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Absence of damping of low-energy excitations in a quasi-two-dimensional dipolar Bose gas
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We develop a theory of damping of low-energy, collective excitations in a quasi-two-dimensional, homogenous,
dipolar Bose gas at zero temperature, via processes whereby an excitation decays into two excitations with lower
energy. We find that owing to the nature of the low-energy spectrum of a quasi-two-dimensional dipolar gas, such
processes cannot occur unless the momentum of the incoming quasiparticle exceeds a critical value kcrit. We find
that as the dipolar interaction strength is increased, this critical value shifts to larger momenta. Our predictions can
be directly verified in current experiments on dipolar Bose condensates using Bragg spectroscopy, and provide
valuable insight into the quantum many-body physics of dipolar gases.
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Understanding the nature of the single-particle and col-
lective excitations of an interacting many-body system
yields important insights into its macroscopic properties. For
example, a hallmark of superfluidity is its ability to support
dissipationless flow below a certain critical velocity, which is
due to the existence of linearly dispersing excitations at low
momentum [1–3]. Following the discovery of Bose-Einstein
condensation in dilute atomic vapors, several experimental
groups studied the nature of the low-lying modes, and the
damping of collective excitations in bosonic gases interacting
with short-range (contact) interactions [4–8]. The experiments
led to important theoretical investigations on the damping
of excitations in Bose condensed gases at low and high
temperatures [9–17]. More recently, attention has shifted
to the trapping and cooling of magnetic atoms and polar
molecules with long-range interactions, such as the 1/r3

dipole-dipole interaction [18], and Bose condensates of dipolar
52Cr, 164Dy, 162Dy, and 168Er have already been created in
the laboratory [19–23]. Motivated by these developments, we
describe a theory of damping of low-energy excitations in a
quasi-two-dimensional (quasi-2D) dipolar Bose condensate,
finding an intriguing damping process which switches on
only above a certain critical wave number, implying that the
low-lying collective excitations in this system are undamped.

The physics of dipolar Bose gases in the continuum is
qualitatively different from that of a Bose gas with short-range
interactions. This is largely due to the anisotropic nature of the
long-range, dipole-dipole interaction, which introduces novel
phenomena such as geometry-dependent mechanical stability
[19], d-wave collapse [20], anisotropic critical velocity for
dissipationless flow [24], and a roton-maxon dispersion rela-
tion in quasi-2D systems [25,26], analogous to He–4 [27–29].
Here we theoretically predict yet another novel property of a
quasi-2D dipolar Bose gas at zero temperature: the absence of
damping for long wavelength collective excitations. We show
that the decay of a single excitation into two excitations with
lower energy (Beliaev damping) is energetically forbidden in
a quasi-2D dipolar gas. Furthermore, this effect is present
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even for weak dipolar interactions and can thus be observed in
current experiments without the use of Feshbach resonances.

The Hamiltonian for a uniform dipolar Bose gas takes the
form

H =
∫

dr�†(r,t)
[
−h̄2∇2

2m
− μ

]
�(r,t)

+ 1

2

∫
dr dr

′
Vtot(r − r

′
)�†(r,t)�†(r

′
,t)�(r

′
,t)�(r,t),

(1)

where �(r,t) is the bosonic annihilation operator at position
r and time t , and μ is the chemical potential. The interaction
potential is assumed to be a sum of two terms Vtot(r − r

′
) =

gδ(r − r
′
) + Vdip(r − r

′
), where g = 4πh̄2a/m parametrizes

the contact part of the potential, where a is the s-wave
scattering length, and Vdip(r − r

′
) is the dipolar potential. For

a gas with dipole moment d, where all the dipoles are oriented
along the z axis, Vdip(r − r

′
) = d2[1 − 3 cos2(θ )]/|r − r

′ |3,
where θ is the angle between the vector r − r

′
and the z axis.

For atomic dipolar gases such as 52Cr [20], 164Dy [21],
162Dy [22], and 168Er atoms [23], which have already been
Bose condensed in the laboratory, the dipolar and contact
parts of the interaction are comparable to one another: 0.1 <

gd/g � 1. Stronger dipole-dipole interactions, gd/g ∼ 10, can
be achieved using polar molecules (or by using a Feshbach
resonance to tune g close to zero [20]), which are currently
being trapped and cooled by several groups [18].

