS + νC , where νC is absolutely continu-
ous with respect to the Lebesgue measure on CP d−1, and νS is
singular with respect to the Lebesgue measure onCP d−1. As in
the previous section, we now show that maximum nontriviality
implies that νC has positive total measure, and we restrict our
attention to νC in future parts.

Lemma 11. In any maximally nontrivial, strongly symmetric
theory with � = U (d) and action a given by left multiplica-
tion, νC has positive total measure.

Proof. By Lemma 10, if M is drawn from μψ , then M†

maps ψ to a state λ chosen from ν and maps φ uniformly
at random to a state λ′ with inner product |〈ψ |φ〉| = |〈λ|λ′〉|.
Likewise, if N is drawn from μφ , then N † maps φ to a state
λ′ chosen from ν and maps ψ uniformly at random to a state
λ with inner product |〈ψ |φ〉| = |〈λ|λ′〉|.

By maximum nontriviality, μψ and μφ have nontrivial
overlap for any nonorthogonal ψ and φ. Let S = Supp(ν).
Since μψ and μφ have nontrivial overlap for all nonorthogonal
ψ and φ, we must have that for all r ∈ (0,1], if λ is chosen
according to ν and λ′ is chosen uniformly such that |〈λ|λ′〉| =
r , then λ′ ∈ S with positive probability. In particular, there
must exist some λ ∈ S such that, if r is chosen uniformly at
random in (0,1) and λ′ is chosen uniformly at random such that
|〈λ|λ′〉| = r , then λ′ ∈ S with positive probability. This imme-
diately implies that S has positive Lebesgue measure, since
the Lebesgue measure of S can be expressed as the integral of
the indicator for λ′ ∈ S over CP d−1, which can be written in
polar coordinates centered about λ. The integral is positive by
the preceding observation. Hence, S = Supp(ν) has positive
Lebesgue measure and νC has positive total measure. �

As before, we now assume that ν = νC ; i.e., we discard the
singular part of ν. We can do this without loss of generality
since our contradiction does not rely on the normalization of ν.

Next we show that it is easy to find states {1,2,3} such
that the μi

have nontrivial joint overlap; i.e., the intersection
of their supports is a set of positive measure. The proof makes

crucial use of the Lebesgue density theorem. The Lebesgue
density theorem says that for any set S of positive measure,
for almost every point in S, the density of S at that point is 1.
More formally, the density of S at point x, denoted dx(S), is
defined as

dx(S) = lim
ε→0+

μ(Bε(x) ∩ S)
μ(Bε(x))

,

where μ is the Lebesgue measure and Bε(x) is the ε-ball
centered at x. The Lebesgue density theorem says that for any
measurable set S, the set T = {x ∈ S : dx(S) = 1} ⊆ S differs
from S by at most a set of measure zero. In particular T has
the same measure as S. The points x ∈ S such that dx(S) = 1
are called the Lebesgue density points of S.

Lemma 12. For any strongly symmetric theory with � =
U (d), there exists a set T ⊆ CP d−1 such that

(1) T has positive measure;
(2) if M†ψ ∈ T then M is a Lebesgue density point of

Supp(μψ );
(3) if μψ and μφ have nontrivial overlap, then there exists

M such that M†ψ ∈ T and M†φ ∈ T ;
(4) for any three states 1,2,3 such that there exists

M with M†i ∈ T for each i = 1,2,3, the intersection
Supp(μ1 ) ∩ Supp(μ2 ) ∩ Supp(μ3 ) has positive measure.

Proof. Let S = Supp(ν) and let S ′
ψ = Supp(μψ ). Note that

S and S ′
ψ have positive measure by Lemma 11. Let T ′

ψ be the set
of Lebesgue density points of Sψ . Let T = {M†ψ : M ∈ T ′

ψ }.
First note that the definition of T is independent of our

choice of ψ . Indeed, by strong symmetry, if Uψ = φ, then
UT ′

ψ = T ′
φ , where the notation US denotes the set {Us : s ∈

S}. Therefore,

T = {M†ψ : M ∈ T ′
ψ } = {(UM)†Uψ : M ∈ T ′

ψ }
= {M†φ : M ∈ T ′

φ}.
Second, note that T ⊆ S since T ′

ψ ⊆ S ′
ψ . Furthermore, since

T ′
ψ differs from S ′

ψ only by a set of measure zero, T differs
from S only by a set of measure zero as well. Hence, T has
positive measure, which proves property (1).

Also, T precisely characterizes T ′
ψ , in the sense that M ∈

T ′
ψ if and only if M†ψ ∈ T . The “if” direction follows directly

from the definition, while the “only if” direction follows from
the fact that once M†ψ is fixed, the distribution of M under
μψ is uniform over the remaining degrees of freedom by
Lemma 10. This proves property (2).

