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Geometry for separable states and construction of entangled states with positive partial transposes
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We construct faces of the convex set of all 2 ⊗ 4 bipartite separable states, which are affinely isomorphic to
the simplex �9 with 10 extreme points. Every interior point of these faces is a separable state which has a unique
decomposition into 10 product states, even though the ranks of the state and its partial transpose are 5 and 7,
respectively. We also note that the number 10 is greater than 2 × 4, to disprove a conjecture on the lengths of
qubit-qudit separable states. This face is inscribed in the corresponding face of the convex set of all PPT states
so that subsimplices �k of �9 share the boundary if and only if k � 5. This enables us to find a large class of
2 ⊗ 4 PPT entangled edge states with rank 5.

DOI: 10.1103/PhysRevA.88.024302 PACS number(s): 03.67.Mn, 03.65.Ud, 02.40.Ft

I. INTRODUCTION

One of the fundamental question in the theory of quantum
entanglement is how to distinguish and construct entangled
states. Even though the Positive Partial Transpose (PPT)
criterion [1,2] gives us a simple and powerful necessary
condition for separability together with the range criterion [3],
it is not clear how to distinguish entanglement satisfying these
two criteria. One possible way to overcome this difficulty is to
compare the geometries for separable states and PPT states, as
suggested in a recent work [4].

We note that the set of all separable states (with respect
to PPT states) makes a convex set, which is denoted by S
(with respect to T ). In order to understand the geometry of
a convex set, we need to characterize the facial structures.
The facial structures for the convex set T are relatively well
understood [5]. It is also known [6] that a given PPT state
� satisfies the range criterion if and only if the face of T
determined by � has a separable state in its interior. If we
understand the facial structures of the corresponding face of
S, then it is easy to distinguish and construct entangled states
within the face of T . This is the case when the corresponding
face of S is affinely isomorphic to a simplex.

The authors [4] exploited this idea for the 3 ⊗ 3 case, to
construct faces of S which are isomorphic to the simplex �5

with six extreme points and to understand how PPT entangled
edge states of rank 4 arise. This construction also gives
examples of separable states whose lengths are greater than the
maximum of ranks of themselves and their partial transposes.
The main idea was to begin with generic five-dimensional
subspaces of C3 ⊗ C3 which have six product vectors and
exploit the fact that the number of product vectors is greater
than the dimension.

In this paper, we pursue the same idea for the 2 ⊗ 4 case,
which is the smallest dimension in which PPT entangled states
arise. But the above idea for the 3 ⊗ 3 case does not work for
this case, because the number d is the dimension for generic
subspaces of C2 ⊗ Cd with finitely many product vectors, and
generic d-dimensional subspaces have just d product vectors.
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To overcome this difficulty, we consider the equation

|x ⊗ y〉 ∈ D, |x̄ ⊗ y〉 ∈ E (1)

for a given pair (D,E) of subspaces of C2 ⊗ C4, where
|x ⊗ y〉 := |x〉 ⊗ |y〉 and |x̄〉 denotes the conjugate of |x〉. We
construct five-dimensional spaces D and seven-dimensional
spaces E, for which the above equations have exactly 10
solutions. This enables us to construct faces of S isomorphic
to the simplex �9 with 10 extreme points.

Any interior point of the face �9 is a separable state with a
unique decomposition into 10 product states and has the length
10. This disproves the conjecture [7] which claims that lengths
of 2 ⊗ d separable states are at most 2 × d. We note that this
conjecture has been proved [8] recently for d = 3. We recall
that a PPT state � is of type (p,q) if the ranks of � and �� are
p and q, respectively. We also note that the boundary of this
face �9 consists of simplices �k with k + 1 extreme points,
for k � 8. By the construction, every interior point of the face
�9 is a separable state of type (5,7). We show that any choice
of 7 product vectors |x̄ ⊗ y〉 among 10 solutions are linearly
independent. From this, we conclude that if a boundary point
�1 of �9 is in the interior of �k with 6 � k � 8 then the
line segment from an interior point �0 of �9 to �1 can be
extended within the convex set T , to get PPT entangled states
of rank five. For known examples of 2 ⊗ 4 PPT entangled
states, see [3] and [9].

In the next section, we briefly review the material behind
the above idea we have just explained, and in Sec. III we give
the construction.