Here we work in a quasi-two-dimensional geometry, which
can be implemented in harmonically trapped gases with a
trapping potential of the form U (r) = 1

2m(ω2
xx

2 + ω2
yy

2 +
ω2

zz
2), where ωz � ωx,ωy , or by using a deep optical lattice in

the z direction. In the limit μ � h̄ωz, with no loss of generality,
the density can be expressed as n(r = {ρ,z}) = |�(ρ,z)|2 =
n2D(ρ)�(z) = 1√

πl2
z

n2D(ρ)e−z2/l2
z , where ρ and z are the radial

and axial co-ordinates, respectively, and lz is a length scale on
the order of the harmonic oscillator wavelength in the axial
direction, lz ∼ √

h̄/mωz [31]. Integrating out the z direction,
one obtains an effective two-dimensional description, which
depends on ρ alone. For the homogeneous case we consider
(ωx = ωy = 0), the Fourier transform of the resulting quasi-2D
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interaction potential reads [24,31]

V q2D(k) = 1√
2πlz

[
g + gdF

(
klz√

2

)]
, (2)

where k =
√

k2
x + k2

y is the radial momentum, gd = 8π
3 d2, and

F (x) = 1 − 3
2

√
πx erfc(x) ex2

, where erfc(x) is the compli-
mentary error function. When the dipoles are aligned parallel
to one another, the dipole-dipole interaction only depends on
the magnitude of the radial momentum.

Strictly speaking, the Gaussian model used above is only
valid for μ � h̄ωz. Santos et al. [25] use a more rigorous
approach, they model the axial extent of the cloud using a
Thomas-Fermi distribution, and numerically integrate over
the z direction to obtain a more accurate quasi-2D potential.
We use Eq. (2) here because it correctly captures all the
qualitative features of the true quasi-2D dipolar potential
and allows us to obtain some analytic results, thus serving
as a conceptual guide for theory and experiment [26]. This
advantage of the Gaussian approximation compensates for
the slight quantitative inaccuracy incurred in our treatment,
and if future experiments demand quantitative refinement,
a numerical analysis using better wave functions should be
straightforward to carry out within our approach.

At temperatures below the Bose condensation temperature,
we may write � as a sum of condensate and noncondensate
wave functions, �(ρ,t) = φ(ρ,t) + ψ(ρ,t), where φ(ρ,t) =
〈�(ρ,t)〉 represents the condensate field, and ψ(ρ,t) rep-
resents the noncondensed atoms, which by definition have
the property 〈ψ(ρ,t)〉 = 0 [10]. The condensate field obeys
the usual Gross-Pitaevskii equation which can be solved to
yield the condensate density in equilibrium n2D

0 = φ2
0 . In a

homogeneous gas, φ0 is independent of ρ.
The excitation spectrum is found by writing �(ρ,t) =

φ0 + ψ(ρ,t) in Eq. (1), and ignoring terms proportional to
ψ3 and ψ4, to obtain a quadratic Hamiltonian in terms
of the noncondensed fields. The resulting Hamiltonian can
be diagonalized in momentum space via the usual Bogoli-
ubov transformation: ψ(ρ,t) = ∑

k uk(ρ)ak(t) + v∗
k(ρ)a†

k(t)
[3], where k = {kx,ky}, and ak(t) denotes the bosonic annihi-
lation operator for a quasiparticle with momentum k at time t .
The complex numbers uk(ρ) = uke

ik.ρ and vk = vke
ik.ρ obey

|uk|2 − |vk|2 = 1. The Bogoliubov Hamiltonian reads [30,31]
H0 = ∑

k Eka
†
kak, where Ek =

√
εk[εk + 2V q2D(k)n2D

0 ] is the
quasiparticle energy obtained by solving the Bogoliubov equa-
tions with the constraint on uk and vk . Here εk = h̄2k2/2m is

the single-particle energy, and uk =
√

1
2 ( εk+V q2D(k)n2D

0
Ek

+ 1) and

vk = −sgn[V q2D(k)]
√

1
2 ( εk+V q2D(k)n2D

0
Ek

− 1) are the Bogoliubov
coefficients.

