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The calculation of the fundamental limits of nonlinear susceptibilities posits that when a quantum system has
a nonlinear response at the fundamental limit, only three energy eigenstates contribute to the first and second
hyperpolarizability. This is called the three-level ansatz and is the only unproven assumption in the theory of
fundamental limits. In light of the observation that the measured nonlinear response of a majority of molecules
falls far short of these limits, the three-level ansatz warrants closer scrutiny. All calculations that are based on
direct solution of the Schrodinger equation, including systems of arbitrarily placed electrons and nuclei in external
electromagnetic fields and interacting electrons in an arbitrary potential, whose configuration space is sampled
using numerical optimization techniques, yield intrinsic hyperpolarizabilities less than 0.709 and intrinsic second
hyperpolarizabilities less than 0.6. In this work, we show that relaxing the three-level ansatz and allowing an
arbitrary number of states to contribute leads to divergence of the optimized intrinsic hyperpolarizability in the
limit of an infinite number of states, what we call the many-state catastrophe. This is not surprising given that the
divergent systems are most likely not derivable from the Schrodinger equation, yet obey the sum rules. The sums
rules are the second ingredient in limit theory and apply also to systems with more general Hamiltonians. These
“exotic Hamiltonians” may not model any real systems found in nature. Indeed, a class of transition moments and
energies that come form the sum rules do not have a corresponding Hamiltonian that is expressible in differential
form. In this work, we show that the three-level ansatz acts as a constraint that excludes many of the nonphysical
Hamiltonians and prevents the intrinsic hyperpolarizability from diverging. We argue that this implies that the true
fundamental limit is smaller than previously calculated. Since the three-level ansatz does not lead to the largest
possible nonlinear response, contrary to its assertion, we propose the intriguing possibility that the three-level

ansatz is true for any system that obeys the Schrodinger equation, yet this assertion may be unprovable.
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I. INTRODUCTION

The fundamental limits of the first and second hyper-
polarizabilities [1-4] can be used to define scale-invariant
quantities [5,6] that have been used to test the theoretical
basis of the nonlinear susceptibility as well as exploring their
consequences as embodied in real quantum systems. Slepkov
et al. used the theory of fundamental limits to understand
scaling of the surprising nonlinear optical properties of polyene
oligomers [7]. May et al. used the fundamental limits as an ab-
solute standard for comparing molecules, independent of their
size, to show the promise of small molecules [8,9]. Chen et al.
showed that the nonlinear response of certain nano-engineered
polymers gave a larger intrinsic nonlinear-optical response
than what would be expected from the individual building
blocks [10]. The first- (8) and second-order (y) response of
twisted m-electron chromophores were identified to constitute
a new paradigm for enhanced electro-optic materials [11-13]
based on the fact that they fell far into the gap between the best
molecules every measured and the fundamental limit [14]. The
fundamental limits have also been used to define the concept
of modulated conjugation in the bridge between the donor and
acceptor ends as a new paradigm for enhancing the intrinsic
hyperpolarizability, Bin [15,16], defined by
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where Bn.x is the fundamental limit [1-4] of the first
hyperpolarizability and is calculated using the sum
rules [17-19] and the three-level ansatz [1-4].

While the fundamental limits have been used as a metric
in comparing molecules, provide insights in understanding the
scaling behavior of molecular homologues, and act as a guide
in developing new molecular paradigms, the assumptions
underlying the limits have not been scrutinized, nor have
their implications been fully studied. This paper revisits the
assumptions and investigates their consequences to fundamen-
tal physics. The paper is organized into four parts. First, the
derivations of the limits are reviewed and the assumptions
fully interpreted. Next, the behavior predicted from the limits
is compared with theoretical calculations and experimental
measurements of the nonlinear susceptibility. The third section
demonstrates how the theory of the fundamental limits changes
when the assumptions are relaxed, and their implications
discussed. Finally, the last section describes hints of potentially
new fundamental physics that lies just beyond our horizon of
understanding.

II. FUNDAMENTAL LIMITS

The fundamental limits are calculated in three straightfor-
ward steps. First, the sum-over-states (SOS) expressions of Orr

B = B (1) and Ward [20] for the nonlinear susceptibilities are simplified
nt Brmax using the generalized Thomas-Reiche-Kuhn sum rules, which
relate the position operator matrix elements, x;; = (i|x|j), and
energies, E;, to each other:
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where n, m, and p index the energy eigenstates, and N the
number of electrons. Then, the three-level ansatz is applied
under the assumption that a three-level model accurately
describes any system with a nonlinear-optical response near
the fundamental limit. This leads to an expression with only
two adjustable parameters, the ratio between the energies
of the two states, £ = Eo/E»o, and the matrix element of
the position operator, x = x10/x}", where x{i™* is the upper
bound of xjg, and it is determined from sum rules. Finally, the
expression for the nonlinear susceptibility is optimized under
the assumption that x and E are independent. The process can
be reversed, with the three-level ansatz being applied prior to
the sum rules, as we outline below.

First, we reiterate the definition of the three-level ansatz
(TLA): “When the hyperpolarizability of a quantum system
is at its fundamental limit, only three states contribute to
the nonlinear response.” The converse is not true; that is, a
quantum system in which only three three states contribute
to the nonlinear response will not necessarily have a a large
nonlinear response and may in fact be far from the limit.

The three-level ansatz is motivated by the simpler calcula-
tion of the off-resonance polarizability, given by
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Using Eq. (2) withm = p =0,
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An alternative method for getting Eq. (4) is to note that
Eq. (3) is a sum of positive definite terms. If the full transition
strength is placed in State 1, the sum rules predict that all other
transition moments x,o vanish. Thus, since the numerator is
made maximum by placing all the transition strength between
states 0 and 1, and this denominator is the smallest of all terms,

then « is maximum in a two-level model.

