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Mechanical properties of electron vortices
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It is shown how the quantum mechanical mass flux and the electromagnetic fields of an electron Bessel vortex
mode generate its intrinsic linear momentum and angular momentum properties. Although the corresponding
volume density vectors due to the mass flux contain transverse vector components, their volume integrals are
shown by explicit analysis to yield null results. The total linear and angular momenta are thus purely axial vectors.
There are additional contributions associated with the vortex electric and magnetic fields and these too are shown
to be purely axial vectors. Order of magnitude estimates are made in the context of a suggested experiment on
the rotation of an optically levitated nanoparticle subject to an electron vortex.
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There is currently much interest in the physics and applica-
tions of twisted particle beams. Recent work has highlighted
electron vortices (EVs), following prediction by Bliokh et al.
[1], but the vortex concept can indeed be generalized to any
particle, including neutral atoms, ions, and molecules. Electron
vortices have been created in a number of laboratories, starting
with Uchida and Tonomura [2], then by Verbeeck et al. [3],
McMorran et al. [4], and Gnanavel et al. [5]. It is now generally
accepted that EVs can be readily generated inside electron
microscopes. The techniques of their production, especially
the one involving computer generated masks, bears a great
deal of resemblance to that followed in the case of twisted
light beams, also called optical vortices (OVs). Indeed it is
possible to argue that the existence of EVs was inspired by
developments of OVs. Optical vortices are a special form
of light, exemplified by the optical Laguerre-Gaussian and
Bessel beams, which have been studied extensively over the
last two decades or so [6–10]. Although the optical and
electron vortices are similar in some respects, most notably
in that they both carry the important property of orbital
angular momentum, they do differ in a number of respects.
In particular, OVs are characterized by vector electromagnetic
fields and their quanta are massless bosons, while EVs are
finite mass fermions of spin-half characterized by a scalar
field in the form of the Schrödinger wave function.

Interactions of electron vortex beams with atomic matter
have been investigated in the context of the transfer of orbital
angular momentum to the internal dynamics [11,12], with
reference to the experiment performed by Verbeeck et al. [3]
that had shown that the interaction leads to dichroism in a
magnetic sample. This is in contrast to the case of optical
vortices, which are not specific in their interactions with
chiral matter [12–14]. One of the main effects that have been
carefully analyzed in the case of optical vortices has been their
mechanical action on matter, leading to the so-called optical
spanner effect [6–10] which can be loosely defined as the
rotational version of the optical tweezer mechanism. Optical
manipulation, in general, using OVs has been rigorously
investigated by a number of authors [6–10]. Experimental work
on nanomanipulation using electron vortices has been reported
recently by Gnanavel et al. [5] and Verbeeck et al. [15].
These experiments demonstrate clear indications that electron
vortices rotate nanoparticles and, significantly, the sense of

rotation depends on the sign of the winding number l, as in
the case of optical vortices. However, as far as the authors
know, no analysis has so far been carried out on the source of
mechanical effects of particle vortices on nanoparticles.

Additionally, the electron vortex has associated electric and
magnetic fields, due to its charge and current densities [16].
In the nonrelativistic limit of the Dirac equation these fields
couple to the electron spin and are responsible for spin-orbit
coupling [16]. Spin-orbit coupling was also analyzed by
Bliokh et al. [17], but without reference to the intrinsic fields
which Lloyd et al. point out as essential for the coupling in
the absence of any external fields. These intrinsic fields also
contribute to the linear and angular momenta of the electron
vortex, as will be shown here.

In this Rapid Communication we explore the mechanical
properties of electron vortices arising from the finite mass flux
and vortex electromagnetic fields for a typical Bessel electron
vortex. We find that there is only one vector component of
the vortex linear and orbital angular momenta, namely, an
axial component. Order of magnitude estimates of the effects
of these momenta are made with reference to the anticipated
manipulation of nanoparticles using electron vortices.