The three-dimensional (3D) dipolar gas is susceptible to
a collapse instability for g < gd (signaled by the appearance
of imaginary frequencies Ek as k → 0) due to the partially
attractive nature of the dipole-dipole interaction [30]. This was
demonstrated experimentally in dipolar 52Cr atoms by Lahaye
et al. [20], where a Feshbach resonance was used to tune the
s-wave scattering length near the zero crossing. However, as
was pointed out by Fischer [31], the quasi-2D dipolar potential
given by V q2D is energetically stable, even in the absence of a
repulsive contact interaction.

Below we illustrate how the damping of excitations in
a purely dipolar gas [g = 0 in Eq. (2)] differs from that
of a gas with purely contact interactions, which has been
well understood for some time [9–12]. We then compute the
damping rate in a gas with the full interatomic potential of
Eq. (2) to make predictions relevant to current experiments.

To leading order, the damping of excitations arises due to
coupling between the fluctuations of the condensate and the
noncondensed fields. At zero temperature, excitations decay
via Beliaev damping, where a particle in the condensate and
a quasiparticle with momentum p are annihilated (created)
and two quasiparticles with momenta k and q are created
(annihilated) [9].

Generally speaking for a d-dimensional gas (d � 2) inter-
acting with a potential Vtot(r − r

′
), such damping processes

result from an interaction Hamiltonian [9]:

Hint ∼
∫

dr dr
′
Vtot(r − r

′
)[φ∗

0 (r)ψ†(r
′
)ψ(r

′
)ψ(r) + H.c].

(3)
Treating Hint to first order in perturbation theory for a
homogeneous gas at zero temperature and following the
approach of Giorgini [10], we find that the Beliaev damping
rate takes the form

�B(p) = πn0

2h̄

∑
k,q

δ(εp − (εk + εq))δp,k+qA
2
k,q, (4)

where p is the momentum of the annihilated (created) quasipar-
ticle and k and q are the momenta of the created (annihilated)
quasiparticles in d dimensions. Here n0 is the condensate
density. The δp,k+q enforces conservation of momentum, and
the matrix element Ak,q is given by

Ak,q = uk+q{[Vtot(q) + Vtot(k)]ukuq + Vtot(q + k)(ukvq + vkuq) + ukvqVtot(q) + Vtot(k)uqvk}
(5)

+ vk+q{[Vtot(q) + Vtot(k)]vkvq + Vtot(q + k)(ukvq + uqvk) + Vtot(q)ukvq + Vtot(k)uqvk},

which is manifestly symmetric upon interchange of q
and k.

We emphasize that in deriving Eqs. (4) and (5), we simply
assume that Vtot(r) = Vtot(−r), and as such these equations
describe Beliaev damping in a gas with arbitrary long-range
interactions, not just dipolar interactions. A detailed derivation

of this result and its extension to finite temperature will be
published elsewhere [32].

For a 3D gas interacting with purely contact interactions
[Vtot(k) = g], one readily checks that Eq. (5) reduces to the
familiar expression for the Beliaev damping rate obtained by
Giorgini [10]. For a quasi-2D dipolar gas, we replace n0 in
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Eq. (4) with n2D
0 and Vtot in Eq. (5) with V q2D given by Eq. (2),

and the sums are performed over two-dimensional momenta.
From Eq. (4), it is clear that Beliaev damping is only

possible if the conditions for energy and momentum con-
servation can be simultaneously satisfied. For a Bose gas
with contact interactions (gd = 0), the low-energy dispersion
takes the form Ep ≈ cp + p3

8m2c
, where c =

√
gn2D

0 /
√

2πmlz
is the phonon velocity. At low energies this dispersion is
analogous to that of He–4 [27]. As was pointed out by Maris
[27], a quasiparticle with momentum p can decay into two
phonons of lower energy provided the energy Ep lies above
the phonon dispersion curve (Ep = cp). For a gas with contact
interactions, the low-energy dispersion bends upward (due to
the positive coefficient of the p3 term), and Beliaev damping is
allowed by energy-momentum conservation at arbitrary wave
vectors [10–12].