II. BACKGROUND

A density matrix � in the tensor product Mm ⊗ Mn of matrix
algebras is said to be separable if it is the convex combination
of product states, and so it is of the form

� =
k∑

i=1

λi |xi ⊗ yi〉〈xi ⊗ yi |, (2)

with unit product vectors |xi ⊗ yi〉 in the space Cm ⊗ Cn and
positive numbers λi with

∑k
i=1 λi = 1. A nonseparable state

is called entangled. Because the partial transpose �� of state

024302-11050-2947/2013/88(2)/024302(4) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.024302


BRIEF REPORTS PHYSICAL REVIEW A 88, 024302 (2013)

� in (2) is given by

�� =
k∑

i=1

λi |x̄i ⊗ yi〉〈x̄i ⊗ yi |,

we see that the partial transpose of a separable state is also
positive. This is the PPT criterion [1,2]. Furthermore, we also
see that if � is separable, then there must exist product vectors
|xi ⊗ yi〉 satisfying

R� = span {|xi ⊗ yi〉}, R�� = span {|x̄i ⊗ yi〉}, (3)

as the range criterion [3] says, where R� denotes the range
space of state �.

A convex subset F of a convex set C is said to be a face if
it satisfies the following condition: If a point in F is a convex
combination of two points in C, then they must be points of F .
A face consisting of a single point is called an extreme point. A
point x in a convex set C is said to be an interior point of C if it
is an interior point of C with respect to the relative topology of
the affine manifold generated by C. It is well known that every
convex set is completely partitioned into interiors of faces.
In this sense, a point x in a convex set determines a unique
face in which x is an interior point. This is the smallest face
containing x. A point of C is called a boundary point if it is
not an interior point.

Any face of T is determined [5] by a pair (D,E) of
subspaces of Cm ⊗ Cn and is of the form

τ (D,E) = {� ∈ T : R� ⊂ D, R�� ⊂ E}.
Conversely, the set τ (D,E) is a face unless it is empty. The
interior of τ (D,E) is given by

int τ (D,E) = {� ∈ T : R� = D, R�� = E}.
It was also shown in [6] that a PPT state � satisfies the range
criterion if and only if the interior of the face τ (D,E) of
T determined by � has a separable state. In this case, the
face S ∩ τ (D,E) of S shares interior points with the face
τ (D,E) of T . Therefore, it is crucial to understand the facial
structures of S ∩ τ (D,E) in order to determine whether or not
� is separable.

A study of facial structures of S was initiated by Alfsen
and Schultz [10], where they searched for faces of S which are
affinely isomorphic to a simplex. Suppose that a convex set C is
on the hyperplane of codimension 1 in the (d + 1)-dimensional
real vector space which does not contain the origin. Then C is
a simplex if and only if it is the convex hull of d + 1 linearly
independent points on the hyperplane. This simplex is denoted
by �d . Therefore, if a separable state in (2) determines a face,
then it is isomorphic to a simplex if and only if the product
states in the expression are linearly independent in the real
vector space of Hermitian matrices. For further progress on the
facial structures of separable states, see [4], [6], and [11–13].
The length of the separable state � is defined by the smallest
number k with which expression (2) is possible. It is clear
that if a separable state determines the face isomorphic to the
simplex �k , then it has the length k + 1.

Now we are ready to explain the main idea of the construc-
tion in the next section. We construct a five-dimensional space
D and a seven-dimensional space E of C2 ⊗ C4 and show the
following:

(i) Equation (1) has exactly 10 solutions.
(ii) The corresponding 10 product states are linearly

independent.
(iii) Any choice of five product vectors |x ⊗ y〉 spans the

space D.
(iv) Any choice of seven product vectors |x̄ ⊗ y〉 spans the

space E.
We conclude that the face τ (D,E) has a separable state in the
interior by (iii) and (iv), and the face τ (D,E) ∩ S is affinely
isomorphic to the simplex �9 by (i) and (ii).

We take an interior point �0 in the face τ (D,E) ∩ S,
which is denoted just �9 and take a boundary point �1 which
determines the face isomorphic to �k with k � 8. This means
that �1 is the convex combination of k + 1 product states.
Consider �t = (1 − t)�0 + t�1 for t > 1. If k + 1 � 6, then
R��

1 is a proper subspace of R��
0 , and so we see that �t is

never positive for t > 1. If k + 1 � 7, then we see that the
range spaces of �0 and �1 coincide by (iii), and the same for
the range spaces of ��

0 and ��
1 by (iv). Therefore, we see that

there exist t > 1 such that �t is of PPT. It is clear that this is
an entangled state. If we take the largest t such that �t is of
PPT, then �t is of type (p,q) with p < 5 or q < 7. But it is
not possible to have p < 5 by [14], because �t is an entangled
state. Therefore, we conclude that �t is of type (5,5) or (5,6).