Consequently, one might expect that the same may be true
for B; but two problems arise. First, since the sum over states
expression does not have all positive-definite terms, it is not
a simple task to show that placing all the transition strength
in the first excited state is the best strategy. A more damning
problem is that the sum rule for the two-level model with
m = 0and p = 1 yields

E1px10(x11 — x00) = 0, @)

which does not allow both x;9 and x; — xg9 to be nonzero.
Since in the two-level model, B o |x10)?(x11 — Xxp0), the
implication is that 8 = 0 for a two-level system, clearly not a
maximum. However, no such problems arise for the three-level
model. Since using the minimum possible number of states
makes the transition strengths of the nonvanishing terms large,
and if the transition energies are small; that is, the lowest
energy states are the dominant ones, then the three-level model
will yield the largest nonlinear response. Optimization of this
expression by varying the independent physical quantities is
then assumed to lead to the fundamental limit.
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Since this sum rule derivation of limits appears to hold
for all measurements and all exact analytical calculations, the
three-level approximation for an optimized system appears
reasonable. Indeed, the highly successful two-level model,
used in understanding the nonlinear response of large numbers
of donor or acceptor molecules by hundreds of researchers
[21], has not been questioned because of its success despite
the fact that such an expression violates the sum rules.
The two-level model may work well for molecules with a
hyperpolarizability far from the fundamental limit, where
many states contribute but two dominate the response, perhaps
due to slight resonance enhancement. In contrast, when the
two-level model is constrained to obey the sum rules and
forcing only two states to contribute while suppressing all
others, the two-level model becomes unphysical.

Applying the sum rules to a three-level model yields its
own set of problems. One can show that the truncation of the
sum rules is perfectly legitimate when applied to a few-state
SOS expression of the hyperpolarizability in the manner used
in calculating the limits [22]. The problem arises in the choice
of sum rules used in simplifying the SOS expression. For
example, in a three-level model, the largest state index is 2 and
the sum rule corresponding to Eq. (2) with m = p = 2 (call
this sum rule X,) is nonsensical and yields the obviously
nonsensical result that

N
= Bl = ——, (6)

that is, a negative number equals a positive one.

In calculating the limits, the sum rule equation X, is
ignored. Using the sum rules Xy, X9, and X,o reduces
the three-level approximation of the SOS expression to one
with two adjustable parameter that are varied to find the
maximum. The assumption here is that all nonlinear-optical
susceptibilities near the limit can be approximated using this
two-parameter model.

The above approach ignores sum rule Xj;. One may
argue that this choice is arbitrary, as did Champagne and
Kirtman [23]. For example, why not also ignore sum rule
Y,0. With this choice, there would be no upper bound on the
hyperpolarizability. In the end, the appropriate choice is the
one that is consistent with the data. Potential optimization
studies [24-26], nuclear placement [27,28], application of
electromagnetic fields [28], and interactions between electrons
in a potential well [29] all show maximum hyperpolarizabil-
ities of Bin < 0.709 and yiy < 0.6 [30]. Using fewer sum
rule equations makes the upper bound infinite while additional
constraints decreases the limit below these values. Thus,
while not a rigorous proof, these observations show that the
approximations used in calculating the limit are reasonable.

In summary, the calculations of the fundamental limits uses
the three-level anzatz, which has not been rigorously derived,
but appears to hold over a broad set of observations. Similarly,
using the sum rules X9, X9, and X, and ignoring the others
is somewhat arbitrary but again yields the correct results. These
assumptions are scrutinized and their implications discussed
below.
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III. COMPARISON OF LIMITS WITH DATA

The TLA and the neglect of the pathological sum rules are
the two untested assumptions of the theory of limits. Since they
cannot be tested directly, and proof with analytical techniques
has been unsuccessful, an indirect approach is to sample a large
enough domain of the full configuration space of quantum
systems to determine if any of the predictions of the theory are
violated. Are there instances where a system beats the limits?
Do all system fall substantially short of the limit? How many
states are typically involved near the limits? These and related
questions can be answered using analytical calculations and
experimental data.

Since the hyperpolarizability is not a scale-invariant quan-
tity, we use the intrinsic hyperpolarizability, Bin, as an absolute
standard for evaluating a quantum system that is independent
of the quantum unit’s size [5,14,24] and spans the range [—1,1]
with |Bin¢| = 1 defining the fundamental limits. The factor of
30 gap between the largest nonlinearities observed (prior to
2007) by experiment and the fundamental limits and the fact
that the hyperpolarizability of the clipped harmonic oscillator
is less than a factor of 2 smaller than the limit suggested
that new paradigms for making better molecules and artificial
quantum systems would be required to make larger intrinsic
hyperpolarizabilities practical [31]. More importantly, these
studies established that the fundamental limits held for all
known molecules and therefore represented the true upper
bound.

To understand the nature of this gap, Tripathy et al. used
linear spectroscopy, Raman spectroscopy, 8 values measured
by Hyper-Rayleigh scattering, and Stark spectroscopy to
determine which parameters are critical [31]. Included were
tests of dilution effects due to vibronic states, investigations
of unfavorable energy spacing of the molecule or atom,
simplifications inherent in local field models, and an analysis
of the effects of truncation of the sum rules. These studies
concluded that the energy spectrum of real systems compared
with the ideal is the most likely factor that keeps the
hyperpolarizabilities of real molecules well below the limit
[31].