By contrast, the low-energy dispersion for a quasi-2D,
purely dipolar Bose gas (g = 0) reads

Ep ≈ cdp − 3
√

πlz

4
√

2h̄
cdp

2

+ p3

8m2cd

[
1 +

(
6 − 9π

8

)
m2c2

d l
2
z

h̄2

]
, (6)

where cd =
√

gdn2D
0√

2πmlz
is the phonon velocity for the dipolar gas.

In the weakly interacting gas gdn
2D
0 /lz � h̄2/ml2

z = h̄ωz, the
second term in the brackets proportional to p3 can be ignored.

As Eq. (6) shows, the quadratic term in the expansion of
the energy always dominates the cubic term for momenta
p < pcrit(cd ) = 3

√
2πm2lzc

2
d/h̄. For momenta smaller than

pcrit, a quasiparticle with momentum p will always have lower
energy than two phonons with momenta q and p − q for all
0 < q < p. Beliaev damping is thus forbidden by energy and
momentum conservation. For momenta larger than pcrit, the
cubic term dominates the quadratic term in the low-energy
expansion, and Beliaev damping is allowed.

In Fig. 1 we plot pcrit as a function of cd obtained by
numerically solving for the energy conservation constraint.
Note that the momenta are expressed in units of h̄

√
2/lz

0 0.2 0.4 0.6
0

0.25

0.5

cd

p c
rit

FIG. 1. The data points are the numerically obtained values of
the dimensionless p̃crit = pcrit/(h̄

√
2/lz) plotted as a function of the

dimensionless sound velocity c̃d = cd/ωzlz =
√

gdn
2D
0 /

√
2πlzh̄ωz,

defined as the ratio of the interaction energy (Eint = gdn
2D
0 /

√
2πlz)

to the harmonic oscillator energy in the z direction (Eho = h̄ωz):
c̃ = √

Eint/Eho. Collective modes with momenta below pcrit are
undamped. The solid line is the analytic result: p̃crit = 3

√
πc̃2

d

obtained using Eq. (6) which works well at small c̃d . For larger c̃d ,
Eq. (6) underestimates the dipolar dispersion leading to a larger pcrit.
The contact part of the interaction is set to zero.

and a dimensionless speed of sound is defined as the ratio
of the mean-field interaction energy Eint = gdn

2D
0 /

√
2πlz to

the harmonic oscillator energy in the confining direction
Eho = h̄ωz: c̃d = √

Eint/Eho. The solid line shows the analytic
result, which is valid for small cd . For stronger dipole-dipole
interactions, Eq. (6) underestimates the dispersion leading to
a larger pcrit.

We emphasize that the physics here is different from that
of He–4 where phonon damping can always occur via the
Beliaev mechanism [27–29]. In this system, the low-energy
dispersion can be parametrized as E(p) ∼ αp + βp3 − γp5

(where α, β, and γ > 0 [27]). It is only at intermediate values
of momentum, where the γp5 term becomes relevant, that
excitations are stable against Beliaev decay. Similar physics
also occurs in optical lattices where the band structure modifies
the dispersion close to the Brillouin zone boundary [33,34].

By contrast, for the quasi-2D dipolar gas, the p2 term in
the dispersion dominates the p3 term for arbitrarily weak p.
This leads to a complete turning off of Beliaev damping at low
momenta. We are not aware of any other bosonic system with
this feature. For larger values of the dipole-dipole interaction
strength, the dispersion develops a roton-maxon feature [25],
and a quasiparticle (maxon) can decay into two rotons [35,36].

In Fig. 2, we plot the calculated Beliaev damping rate
as a function of p for a gas with dipolar plus contact
interactions [Eq. (2)] obtained by integrating Eq. (4) using
Eq. (5). The contact part of the interaction is held fixed (we
choose c̃ = c/lzωz = 1) and the dimensionless ratio of the
dipole-dipole interaction strength to the contact interaction
g̃ = gd/g is varied. The damping rate is normalized by
�0 = (g/