III. CONSTRUCTION

Let D be the five-dimensional subspace of C2 ⊗ C4 which
is orthogonal to the following three vectors:

|v1〉 = (0,1,0,0, − 1,0,0,0)t,

|v2〉 = (0,0,1,0,0, − 1,0,0)t,

|v3〉 = (0,0,0,1,0,0, − 1,0)t.

We note that these three vectors span a completely entangled
space which has no product vectors. It is easy to see that
every product vector |z〉 = |x〉 ⊗ |y〉 in space D is one of the
following forms:

|z1〉 = (0,1)t ⊗ (0,0,0,1)t, |z(α)〉 = (1,α)t ⊗ (1,α,α2,α3)t

(4)

for a complex number α. Note that the partial conjugate of
|z(α)〉, which is denoted |z̄(α)〉, is given by

|z̄(α)〉 = (1,ᾱ)t ⊗ (1,α,α2,α3)t

= (1,α,α2,α3,ᾱ,|α|2,|α|2α,|α|2α2)t.

For given real numbers a and b with the relation 0 < b <

4a3/27, we consider the vector

|w〉 = (b,0,0,1,0, − a,0,0)t, (5)

and let E be the seven-dimensional subspace of C2 ⊗ C4

orthogonal to the vector |w〉.
Now, we proceed to solve Eq. (1) for the above D and E.

We note that the partial conjugate of |z1〉 belongs to E, and so
|z1〉 is a solution. In order to find complex numbers α so that
|z(α)〉 is a solution, we solve the equation 〈z̄(α)|w〉 = 0; that
is,

b + α3 − a|α|2 = 0. (6)
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We first note that α3 must be a real number, and so we have
α = reiθ with 3θ = nπ and r > 0. If n is an even integer, then
Eq. (6) is reduced to

r3 − ar2 + b = 0,

and we get two distinct positive roots, r1 and r2, from the
condition 0 < b < 4a3/27. In the case of an odd integer n, we
get one positive root r3 of the equation r3 + ar2 − b = 0 by
the same condition. We also note that r1, r2, r3 are mutually
distinct. Therefore, we have the following nine solutions of the
equation (6):

r1, r1ω, r1ω
2, r2, r2ω, r2ω

2, −r3, − r3ω,

−r3ω
2, (7)

where ω is the third root of unity. For the notational
convenience, we rewrite the normalizations of the product
vectors |z(α)〉 in (4) for the above nine α’s by |z(αi)〉 for
i = 2,3, . . . ,10.

In order to show item (ii) from the last section, suppose that

a1|z1〉〈z1| +
10∑
i=2

ai |z(αi)〉〈z(αi)| = O,

where O is the 8 × 8 zero matrix. Note that |z(α)〉〈z(α)| is
given by

|z(α)〉〈z(α)|

=

⎛
⎜⎜⎜⎜⎝

1 ᾱ ᾱ2 ᾱ3 ᾱ ᾱ2 ᾱ3 ᾱ4

α |α|2 · · · |α|2ᾱ3

...
...

. . .
...

α4 |α|2α3 · · · |α|8

⎞
⎟⎟⎟⎟⎠,

which is an 8 × 8 matrix. Therefore, we get 64 linear equations
with respect to ai (i = 1,2, . . . ,10) by comparing the entries
on both sides. If we write

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 · · · 1 1

0 ᾱ2 ᾱ3 · · · ᾱ9 ᾱ10

...
...

...
. . .

...
...

0 |α2|6 |α3|6 · · · |α9|6 |α10|6
...

...
...

. . .
...

...

1 |α2|8 |α3|8 · · · |α9|8 |α10|8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a 64 × 10 matrix, and A = (a1,a2, . . . ,a10)t, then we
have the equation

CA = O.

We note that entries in the first column in C are all 0 except
the last entry. Since we have

|αi |8 = a2|αi |6 − 2ab|αi |4 + b2|αi |2, i = 2,3, . . . ,10

from Eq. (6), we can conclude that the row vector
(0,|α2|8,|α3|8, . . . ,|α10|8) is the linear combination of three
rows of the above matrix C. Therefore, we have a1 = 0. Since
any nine product states corresponding to the nine product
vectors are linearly independent by Proposition 2.2 in [4], we
have a2 = a3 = · · · = a10 = 0. Proposition 2.1 of [4] also tells

us that any choice of 5 product vectors among 10 solutions is
linearly independent.