To gain insights about the gap, the effects of several
different parameters, including molecular geometry, external
electromagnetic fields, and electron-electron interactions, have
been investigated. The effect of molecular geometry on the
hyperpolarizability is determined by varying the positions and
magnitudes of charges in two dimensions and correlating them
with dipolar charge asymmetry and the variations of angle
between point charges in octupolar structures. It was shown
that the best dipolar and octupole-like molecules have intrinsic
hyperpolarizabilities near 0.7 [27].

Hamiltonians of the standard form, given by

P’
H=—+V(), @)

2m
are used to calculate the sum rules. However, more general
Hamiltonians also obey the sum rules. For example, the first
hyperpolarizability of molecules was studied in the presence of
an external electromagnetic field modeled by a vector potential
term added to the momentum, and also led to best intrinsic
hyperpolarizabilities of about 0.7 even when the external field
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TABLE 1. The largest intrinsic hyperpolarizabilities obtained
using various theoretical approaches.

Theoretical models Bine
Charge asymmetry <0.7
External electromagnetic field ~0.7
Electron interactions 0.709
Potential optimization 0.709
Monte Carlo simulation ~1

is comparable with internal molecular fields [28]. Thus, all real
one-electron systems modeled appear to have an upper bound
of 0.709.

More recent work addresses the role of electron interactions
on Biy [29] and shows that while 8 for two noninteracting
electrons are twice that of a single-electron system, since
the fundamental limit for a two-electron system scales as
N32 (1], increasing the number of electrons that do not
interact with each other reduces S At best, the theory of
fundamental limits predicts that interacting electrons will lead
to N3/2 scaling of the hyperpolarizability. Calculations of two
interacting electrons confirm this prediction, so the best values
of Bin for this system are again found to be about 0.7 [29].
There is no reason to believe that adding additional electrons
will lead to a larger intrinsic nonlinear response.

Other studies aimed at investigating the gap have used
numerical optimization techniques to find the potential en-
ergy functions that maximize the hyperpolarizability. In this
approach, many classes of starting potentials (polynomial,
trigonometric, etc.) are varied until the hyperpolarizabilities
are optimized using a finite-difference method to calculate g
using

1 3°p
C20E% |,

where p is dipole moment calculated in the presence of the
applied electric field. These too find the largest Binc values to
be approximately 0.71 [24,25].

Atherton et al. used a different approach to optimize
a piecewise linear potential function of the form V(x) =
Ax, + B, forn € {1,2,3,...,N — 1}, with N as the number
of segments [32]. They also find the universal value of
optimized hyperpolarizability to be Biy ~ 0.71 [24,25,33].
The authors use a Hessian matrix [34] of Bj, to find the
relevant parameters defining the hyperpolarizability and find
that (a) two parameters suffice to find the appropriate potential
function and (b) increasing the number of parameters does
not improve upon the value of Biy. A summary of the largest
attainable B, vales are presented in Table 1.

In the above approaches, the Schrodinger equation is solved
directly for many Hamiltonians. All quantum systems with
an intrinsic hyperpolarizability near the fundamental limit,
independent of the underlying Hamiltonian, are found to share
universal properties: the three-level ansatz is obeyed; the ratio
of the second to first excited state energies is £ = E1og/Ey =~
0.49; and X = xo1/x5* = 0.79, where xj}** = h/(2mE;)'/?
is the largest possible transition moment to the first excited
state. It is intriguing that such a broad range of systems share
the same properties, and the natural question is why. In addition

B ; ()
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to the fundamental questions that arise, universal properties
can be used as a guide for optimizing the hyperpolarizability.

A larger configuration space can be probed using the
sum rules directly in lieu of the Schrodinger equation. In
this approach, Monte Carlo simulations are used to generate
a distribution of B, values based on millions of random
samplings of the energies and transition moments under the
constraint that the eigenenergies, E;, and transition moments,
Xjj, obey the sum rules. The largest hyperpolarizabilities are
found once again to be characterized by three dominant states;
but the hyperpolarizabilities can approach arbitrarily closely to
the limit [35,36]. Since the sum rules cover a broader domain
than the Schrodinger equation, it is not surprising that values
greater than given by the Schrodinger equation are found.
However, none are larger than S, = 1.

The present work seeks to investigate the domain not
included in the Schrodinger equation but constrained by the
sum rules. An ancillary goal is to revisit the validity of the
calculations of the fundamental limits and their applicability
to systems described by standard Hamiltonians such as those
given by Eq. (7). Since the sum rules encompass a broader
range of systems than those derivable from typical Hamilto-
nians [36], we also investigate nonstandard Hamiltonians that
may lead to artificial materials with larger nonlinear response.
Finally, we discus the many-state catastrophe, and why the
three-level ansatz may be appropriate. This approach allows
us to contrast our new findings with previous studies that lead
to new interpretations of the TLA.

IV. THE HYPERPOLARIZABILITY OF N-LEVEL MODEL

In this section, we introduce the sum rules and use them
as a constraint to optimize g for a general four-level model.
Subsequently we generalize those results to an N-level model
and show that a highly degenerate energy spectrum appears
to break the fundamental limit. In the infinite-state model, the
limits are found to diverge. This leads to a reformulation of the
fundamental limits based on the Schrodinger equation, which
suggests a reduced limit.

A. Sum rules

Sum rules, given by Eq. (2), are the foundation of the
theory of fundamental limits of the first- and second-order
hyperpolarizabilities, 8 [1] and y [2], respectively. They have
been used to calculate the fundamental limits of the off-
diagonal components of B8 as measured with hyper-Rayleigh
scattering [37], limits of two photon absorption cross sections
[38], and used to formulate the dipole-free SOS expression for
B [39] and y [40].