√
2πlz)2n2D

0 m/4πh̄3.
For a gas with purely contact interactions (g̃ = 0), shown

as the thin, solid line, it is well known that for small momenta
p � 2mc, the Beliaev damping rate scales as p2d−1 where d

is the dimension [9–12]. To see this, note that to leading order
Akq scales as [10–12]: A2

kq ∼ p|p−q|q
c3 . Inserting this expression

into Eq. (4) and using the condition for small angle scattering,

0 0.5 1 1.5 2
0

0.4

0.8

p units of 2 lz

0

FIG. 2. (Color online) Damping rate [normalized to �0 =
(g/

√
2πlz)2n2D

0 m/4πh̄3] in a Bose gas with dipolar and contact
interactions, plotted vs p. The thin dashed curve is the result for
purely contact interactions (g̃ = 0) (cf. Refs. [10,12]) shown for
comparison. The damping rate scales as p3 at low momenta. The
remaining curves show the damping rates in a gas with dipolar
interactions: g̃ = gd/g = 0.1 (solid, black), g̃ = 0.25 (blue dashed
curve starting from p = 0.45h̄

√
2/lz) and g̃ = 0.5 (red dotted curve

starting from p = 0.7h̄
√

2/lz). For a dipolar gas, there is no damping
until p reaches a threshold value (see Fig. 1). The dip in the damping
rate at intermediate momenta is due to the appearance of a slight
shoulder in the dispersion relation at intermediate g̃ [25].
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|p − q| ≈ p − q + pqθ2

2(p−q) where θ =
√

3(p−q)
2mc

[10–12], one
obtains the rate of Beliaev damping at small momenta. Similar
scaling also occurs for damping of low-energy magnons in
antiferromagnets [37].

As Fig. 2 shows, the behavior is strikingly different for a
gas with dipolar interactions. For a dipolar gas, there is no
Beliaev damping at low p, so the damping rate is zero until p

reaches a threshold momentum. Beyond this the damping rate
jumps to a finite value. The value of this threshold momentum
and the corresponding jump in the damping rate increases with
increasing g̃. At large p, the contact plus dipolar dispersion
becomes free-particle-like and the behavior is similar to that
of a gas with purely contact interactions.

For weak dipolar interactions (solid black line in Fig. 2), the
damping rate closely follows that of the gas with purely contact
interactions. For larger values of g̃ (shown as the blue dotted
curve and the red dashed curve), we find a dip in the damping
rate at intermediate momenta, which moves to larger p as g̃ is
increased. The size of the dip increases with increasing g̃. The
location of the dip is consistent with the location of the shoulder
in the dispersion relation at intermediate p and intermediate
g̃ ∼ 0.5. This shoulder is the precursor of the roton minimum
which becomes more pronounced at large values of g̃ [25].
(For c̃ = 1, the roton minimum develops at g̃ ≈ 5). It is well
known that rotons are stable against Beliaev decay [27,35], so
we expect the damping rate to completely vanish for momenta
close to the roton minimum as g̃ is increased further. A
quantitative study of the damping rate for the maxon-roton
excitations will be the subject of a future work [36].

We now briefly discuss the possibility of observing the
phenomenon discussed here in experiments. A key challenge

is that the discretization of the low-energy spectrum in trapped
gases renders Beliaev damping inactive [13]. Nonetheless,
Hodby et al. [7] observed Beliaev damping by carefully
designing the trap geometry so as to transfer energy between
two low-lying collective modes. Katz et al. [8] used Bragg
spectroscopy to probe Beliaev damping in a 3D Bose gas with
short-range interactions. In liquid He-4, the collective spec-
trum was studied using neutron scattering, which measures the
dynamic structure factor S(q,ω) = ∫

dt e−iωt 〈ρq(t)ρ−q(0)〉,
where ρq(t) = ∑

k a
†
k(t)ak+q(t) (see Ref. [38] and references

therein). The damping rate can be extracted from the data using
sum rules [29]. Recently developed high-resolution imaging
methods can directly probe the time evolution of the static
structure factor S(q,t) = 〈ρq(t)ρ−q(t)〉 following a sudden
quench in the interaction [39,40]. However, quantitatively
relating the features in the data to the damping of quasiparticles
is still an open problem.

In conclusion, we develop a theory for damping of
collective excitations in dipolar gases at zero temperature,
generalizing existing works on damping in gases with contact
interactions. Focusing on the long wavelength, low-energy
limit, we find that the nature of the dispersion forbids the
decay of a quasiparticle into two quasiparticles with lower
energy (Beliaev damping). A direct experimental verification
of our predictions should be possible with existing dipolar
systems.
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