Next suppose that μψ and μφ have nontrivial overlap,
i.e., Supp(μψ ) ∩ Supp(μφ) has positive measure. Then by
Lemma 10, the set {M : M†ψ ∈ S and M†φ ∈ S} has positive
measure as well. Since T differs from S only by a set of
measure zero, this implies that {M : M†ψ ∈ T and M†φ ∈ T }
has positive measure also. Hence, there exists an M such that
M†ψ ∈ T and M†φ ∈ T . This proves property (3).

Finally suppose that for three states 1,2,3 there exists
an M with M†i ∈ T for each i = 1,2,3. By property (2) we
know that M is a Lebesgue density point of Supp(μi

) for
each i. Suppose that we perturb M by a small amount ε > 0
uniformly at random to obtain a new matrix N . More formally,
choose N according to the Haar measure on Bε(M). Since M

is a Lebesgue density point of Supp(μi
), by choosing small

enough ε, the density of Supp(μi
) in Bε(M) can be made
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arbitrarily close to 1. Therefore, by choosing ε small enough,
we can ensure that for each i, the probability that N †i ∈ T

is at least (say) 0.99.
The events N †i ∈ T are not necessarily independent, but

by the union bound the probability that N †i ∈ T for all
i = 1,2,3 is at least 0.97. Hence, N will be in Supp(μ1 ) ∩
Supp(μ2 ) ∩ Supp(μ3 ) with positive probability. This im-
plies that Supp(μ1 ) ∩ Supp(μ2 ) ∩ Supp(μ3 ) has positive
Lebesgue measure, and hence the μi

have nontrivial joint
overlap, which proves property (4). �

Now we show that if 1, 2, and 3 are chosen appropri-
ately, then there exists an orthonormal basis {e1, . . . ,ed} such
that for all i, there exists a j such that 〈ei |ψj 〉 = 0. In particular
such a basis exists if 1 and 2 are “nearly orthogonal” and
3 is not coplanar with 1 and 2.

Lemma 13. Let u1 and u2 be orthonormal vectors, and let
3 be a state that is not coplanar with u1 and u2. In particular,
assume that |〈3|u1〉|2 + |〈3|u2〉|2 � k for some fixed k < 1.
Then there exists a k′ > 0 (depending on k) such that if 1 =
u1 and 2 is in the u1,u2 plane such that 0 < |〈1|2〉| < k′,
then there exists an orthonormal basis {e1, . . . ,ed} such that for
all i = 1 . . . d there exists j ∈ {1,2,3} such that 〈ei |ψj 〉 = 0.

Proof. Set 1 = u1. Without loss of generality, we can set

2 = au1 + u2√
|a|2 + 1

for some complex parameter a which we have yet to specify.
By the Gram-Schmidt process, there exists a vector u3, and
complex coefficients b,c, such that

3 = bu1 + cu2 + u3√
|b|2 + |c|2 + 1

,

where {u1,u2,u3} is an orthonormal basis for the subspace
spanned by 1, 2, and 3. Note that the statement
|〈3|u1〉|2 + |〈3|u2〉|2 � k implies that b,c � f (k) for some
function f of k.

Now consider the following three (non-normalized) vec-
tors, parameterized by x ∈ C:

e1 = xu2 + u3,

e2 = u1 − a∗u2 + a∗x∗u3,

e3 = a(1 + x∗x)u1 + u2 − x∗u3.

By construction the ei’s are orthogonal to one another, e1

is orthogonal to 1, and e2 is orthogonal to 2. We would like
to have

〈e3|3〉 = ba∗(1 + |x|2) + c − x = 0

as well. If either a = 0 or b = 0, we can achieve this by simply
setting x = c, so assume a and b are nonzero. Also, let w =
ba∗
|ba∗| , which has norm 1. Then setting 〈e3|3〉 = 0 is equivalent
to setting

|ba∗|(1 + |x|2) + cw − xw = 0.

Setting xw = p + iq for real p,q gives

|ba∗|(1 + p2 + q2) + Re(cw) − p = 0,

Im(cw) − q = 0.

Plugging the value of q from the second equation into the
first gives a quadratic in p,

|ba∗|p2 − p + |ba∗|[1 + Im(cw)2] + Re(cw) = 0.

This has a real solution in p if and only if

1 − 4|ba∗|{|ba∗|[1 + Im(cw)2] + Re(cw)} � 0.

Note that b,c are bounded above by f (k) as noted above. By
making 1 nearly orthogonal to 2, we can choose a arbitrarily
close to zero. This makes the left-hand side of the inequality
arbitrarily close to 1, so the inequality will hold. Hence, we can
solve for x and find an e3 that is orthogonal to 3. Therefore,
if |〈1|2〉| < k′ for some k′ which depends on k, then the
desired orthonormal basis exists.