B. Four-level model

In this section we will first apply sum rules to a four-level
model of the hyperpolarizability to a very specific state,
namely, to what we call a fully degenerate state, and find that
the hyperpolarizability can exceed the fundamental limit so the
intrinsic hyperpolarizability exceeds unity. This calculation is
then generalized to an N-level fully degenerate state using the
same method, which shows a divergence of the fundamental
limit as N — oo, which we call the many-state catastrophe.

PHYSICAL REVIEW A 88, 023863 (2013)

Using the dipole-free (DF) SOS expression [39], which is
a simplification derived using a subset of the sum rules, the
electronic first hyperpolarizability for a four-level model in the

off-resonant regime, 8 = BLF, is given by

5
vy
m##n
= Bio + Bor + B1z + B3t + Boz + P32

= —3¢° |:x01x12x20 ( 2 — 2Ew0 — Ex
E19Er E3,
_—E130 ) + Xo1X13X30 <E10E30
—ZEIO — Exo - 2Es0 E10> + X02X23X30
E3 Efy
2 2Eyx — Ezg 2E3 — Ex
X(E Exw  E3  E3 >] ®
20E30 30 %

where the prime on the sum indicates that the ground state
(labeled by zero) is excluded from the summation and

1 2En0 — En
0 0). (10)

- 3
EnO EmO EmO

DF 3
ﬂmn = —3e xOmxmnan<

Since the sum rules relate transition moments and energies
to each other, they can be used to reduce the number of
parameters in a truncated SOS expression. It has been shown
that this procedure can be applied in a way that avoids
pathologies [22].

We begin by using the sum rules to eliminate xo3, x13, and
X723, as follows. The sum rule (m, p) = (0,0) [see Eq. (2)] for
a four-level model yields

2

2 2 , _h
Eolxo1]” + Exolx02|” + E3zolx03|” = z—; (11)
2m
(m,p) = (1,1) gives
h2
Eoilxo1 1> + Exi|x12]* + Exp|xi3]* = o (12)

and (m, p) = (2,2) yields
2

2 2 »_h
Enlxepa|” + Enlxp|” + Esnlxs|” = m (13)
Solving Egs. (11)—(13) for xo3, x13, and x3 yields
y2\1/2
Xo3 = :i:«/fx{ﬁ‘”‘(l - x2 - F) , (14)

—E_, 1/2
—2Z7) ., (15

F max 2 1
X3 = Tt (X7
F
= e N E Y (= B)ZY)2 (16)

where
E= Eyo F= Eio X0
=5 T E, YT
20 30 o1 (17
X20 X12
Y=—01r, and Z=——.
Xo1 o1
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xg™ is the largest possible transition moment from the ground
state to any other state, and it is given by

2 1/2
ymax _ h°N /
o1 2mE10 '

Rewriting Eq. (9) interms of E, F, X, Y, and Z gives
;’ij E(X’Y7Z7E’F)7

(18)

DF __

4L = (19)

3/4 y2 1/2 X
L(X,Y,Z,E,F) = (Z) <XYZ[2E +(1 —=2E)E* —2/E + 1]+ F(l —-XxX?- —> {(1_—

1-E
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where we have used the fundamental limit of the first
hyperpolarizability obtained from the three-level model,

1/2
x (1 + X - Tz2) [2F + (1 —=2F)F?> + —2/F + 1]

T E—Fe

L(X,Y,Z,E,F) in fact is the intrinsic hyperpolarizability for
a four-level model, i.e.,
R
nt —

max
3L

= L(X,Y,Z,E,F). (22)
The maximum of Eq. (22) corresponds to the fundamental
limit calculated from a four-level ansatz.

Based on the theory of the fundamental limits and the three-
level ansatz, all intrinsic hyperpolarizabilities should be in
the range [—1,1]. By numerically finding the maximum of
the function given by Eq. (22), we find that the largest value
of Bin: results from the extreme case where States 1 and 2
are degenerate and the energy of State 3 approaches infinity
[Fig. 1(a)] or

E~1 and F—0 23)
yielding
| Btk max ~ 1,28, (24)
@ ®
T E;>>1 T Exag>1
E,=E,= ..=Ey,
E, E,

FIG. 1. (Color online) The ideal energy spectrum configuration
that maximizes the hyperpolarizability of (a) four- and (b) N-level
models.

e3h3 N3/2
B = 3'/4(—3 2) [—7 2}. (20)
m? JLE,
L(X,Y,Z,E,F)is given by
E F)l/2
2F3 2E3
[E+Y?>+ (1 — E)Z*'? |:(E + F)? — (T + T)] }) (21)
|
which implies that
ma — 1.28 g (25)

as shown in Fig. 2. Later we will generalize the result and
discuss its pathologies.