The electron vortex wave function ψ(r,t) is a particular
solution of the free particle Schrödinger equation in cylindrical
polar coordinates r = (ρ,φ,z), namely,

∇2ψ(r,t) + 2mE
h̄2 ψ(r,t) = 0, (1)

where E is the energy eigenvalue and m is the particle rest
mass. The Bessel-type mode is as follows:

ψ(r,t) = NlJl(k⊥ρ)eikzzeilφe−iE t/h̄, (2)

where Jl(k⊥ρ) is the Bessel function of order l with l the integer
winding number of the beam, and k⊥ and kz are, respectively,
the in-plane and axial wave-vector components. As in [12], we
assume a vortex mode extending along the axis over a length
D which is much larger than a typical beam width.

The normalization factor in Eq. (2) follows straightfor-
wardly in the form

Nl =
(

k2
⊥

2πDI (1)
l

)1/2

, (3)
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where I (1)
l is the first moment integral of the Bessel function

defined by

I (1)
l =

∫ ∞

0
|Jl(x)|2x dx. (4)

This is a special case of the general nth moment integral of the
Bessel function

I (n)
l =

∫ ∞

0
|Jl(x)|2xndx (n � 0). (5)

Associated with the vortex wave function are the mass density
ρ̃m(r,t) and mass current density J̃m(r,t) in the standard
forms

ρ̃m(r,t) = mψ∗(r,t)ψ(r,t), (6)

J̃m(r,t) = eh̄

2i
{ψ∗(r,t)∇ψ(r,t) − ψ(r,t)∇ψ∗(r,t)}. (7)

Substituting for ψ(r,t) we find

ρ̃m(r,t) = m|Nl|2|Jl(k⊥ρ)|2; (8)

J̃m(r,t) = h̄|Nl|2
(

l

ρ
φ̂ + kzẑ

)
|Jl(k⊥ρ)|2. (9)

The mass current density is the same as the linear momen-
tum density (i.e., linear momentum per unit volume) and hence
the total linear momentum vector carried by the electron vortex
follows by volume integration

Pm =
∫

dV J̃(r,t). (10)

We find

Pm = h̄|Nl|2D
∫ ∞

0

∫ 2π

0
dφ

{
kzẑ + l

ρ
φ̂

}
|Jl(k⊥ρ)|2ρ dρ.

(11)

The azimuthal component when integrated over the volume
leads to a null result due to a vanishing angular integral. The
axial component is then the only contribution to the total linear
momentum, and can straightforwardly be shown by direct
integration of the z component in Eq. (11) to be

Pm = 2πh̄kzDI (1)
l |Nl|2ẑ = h̄kzẑ. (12)

as the total linear momentum carried by the entire electron
vortex mode, where we have made use of Eq. (3). This property
does not depend on the winding number l. It is reassuring
that the axial linear momentum component emerges from the
formalism in the expected form, but it is also remarkable
that there are no transverse components of the total linear
momentum of the vortex.

The angular momentum density associated with the mass
flux is the moment of the linear momentum density

Lm = r × J̃(r,t)

= h̄|Nl|2 (ρρ̂ + zẑ) ×
{

l

ρ
φ̂ + kzẑ

}
|Jl(k⊥ρ)|2. (13)

The vortex orbital angular momentum vector is obtained by
volume integration. We find

Lm =
∫

Lm dV = h̄|Nl|2
∫ D/2

−D/2

∫ 2π

0

∫ ∞

0

{
lẑ − ρkzφ̂ − l

ρ
zρ̂

}

× |Jl(k⊥ρ)|2ρ dρ dφ dz. (14)

Once again only the axial component leads to a contribution
to the total angular momentum, as the angular and radial inte-
grals lead to a vanishing result for the transverse components.
We have, using Eq. (3), that

Lm = 2πlh̄DI (1)
l |Nl|2ẑ = h̄lẑ. (15)

The result in Eq. (15) indicates that, in general, the electron
vortex carries orbital angular momentum due to the mass flux
only with an axial component. This confirms the main feature
of the electron vortex, namely, that it carries a total orbital
angular momentum about its axis equal to h̄l due to its mass
flux and, as is the case with the total linear momentum of the
vortex, there are no transverse total orbital angular momentum
components. In other words the angular momenta Lx and Ly of
the electron vortex are both zero as well as its linear momentum
components Px and Py .