This gives a basis e1, e2, e3 for the subspace spanned by
1, 2, and 3 such that 〈ei |i〉 = 0 for each i = 1,2,3. If the
dimension of the space d is more than 3, any extension of this
basis to e1, . . . ,ed has the property that for all i = 1, . . . ,d,
there exists a j ∈ {1,2,3} such that 〈ei |ψj 〉 = 0. �

Our no-go theorem follows from the above observations.
Theorem 3. There are no strongly symmetric, maximally

nontrivial ψ-epistemic theories with � = U (d) in dimension
d � 3.

Proof. Suppose a strongly symmetric, maximally nontrivial
theory exists with � = U (d) in dimension d � 3. We find
three states 1, 2, and 3 with the following two properties.

(A) μ1 , μ2 , and μ3 have nontrivial joint overlap and
(B) there exists an orthonormal basis e1, . . . ,ed such that

for all i = 1, . . . ,d, there exists a j ∈ {1,2,3} such that
〈ei |ψj 〉 = 0.

The contradiction follows as in the proof of Theorem 2.
Consider making a measurement in the basis e1, . . . ,ed .
Let S = Supp(μ1 ) ∩ Supp(μ2 ) ∩ Supp(μ3 ), and consider
ontic states M ∈ S. Note that M ∈ Supp(μj

), and that
for each j = 1,2,3 and each ei , there exists a j ∈ {1,2,3}
such that 〈ei |j 〉 = 0. So by the Born rule, for each i at
most a set of measure zero of M ∈ S can return answer
ei with positive probability. Since each M ∈ S gives some
outcome ei under measurement, S must have measure zero.
However, S has positive measure by property (A), which is a
contradiction.

Using Lemma 12, one can show that for all nonorthogonal
states 1 and 2, there exists a state 3 not coplanar with 1

and 2 such that the states have property (A).3 By Lemma 13, if
1 and 2 are “nearly orthogonal,” and 3 is not coplanar with
1 and 2, then the states have property (B). These two facts
nearly suffice to guarantee the existence of three states with
properties (A) and (B), but they fall short. The reason is that
the degree to which 1 and 2 must be “nearly orthogonal”
depends on the choice of 3. Although for every 1 and
2 there exists a noncoplanar 3 which has property (A),

3Indeed, by Lemma 12 there exists a set T with the four properties
defined in the lemma. Given 1 and 2 which are nonorthogonal, by
property 3 of T there exists an M such that M†1 ∈ T and M†2 ∈ T .
Since T has positive measure by property 1, there exists a 3 not
coplanar with 1 and 2 such that M†3 ∈ T as well. These three
states have nontrivial joint overlap by property 4 of T .
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the choice of 3 could depend arbitrarily on 1 and 2, so in
particular could be such that property (B) is not satisfied.

To fix this, we consider an infinite sequence of quantum
states ψn and φn of decreasing inner product. For each n, there
exists a χn that shares property (A) with ψn and φn. Since
CP d−1 is compact, even though the χn’s might “wander” in
CP d−1, by passing to a subsequence we can assume they
converge to fixed state χ , which we show can be chosen to
be noncoplanar with ψn and φn for large n. This allows us to
“nail down” the choice of χn so that we can apply Lemma 13
to 1 = ψn, 2 = φn, and 3 = χn.

More precisely, by Lemma 12, there exists a set T with the
following properties:

(1) T has positive measure;
(2) If M†ψ ∈ T then M is a Lebesgue density point of

Supp(μψ );
(3) If μψ and μφ have nontrivial overlap, then there exists

an M such that M†ψ ∈ T and M†φ ∈ T ;
(4) For any three states 1,2,3 such that there exists

an M with M†i ∈ T for each i = 1,2,3, the intersection
Supp(μ1 ) ∩ Supp(μ2 ) ∩ Supp(μ3 ) has positive measure.

Consider a sequence of quantum states ψn, φn such that
ψn → ψ and φn → φ for orthogonal states ψ and φ as n →
∞, but |〈ψn|φn〉| > 0 for all n ∈ N. For each n, by maximum
nontriviality μψn

and μφn
have nontrivial overlap, and there

exists an Mn such that M
†
nψn ∈ T and M

†
nφn ∈ T by property

(3) of T .
Let ψ̃n = M

†
nψn, and let φ̃n = M

†
nφn. By construction

ψ̃n,φ̃n ∈ T . These form sequences in CP d−1. Since CP d−1

is compact, there exists a subsequence of the ψ̃n’s which
approaches some ψ̃ as n → ∞. Therefore, by passing to a
subsequence, there exists ψ̃ and φ̃ such that ψ̃n → ψ̃ and
φ̃n → φ̃ as n → ∞.