V. N-LEVEL MODEL

In this section, we derive a general relationship for S, for
an arbitrary number of eigenstates that form a fully degenerate
state. Starting from the dipole-free SOS expression [39]

3\ 1 2e; —¢;
ﬂintz(z> ZEiOEiijO(?ej_ ]e3 ) (26)

i#] d

max

FIG. 2. (Color online) The numerical simulation for g;,, of a four-
level model. B;, exceeds the three-level maximum hyperpolarizability
in the dark blue region.
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where normalized transition moments and energies are defined
by

.X,'j

&ij = i 27
and
Eio
e, = —. (28)
Ey

Monte Carlo calculations and empirical trial and error numer-
ical simulations are used to find the maximum. Figure 1(b)
shows the optimum, where states 1 to (N — 2) are degenerate,

el=ey=e3=---=eyN_y, (29)

all the transition moments from the ground state to the (N — 2)
excited states are the same, given by

So1 = & = &3 - = & N2, (30)

and the energy of the highest-lying excited state approaches
infinity,

en_1 >> 1. 3D
The fully degenerate N-level state, defined by the above

conditions as shown in Fig. 1(b), yields an intrinsic hyperpo-
larizability of

Bt = Bin—1+ Bon—2+ -+ Bn-2n-1+ Bnv-1.N-2

N4,
:(Z> > eutintkn-ro

2 261\/,1 — €& 26[ — eéN—1
X - 3 - 3
é;ien_1 e: €n_1

1

3\ 4
(Z) (N —2)&1061,8-16n-1,0

2 261\/,1 — €] 261 — éN—1
X - 3 - 3
e€1eén—1 el 6}\,71

3\ 34
) (Z) (N —2)en—_1601&1,n-16N—1.0, (32)

[

where we have neglected terms with 1/Ey_;, which tends to
zero when the highest excited state energy tends to infinity.

For further simplification, we use the sum rule (m,p) =
(0,0),

ewl€0l* + exnlél® + - +en—10lén—10* =1, (33)

whence

1—(N -2 2
enro = Jw. ”

EN-1,0
(m,p) = (1,1) gives
eorl€r0l* + e lénl* + - +en—11lén—11> =1, (35)

whence
1+ [&10]? 1+ [&10]?
|§N—1,1|=\/ 110l :\/ |§|o|' (36)

eN—1,1 E€N-1,0
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Introducing Egs. (34) and (36) into Eq. (32) we find
3\ 3/4
Bt = _2<4_1> (N —2)10

x /1= (N =3)én> — (N = 2)lén[*. (37)

To optimize B with respect to & we first find £5;™* by
solving 335% = 0, leading to

max __ \/(N_3)2+3(N—2)—(N_3) 1/2
o _[ 3N —2) ] . (38)

which holds for N > 3. Inserting Eq. (38) into (37) results in
1\ /4
ﬁirx?i)éR = <E>

x |:(N —-2)

N2—3—(N—3)\/N(N—3)+3i|1/2
(N —=3)+/N(N—-3)+3 ’

(39)

where the subscript SR indicates the result is constrained by
the sum rules. According to Eq. (39), for N = 3, Binr = 1 and
for N = 4, Bine = 1.28 which is in agreement with the previous
calculations.

The consequence of Eq. (39) is that S;,; does not converge
for an infinite number of states, but diverges as

3/1 1/4\/_
li TR = = —= N. 40
Nm Pise = 3 ( 12) “0)
Therefore, using only the sum rules without additional con-
straints leads to a many-state catastrophe for the hyperpolar-
izability of a quantum system. The same approach can be
applied to the second hyperpolarizability, y. The many-state
catastrophe contradicts all studies based on direct solution of
the Schrodinger equation, as well as experiment.

VI. DISCUSSION

It is not surprising that previous numerical simulations
did not see this behavior given the extreme or unphysical
conditions that are required. The many state catastrophe can be
understood by considering the generalization from a three- toa
four-level ansatz, which adds an additional degree of freedom,
leading to two parameters, E and F'. The number of degrees of
freedom increases in proportion to the total number of states,
making it possible to find a specific combination of parameters
that yields an ever-larger nonlinear response. However, since
only parameters in the neighborhood of one very specific set
out of many possible configurations gives Bi, > 1, even in
millions of iterations in Monte Carlo simulations, the outliers
are missed [35]. However, the very special set of parameters
leading to Eq. (39) may not correspond to any real system,
as we describe below. Given that analytical optimization of
the hyperpolarizability using the Schrodinger equation always
gives a result smaller than what is predicted by the three-level
model, the three-level ansatz appears to shadow a fundamental
principle that constrains the magnitude of the true nonlinear
response.
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Bine >> 1

Bim <1.28

FIG. 3. (Color online) The range of attainable hyperpolarizabili-
ties of (a) real systems such as atoms and molecules; (b) Hamiltonian-
based approaches; (c) sum rule-based Monte Carlo simulations;
(d) four-level model sum-rule-constrained optimization; and (e) sum
rule-based N > 4-level model optimization.

Figure 3 summarizes what we know about the space of all
allowed transition moments and energies derivable from the
sum rules. The observations are the following:

(1) All theoretical and numerical approaches that are
based on exact solutions of the Schrodinger equation based
on the standard Hamiltonian given by Eq. (7)—as well as
generalizations that include spin, vector potentials, spin-orbit
coupling, etc.—lead to Bi, < 0.71.

(2) Monte Carlo simulations that are based on random
sampling of transition moments and energies constrained to
obey the sum rules generate Sj, < 1.

(3) The fundamental limit calculations assert that when the
maximum hyperpolarizability is attained, only three energy
eigenstates contribute to the nonlinear response. This is ob-
served for all computations using solutions of the Schrodinger
equation when Bi, &~ 0.7. However, in the case of highly de-
generate states, we observe that By . > BN ijevel = 00 >
Biix . and when the number of states, N, approaches infinity,
the sum rules impose no limit on the hyperpolarizability unless
a finite N-level ansatz is imposed.

Motivated by the above observations, we seek to answer
the following questions:

(1) Why does the sum rules-based Monte Carlo approach
lead to different results than direct solution of the Hamiltonian?

(2) Why have sum-rule-based Monte Carlo simulations
not observed violations of the three-level ansatz, i.e., generate
values with S > 1?7

(3) If the intrinsic nonlinear-optical response of an opti-
mized N-level system can in principle be infinite, is it possible
that standard Hamiltonians may be fine-tuned to lead to
ultralarge hyperpolarizabilities?