It remains to show item (iv) from the last section. Without
loss of generality, it suffices to consider the following five
cases:

{|z1〉,|z(r1)〉,|z(r1ω)〉,|z(r1ω
2)〉,|z(r2)〉,|z(r2ω)〉,|z(r2ω

2)〉},
{|z1〉,|z(r1)〉,|z(r1ω)〉,|z(r1ω

2)〉,|z(r2)〉,|z(r2ω)〉,|z(−r3)〉},
{|z1〉,|z(r1)〉,|z(r1ω)〉,|z(r2)〉,|z(r2ω)〉,|z(−r3)〉,|z(−r3ω)〉},
{|z(r1)〉,|z(r1ω)〉,|z(r1ω

2)〉,|z(r2)〉,|z(r2ω)〉,|z(r2ω
2)〉,|z(r3)〉},

{|z(r1)〉,|z(r1ω)〉,|z(r1ω
2)〉,|z(r2)〉,|z(r2ω)〉,|z(r3)〉,|z(r3ω)〉}.

For each case, we form the 7 × 8 matrix whose rows are given
by the seven product vectors identified with row vectors in C8.
Then, in any case, it is easy to see that the reduced row echelon
form of the matrix is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 b/a 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 1/a 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, for any choice of 7 product vectors among 10
solutions, we see that the corresponding 7 partial conjugates
are linearly independent, and so they span the space E.

Finally, we illustrate the above discussion with an explicit
example. We consider the case where a = 2 and b = 1
in (5). From the equation r3 − 2r2 + 1 = 0, we get two
positive solutions, r1 = 1 and r2 = (1 + √

5)/2. We also get
one positive solution, r3 = (

√
5 − 1)/2, from the equation

r3 + 2r2 − 1 = 0.

0 1 ν 2
0

0.1

0.2

0.3

t

λ i
t

0 1 ν 2
0

0.1

0.2

0.3

t

μ i
t

(a)

(b)

FIG. 1. In both graphs, each curve represents distinct eigenvalues.
(a) λi(t)’s are the eigenvalues of ρt . (b) μi(t)’s are the eigenvalues of
ρ�

t . The thick line denotes the smallest eigenvalue of ρ�
t except 0. So,

the rank of ρν is 5 and the rank of ρ�
ν is 6.
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By a direct computation, we have an interior point �0 of
�9:

�0 = 1

10

(
|z1〉〈z1| +

10∑
i=2

|z(αi)〉〈z(αi)|
)

= 1

400

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

71 0 0 7 0 0 7 0

0 39 0 0 39 0 0 23

0 0 31 0 0 31 0 0

7 0 0 39 0 0 39 0

0 39 0 0 39 0 0 23

0 0 31 0 0 31 0 0

7 0 0 39 0 0 39 0

0 23 0 0 23 0 0 111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where |z(αi)〉 is the normalized product vectors with αi’s in
(7). We consider the eight-simplex �8 determined by these
nine product vectors |z(αi)〉’s. An interior point �1 of this face
is given by

�1 = 1

9

10∑
i=2

|z(αi)〉〈z(αi)|

= 1

360

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

71 0 0 7 0 0 7 0

0 13 0 0 13 0 0 23

0 0 31 0 0 31 0 0

7 0 0 13 0 0 13 0

0 13 0 0 13 0 0 23

0 0 31 0 0 31 0 0

7 0 0 13 0 0 13 0

0 23 0 0 23 0 0 71

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We put ρt = (1 − t)�0 + t�1 and explore eigenvalues of ρt and
ρ�

t (see Fig. 1). We denote by λi(t) and μi(t) the eigenvalues
of ρt and ρ�

t , respectively. Then we see that there exist ν ≈
1.48192 so that ρν is on the boundary of the face τ (D,E),
which is a PPT entangled edge state of type (5,6). We note
that ρt is a PPT entangled state of type (5,7) for 1 < t < ν.

IV. CONCLUSION

In this paper, we have constructed faces of the convex set of
all 2 ⊗ 4 separable states, which are isomorphic to the simplex
�9. The boundary of this face consists of simplices �k with
k � 8. Note that the number of faces isomorphic to �k is

10
k + 1 . The discussion in Sec. II tells us that the interior of �k is
located in the interior of the face τ (D,E) if and only if k � 6.
If k � 5, then �k is located on the boundary of τ (D,E). Since
every interior point of �5 is a separable state of type (5,6), it
is very plausible that the boundary point �t of τ (D,E) is also
of type (5,6). Actually, we got a PPT entangled state of type
(5,6) in the last numerical examples. It is clear that the PPT
entangled states which are located on the boundary of the face
τ (D,E) must be edge states, but it is not clear whether or not
they are extreme. It would be interesting if we could get PPT
entangled states of type (5,5) by a similar construction.
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