Since T has positive measure by property (1), there exists
a χ̃ ∈ T that is not coplanar with ψ̃ and φ̃. Fix such a χ̃ , and
let χn = Mnχ̃ . Passing to a subsequence again, we have that
χn → χ for some state χ . Note χ is not coplanar with ψ and φ,
since the M

†
n’s preserve inner products. Also note that for each

n, we have M
†
nψn,M

†
nφn,M

†
nχn ∈ T . So by property 4 of T ,

the measures μψn
, μφn

, and μχn
have property (A) (nontrivial

joint overlap) for each n.
Now as n → ∞, we have that |〈ψn|φn〉| → 0, and yet at

the same time χn → χ for some fixed state χ which is not
coplanar with ψ and φ. Hence, for sufficiently large n, if e1n

and e2n
span the ψn,φn plane, then we will have |〈e1n

|χn〉|2 +
|〈e2n

|χn〉|2 � k for some k < 1. By Lemma 13, there exists a
k′ such that if |〈ψn|φn〉| < k′, then property (B) holds for ψn,
φn, and χn. For sufficiently large n, we have |〈ψn|φn〉| < k′,
since |〈ψn|φn〉| → 0, and hence property (B) holds for these
states.

Putting this together, we can find a value of n such that
the three states 1 = ψn, 2 = φn, and 3 = χn have both
properties (A) and (B). The contradiction follows as noted
above. �

IV. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we gave a construction of a maximally
nontrivial theory in arbitrary finite dimensions. However, the

theory we constructed is not symmetric and is rather unnatural.
We then proved that symmetric, maximally nontrivial ψ-
epistemic theories do not exist in dimensions d � 3 (in contrast
to the d = 2 case, where the Kochen-Specker theory provides
an example). Our impossibility proof made heavy use of the
symmetry assumption. As for the assumption d � 3, we used
that in two places: first and most importantly to get a nonempty
deficiency region (in Corollary 3 ) and, second, to prove that
rψ = 1

2 in Lemma 5.
It might be possible to relax our symmetry assumption

and obtain no-go theorems for different ontic spaces, since
deficiency holds for any ψ-epistemic theory in d � 3 even
without a symmetry assumption. As shown above, we can
generalize our no-go theorem to rule out strongly symmetric
maximally nontrivial theories with � = U (d). It would be
particularly interesting to know whether (merely) symmetric
theories exist in � = U (d), or in any ontic spaces � that
are larger than CP d−1, but that are still acted on by the d-
dimensional unitary group.

Also, in our proof, we did not use the specific form of the
Born rule, only the fact that projection of |ψ〉 onto |φ〉 must
occur with probability 0 if 〈ψ |φ〉 = 0. Additional properties of
the Born rule might place further constraints on ψ-epistemic
theories.

Interestingly, trying to generalize the proof of Theorem 1
directly to obtain a proof of Theorem 2 gives rise to a variant
of the Kakeya/Besicovitch problem. Recall that to prove
Theorem 1, we showed that ontic states in a set B in the
neighborhood of α returned value j under measurement, and
yet the average measure of states orthogonal to j had nontrivial
support on B. Now if the measures μψ = fψ (|〈ψ |λ〉|2) vary
with ψ , it remains open whether the measures of states orthog-
onal to j must have support on B, or if instead it is possible
for them to “evade” B to avoid contradicting the Born rule.

Placing this problem in the plane rather than in CP d−1,
we obtain a clean Kakeya-like problem as follows. Let S be
a subset of R2 with the following property. For all x ∈ R2

and ε > 0, S contains a set of circles, centered at x, that has
positive Lebesgue measure within the annulus {y : |y − x| ∈
[1 − ε,1]}. Can the complement of S have positive Lebesgue
measure? This question has been discussed on MathOverflow
[13] but remains open.

Here are some additional open problems.
(i) An obvious problem is whether symmetric and nontriv-

ial (but not necessarily maximally nontrivial) theories exist in
dimensions d � 3.

(ii) How does the size of the deficiency region scale as the
dimension d increases?

(iii) In the maximally nontrivial theory we constructed, the
overlap between any two nonorthogonal states |ψ〉,|φ〉 is
vanishingly small: like (ε/d)O(d) as a function of the dimension
d and inner product ε = |〈ψ |φ〉|. Is it possible to construct
a theory with substantially higher overlaps – say, (ε/d)O(1)?
(Note that if d � 3, then the result of Leifer and Maroney [5]
says that the overlap cannot achieve its “maximum” value
of ε2.)

(iv) Can we construct ψ-epistemic theories with the prop-
erty that an ontic state λ, in the support of an ontic
distribution μψ , can never be used to recover the quantum
state ψ uniquely? (This question was previously asked
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by Leifer and Maroney [5], as well as by Montina on
MathOverflow [10].)

(v) What can be said about the case of infinite-dimensional
Hilbert spaces?
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