(4) Is there a well-defined limit for the largest attainable
of a quantum systems?

(5) How can we interpret the apparent success of the three-
level ansatz and the large gap between the three-level-ansatz-
based fundamental limit and most molecular systems?
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The answer to these questions requires a detailed analysis
of the theory of fundamental limits.

A. Potential issues with the Monte Carlo approach

The intrinsic first and second hyperpolarizabilities are
functions of normalized transition moments, &;;, and energies,
e;, given by Eqgs. (27) and (28), respectively. In Monte Carlo
simulations, these quantities are picked randomly under the
constraint of the diagonal sum rules [35] and then using
the dipole-free formulation [39,40], the hyperpolarizabilities
are calculated. The wave functions are assumed real and
nondegenerate, so the underlying Hamiltonians that describe
these system, if they exist, must be invariant under time
reversal [41].

There is potentially a pathology of this approach due to a
subtle mixed-counting of states in the dipole-free expression,
which uses the off-diagonal sum rules to remove the dipolar
terms using the relationship

oo / 2 oo/ oo/

A)Cm()lxm()l Enm + EnO
5o Ambtunl __gn g~ Eun E B0, D)
m=1 m0 m=1 n#m m0

where Ax,,0 = Xum — Xoo- Since Eq. (41) holds only when all
infinite number of states in the » summation are included,
truncating the sums in the DF SOS expression implicitly
truncates Eq. (41), which leads to inaccuracies in the dipolar
terms. Indeed, it is found that the standard SOS and DF
SOS expressions can disagree with each other even when
the hyperpolarizabilities are calculated from a Hamiltonian
[24,25,33].

The issue can be described as follows. In the standard
SOS expression, the hyperpolarizability comes from two
groupings of terms: ones that are functions of the dipole
moment difference §x,9 = x,,, — Xo0, and other terms that are
not functions of éx,0. When the standard SOS expression
is evaluated using an N-state subspace, all position matrix
elements x,, are ignored if n > N OR m > N. When the
sum rules are used to express the dipolar terms to sums of
nondipolar terms to get the DF form of the SOS expression
according to Eq. (41), an N-state subspace truncates the sum,
making the dipolar term potentially inaccurate. However,
it is not clear if the inaccuracy is so large as to lead to
hyperpolarizabilities that exceed unity.

Another potential issue originates in the Monte Carlo
approach, which may allow for unphysical behavior due to the
procedure of demanding agreement with truncated sum rules.
For example, there may be combinations of matrix elements
and energies that obey the sum rules, yet are not derivable from
a Hamiltonian. As a case in point, it is possible to contrive a
system with a finite number of states that exactly obeys the
sum rules [35,36], but the nature of a system with a finite
number of states renders it incompatible with being a solution
of a Hamiltonian that depends on continuous functions.

However, under most circumstances, such finite state
models that obey the sum rules exactly may accurately
approximate real systems with an infinite number of states
if the higher-energy eigenstates do not contribute substantially
to the nonlinear optical response. In such cases, the finite-
state Monte Carlo-constrained parameters may approximate
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the conditions that allow finite-state models to be a good
approximation to systems with an infinite number of states
[22]. The fact that millions of Monte Carlo runs miss the
configuration that leads to the multistate catastrophe suggests
that perhaps the pathologies are rare and can be ignored.

It must be stressed that in finite state models, all the
sum rules are not obeyed, since the (N,N) sum rule is
self-contradictory and thus ignored [42]. Recall that in the
Monte Carlo simulation, only the diagonal sum rules up to
(N —1,N — 1) are used to avoid the problem. However, in
the special case when all states are nearly degenerate and the
highest-energy eigenstate tends to infinite energy, the system
may be contrived in just the right way to violate the higher-level
sum rules. Thus, the combination of taking an unphysical
configuration of states, and then taking the limiting case of
an infinite number of states leads to the divergence.

It may seem paradoxical that in the limit of an infinite
number of states, where the sum rules become exact, the many-
state catastrophe is observed. However, at issue is the method
of how the limit is defined.

One can ask why the calculation of the fundamental limit,
based on the three-level model, appears to work so well
when comparing it with all hyperpolarizabilities derived from
the Schrodinger equation. The origin of its success may
lie in the fact that the three-level ansatz in effect sidesteps
the infinite-state catastrophe by allowing only the minimum
number of states. The only resulting problem, based on many
solutions of the Schrodinger equation using many different
approaches [25-29,32], is that the calculation overestimates
the observations by 30%. It is interesting that a condition
that would yield the observed limit is a 2.2 level ansatz,
viz., Eq. (39). Since the two-level model is unphysical, the
three-level model is a compromise that yields the best result.

B. Fundamental limits

Equation (39) represents the maximum attainable intrinsic
hyperpolarizability that diverges as the number of states
approaches infinity. This would suggest that for real systems
with an infinite number of states, the sum rules impose no
limit on the maximum hyperpolarizability. However, no real
quantum system has been observed with this characteristic;
all the experimental data and numerical calculations of Bjy
and yine [2] values fall well below the limit predicted by
the three-level model; and the three-level ansatz is obeyed
in the neighborhood of the limit for g while a four-level model
applies in the neighborhood of the limit for y.