Equations (12) and (15) are two of our main results,
explicitly displaying expressions for the linear and angular
momentum vectors of the vortex arising from the mass
flux. It turns out that the vanishing transverse components
of the total linear and orbital angular momentum is not a
preserve of electron vortices. We have verified by explicit
evaluation [18] that this feature holds for both the Bessel-
and Laguerre-Gaussian-type optical vortices. The momentum
density in the Laguerre-Gaussian OV beam [19] has been
shown to have axial as well as transverse components—the
Bessel type has only z and φ components, like the electron
Bessel vortex—as do the orbital angular momentum densities
for both the Laguerre-Gaussian- [20] and Bessel-type optical
beams. However, what has not been shown explicitly before
is that the volume integrals of the densities lead to identically
null values for the transverse linear momentum as well as
the orbital angular momentum of these optical vortices, and
it appears that this is a general feature of all vortex beams.
In other words, this result is independent of the nature of the
vortex beam, or of the particular distribution—so long as the
phase factor eilφ is the only source of φ dependence, the beam
will contain linear and angular momentum in the z direction
only.

We have so far concentrated on the mechanical properties
of the electron vortex arising from the finite electron mass.
This would be true for any electrically neutral particle vortex.
An electron vortex is also endowed with electromagnetic fields
E(ρ) and B(ρ) associated with its electric charge which also
depend on the winding number l, which we omit here for ease
of notation. These vortex fields have been evaluated in [16] for
an electron vortex generated inside an electron microscope. In
general, the vortex electric field has only one component,

E(ρ) = ρ̂Eρ(ρ), (16)

while the vortex magnetic field has two orthogonal compo-
nents, one axial and another azimuthal,

B(ρ) = ẑBz(ρ) + φ̂Bφ(ρ). (17)
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The linear momentum density due to these vortex fields
emerges straightforwardly as follows:

Pem = ε0E × B = ε0{ẑEρBφ − φ̂EρBz}. (18)

The total linear momentum of the vortex due to the vortex
fields follows by volume integration. We have, evaluating the
z integral first,

Pem = ε0D

∫ ∞

0
ρ dρ

∫ 2π

0
dφ{ẑEρBφ − φ̂EρBz}. (19)

Since the fields are functions only of ρ [16], once again we see
that the φ integral leads to a vanishing result of the azimuthal
component and we are left only with the axial component. We
have

Pem = ẑ2πε0D

∫ ∞

0
EρBφρ dρ. (20)

The evaluation of the ρ integral is, in principle, straightforward
since we have expressions for the variation of the fields
with ρ.

The angular momentum contributions due to the vortex
fields now follow as the integral of the moment of the linear
momentum density. We have

Lem =
∫

dV r × Pem

= ε0

∫
dV {ρ̂zEρBz − φ̂ρEρBφ − ẑρEρBz}. (21)

Once again the integral over the azimuthal component vanishes
due to a vanishing φ integral; the integral of the ρ component
also results in a null value and we are left only with the axial
component, namely,

Lem = −ẑ2πε0D

∫ ∞

0
EρBzρ

2 dρ. (22)

Equations (20) and (22) are two further results of this Rapid
Communication to be added to the main results given by
Eqs. (12) and (15). The set of equations shows the linear and
angular momentum vector components associated with the
vortex mass flux and electromagnetic fields. Though we have
evaluated these quantities with reference to the normalized
beam of Eq. (2), we stress that these results—that the vector
components of total linear and orbital angular momentum exist
only in the z direction—are general, and not dependent on the
particular normalization of Eq. (3).

For orientation as to orders of magnitude arising in a
feasible experimental arrangement, we assume that we are
dealing with electron vortices created inside a 1 nA electron
microscope of accelerating voltage 200 keV. For such a beam,
we assume a typical value of the transverse wave-vector
component k⊥ = 0.01kz, and proceed to estimate values for
the linear momentum and orbital angular momentum of this
typical electron vortex created in an electron microscope. We
find

Pem ≈ 10−34 kg,m s−1, (23)

Lem ≈ 10−48 J s. (24)

FIG. 1. (Color online) Schematic drawing (not to scale) showing
a disk-shaped nanoparticle in the field of a downward electron vortex
represented by the inner beam (yellow) and an upward much wider
Gaussian laser beam (red) which acts to levitate the nanoparticle
while the electron vortex rotates it about its axis. See the text for the
parameters used to estimate the angular frequency in Eq. (29).