The reason for this conflict may reside in the fact that
sum rules permit energies and transition moments that are
unphysical. The sum rules hold for any system of particles of
mass m, provided that the Hamiltonian obeys

h2
<P|[xv[H7x]]|‘I> = Zapq’ (42)

where |p) and |g) are eigenstates of the Hamiltonian
H. Hamiltonians that obey Eq. (42) include those of the form

H = f(p,x)+gx)+h(p)+k(A,B,...), (43)

where p and x are the momentum and position operator and A
and B are any other operators, such as the angular momentum
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or spin. It is straightforward to show that a particle in the
presence of electromagnetic field obeys this form, that is,

_[p—eA)/cP
o 2m

H + ed(x), (44)
where A(x) and ¢(x) are the vector and scalar potentials,
respectively, with f(p,x) = (p — eA(x)/c)?, g(x) = ed(x)
and h(p) = k(A,B) = 0.

There are clearly Hamiltonians that obey Eq. (43) that
are more general than Eq. (44). Perhaps one of these exotic
Hamiltonians may break the By, < 0.71 barrier. Or perhaps
values larger than unity are possible. Further study is needed
to asses these possibilities.

The approaches that are based on direct treatment of
standard Hamiltonian are more realistic than sum-rule-based
approaches that are not derivable from a Hamiltonian. The
observation of the many-state catastrophe is most likely not an
indictment on the sum rule calculations, but on the pathology of
the highly degenerate spectrum. In reality, we propose that the
maximum attainable hyperpolarizability is most likely given
by

Bmax = 0.71 B3, (45)

VII. A CONJECTURE

The sum total of all measurements and calculations using
Hamiltonians leads to two observations: (1) the largest intrinsic
hyperpolarizability is less than 0.709, and (2) when a quantum
system is found to have a hyperpolarizability in the vicinity
of this maximum, only three states contribute. These two
observations have never been proven, so it behooves us to
ask whether or not these are indeed fundamental laws of
physics, or a mere coincidence. The many-state catastrophe
is an important part of the puzzle because it violates both
these observations. This is not surprising nor a matter of
concern given that wave functions that are solutions to standard
Hamiltonians give a range of dipole matrix elements and
energies that are a subset of the dipole matrix elements and
energies that obey the sum rules.

When computing limits and other fundamental relation-
ships involving the quantum origin of optical nonlinearity, it
is important to not lose sight of the fact that the hyperpo-
larizabilities are coefficients in an expansion of the dipole
operator in terms of the applied electric field. As such, these
quantities have no meaning when a power series expansion is
not possible. The key point is that the hyperpolarizability is
a quantity that is derived from perturbation theory. Thus, any
properties of a given system must be derived directly from the
Hamiltonian of the quantum system including the contribution
from the perturbation of the photon field. Auxiliary quantities,
such as the sum rules, must clearly be obeyed; but, as shown
in this paper, may lead to behavior that is nonphysical if the
properties of the Hamiltonian are not also used to constrain
the system.

In the calculation of the fundamental limits of the hy-
perpolarizability using the sum rules, an additional auxil-
iary condition is added, namely, the three-level ansatz. The
argument for its use is as follows. One can show rigorously
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and without approximation that a two-state model optimizes
the polarizability, ¢, in which the oscillator strength is placed
into one excited state, avoiding dilution effects that arise from
spreading oscillator strength between many higher-energy
states. However, as we saw in Sec. II, the sum rules show that
a two-level quantum system must have 8 = 0 (B is minimum
when « is maximum). The three-state model has the minimum
number of states that leads to a physically reasonable result,
and is therefore used based on the dilution argument.

While no rigorous proof has been found that a three-
state model yields a maximum, the approach is justified
by the heuristic argument that a concentration of oscillator
strength in a small number of low-energy states yields large
numerators and small denominators in the SOS expression,
thus maximizing the hyperpolarizability. With more states, the
oscillator strength is distributed over many states, thus diluting
the nonlinearity. However, the many-state catastrophe arises
from a very specific highly degenerate quantum system that
spreads oscillator strength over many states of equal energy,
thus preserving oscillator strength but without dilution because
the degeneracy keeps all energy denominators small.

Before arguing that the highly degenerate spectrum is
nonphysical, one other loose end needs to be addressed: the
a priori assumption of the three-level ansatz and its potential
role in being responsible for the observation that all quantum
systems ever calculated obey it. There is clearly no causal
connection between calculating the limits using TLA and
calculating g for a specific Hamiltonian. The three-level ansatz
is used only in the calculations of the fundamental limits,
and not in the analysis of the hyperpolarizabilities that are
calculated from Hamiltonians. Thus, the observation that the
three-level ansatz holds in all quantum systems tested is not
tied to its assumption in the calculation of the limits.

The calculation of the fundamental limits of the polariz-
ability is made simple by the fact that each term in the SOS
expression is positive definite, and of the form

2
220 (46)

Eio
As we saw in Egs. (3) and (4), placing all the transition
strength into one term, and picking the term with the minimum
energy maximizes «. All linear harmonic oscillators are at the
fundamental limit with o;, = 1. While a harmonic oscillator
has many states, all the oscillator strength resides in the
transition to the first excited state. Thus, the two-state model
holds exactly. 8 also is an exact two-level model for a linear
harmonic oscillator, and as predicted by the sum rules, § = 0.
y also vanishes, as do all orders of nonlinearity by virtue of
the fact that the linear harmonic oscillator is the prototypical

purely linear system.

Using only the sum rules, the limits of 8 are made difficult
to calculate. A typical term in the sum is of the form

3x0ifijxj0’ @7)

Ei0Ejo
where ¥ = x — xgo9. Since each term of the form given
by Eq. (47) is of indeterminant sign, the limit cannot be
determined. The many-state catastrophe shows that using only
the sum rules and not truncating the SOS expression leads to a
diverging result, i.e., that there is no limit. This runs counter to
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the evidence. Clearly, the correct approach is to apply the sum
rules, and rather than truncating the SOS expression, to use
an additional constraint that is determined from the general
form of the Hamiltonian. All attempts to find such an auxiliary
condition have failed.