These are both extremely small compared to the mass
counterparts. The approximate ratios found are

Pem

Pm
≈ 10−12; (25)

Lem

Lm
≈ 10−14, (26)

so for practical purposes the electromagnetic linear and orbital
angular momenta in such a vortex, as created in an electron
microscope, are negligibly small and in such a context the
mechanical properties of the electron vortex stem primarily
from the finiteness of the electron mass, as contained in Pm

and Lm. However, in other contexts these contributions could
be significant when the vortex is created outside an electron
microscope (as, for example, in a linear accelerator).

Finally we consider the orders of magnitude when vortices
are used to rotate nanoparticles. For illustration we focus on
the effects of the vortex angular momentum on a nanoparticle
in the form of a small cylinder of radius R and length d = R

with the cylinder axis coinciding with the electron vortex axis,
as depicted in Fig. 1. If we are interested only in imparting
rotational motion on the nanoparticle due to the electron
vortex, we will need to eliminate the axial forces as well
as friction. This can be done by setting up a stable vertically
oriented optical trap [21] whereby a suitable laser beam acts to
levitate the nanoparticle against the downward force of gravity
and the downward axial force of a single electron vortex.
With the axial forces eliminated the electron vortex should
only rotate the nanoparticle. Assuming that the minimum
angular momentum of h̄ is transferred to the nanoparticle,
the nanoparticle will rotate at an angular frequency given by

� = 2h̄

MR2
, (27)
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where MR2/2 is the moment of inertia of the cylindrical
nanoparticle of mass M , radius R, and length equal to R. For
illustration we consider the case of a fused silica nanoparticle
with

R = 10−8 m; M = ρmπR3, (28)

and the mass density of fused silica is approximately
ρm = 2.2 × 103 kg m−3. The angular frequency at which the
above fused silica nanoparticle is subject to a single electron
vortex is

� ≈ 87.6 Hz. (29)

This angular frequency is much higher than that observed
by [5] in the case of a gold nanoparticle on a support.
Observations suggest that friction between the nanoparticle
and the support leads to damping of the rotation. The levitation
setup suggested above could be a suitable arrangement towards
eliminating the detrimental effects of the support. A fused
silica nanoparticle should be an easier nanoparticle to rotate
in the field of the electron vortex as optical levitation of a
metallic nanoparticle would be more difficult to control.

The processes underlying the mechanical action of the
electron vortex on a nanoparticle leading to rotation form
a complex issue which is beyond the scope of this Rapid
Communication, which is focused primarily on finding the
sources and formalism leading to the determination of the
contributions to the momentum and angular momentum
carried by the electron vortex. Here we have only sought to
determine the order of magnitude of the rotational frequency
for a typical nanoparticle immersed in an electron vortex
created inside an electron microscope. Verbeeck et al. [15]
explain the mechanical action observed as a result of the

breaking of the circular symmetry of the vortex beam by
the nanoparticle and in the case of a metallic nanoparticle
the interaction with the electron vortex would also involve
plasmonic effects [22]. A rigorous analysis is needed which
must take into account the shape of the nanoparticle as well
as the surface matching of the vortex wave function on entry
and exit and the interaction of the vortex inside the body of the
nanoparticle.

In conclusion, we have evaluated for the first time the
mechanical properties of electron vortices, analyzing expres-
sions for the various contributions of the linear and orbital
angular momenta carried by a Bessel electron vortex. We
have examined the transverse components of the vortex linear
and angular momentum vectors and found these to vanish
identically in all cases. We have thus shown here that the
mechanical properties in the form of linear and angular
momentum vectors of an electron Bessel vortex are purely
axial vectors and are dominated by the contributions due to the
finite electron mass. We have outlined a possible experimental
scenario which has the advantage of eliminating friction and
would demonstrate the rotational influence of an electron
vortex.
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