The state of affairs can be summarized as follows. When
applying the three-level ansatz to the SOS expression, it is
found to be optimized for a specific value of energy ratio E =
E10/Ex and X = x19/xMAX & 0.76. The value of 8 obtained
in this way is found to be an upper bound for all calculations
that evaluate a specific Hamiltonian when the errors resulting
from the numerical approximations that are used to evaluate
the wave functions, dipole matrix, energy eigenvalues, and
hyperpolarizability are small (Iess than &~ 1%). In other words,
all accurate calculations support these conclusions. The best
systems reach By, = 0.7089. In the vicinity of this maximum,
three states dominate the second hyperpolarizability, B,.
These suggest that the limits calculated and the three-level
ansatz may be generally true.

The fact that the many-state catastrophe leads to hyperpolar-
izabilities that are much higher than experimentally observed
and calculated values suggests that the combination of the sum
rules and the three-level ansatz together yield a result that is
near the true fundamental limit for hyperpolarizabilities that
come from a standard Hamiltonian.

To analyze the many-state catastrophe in the vicinity of
the highly degenerate energy spectrum, the degeneracy can be
lifted in a smooth way by redefining the spectrum according
to

e, =ert+ten—1)=14¢€en—1), 48)

which holds for the nearly degenerate excited states, or
for n # 0, the ground state, and n # N — 1, the highest
excited state. € is the splitting parameter that separates the
N — 2 degenerate states into evenly spaced energy levels.
Equation (48) can be inverted and solved for E(=1/e),
yielding

1
E = .
1+¢

(49)

The nearly degenerate system is studied as follows. For
each €, 10 000 transition moments are randomly sampled, and
the largest value plotted in Fig. 4 for a four- through 10-state
model. The vertical lines show where Bi,s = 1, so to the right
of these lines, the hyperpolarizability is below the limit. The
subscript in the Exp, label represents the number of states used
in the calculation of E. Note that this plot is approximate due
to fluctuations associated with using a finite number of random
samplings.

For the four-state model, B < 1 for € < 1.11, which
corresponds to E = 0.47. With more states, Bin; falls bellow
unity for smaller vales of €. This is interesting in light of the fact
that the best hyperpolarizabilities all share the universal value
of E ~ 0.49, a value between that of a harmonic oscillator,
which has a polarizability at the limit, and the crossing point
of E = 0.47 for the four-level model.

The three-level ansatz can be cast in the form

Bine = f(E)G(X), (50)
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T
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FIG. 4. (Color online) B, as a function of energy spacing
parameter €.

where E = E19/Ex and X = x19/x}*X. Note that this ex-
pression is postulated to hold only near the fundamental limit
and is observed to hold in the vicinity of a local maximum of
Bint when close to the limit. The fundamental limit is found
for f(0) =1 and G( V3~ 0.76). In potential optimization
studies, the class of optimized potentials all share the universal
properties of Biy, = 0.7089, E = 0.49, and X = 0.79 [25]; so
X is near the value needed to be at the limits. As such, the
hyperpolarizability appears to be limited by the nature of the
energy spectrum, as suggested in studies of various organic
molecules [31,43].

In the calculations of the fundamental limit, X and E are
assumed to be independent and are thus separately optimized.
Since the universal value of X is near optimum, we focus on
E. For a harmonic oscillator, E = 1/2 and f(1/2) = 1/4/2 =
0.707, a value tantalizingly close to the universal value of Biy.
This suggests that perhaps X and E are not independent, so the
best values of the intrinsic hyperpolarizability are constrained
to have an energy spectrum that is similar to the harmonic
oscillator when the transition is nearly optimized.

The sum rules (which are more general than what one
obtains from solving the standard Schrodinger equation),
the three-level ansatz (which is not generally true based on
the exception found using the many-state catastrophe), and the
assumption that £ and X are independent (unproven) yields a
calculated fundamental limit that is within 30% of the maxi-
mum value observed in many classes of optimized potentials.
Furthermore, universal values are found that add credence to
the ideas of absolute limits of scaled hyperpolarizabilities;
and, the best measured molecules, as shown in Fig. 5, scale
parallel to the limit lines, another indication that there is some
substance behind the results.

We propose that the observations that the state vectors
associated with the many-state catastrophe live in the realm
obeyed by the sum rules but beyond solutions of the
Schrodinger equation. Thus, in calculating limits of real
systems, we must exclude those cases. Figure 4 illustrates
the demarcation between the allowed (below B, = 1) and
disallowed. A four-level model demands that the degeneracy
parameter be € > 1.11 yielding E < 0.47; a five-level model
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FIG. 5. (Color online) A survey of measured and calculated
values of 8. The red dashed-dot line is the sum rules-based limit
assuming the TLA. The solid dark line is the slightly lower limit
suggest by calculations using standard Hamiltonians. The green dots
are experimental values reported prior to 2007. The old apparent limit,
dashed blue line, was defined as the largest B values achieved at the
time. The gulf between apparent limit and the sum rules-based FL is
known as the gap.

demands that € > 0.61 yielding E < 0.62, etc., for a system
of equally spaced intermediate states. Clearly, there are many
other possible types of energy spectra, but this example
illustrates how one can define a condition that sets limits on the
allowed spectra for quantum systems that obey the standard
Schrodinger equation.

Given these results, we propose the following conjectures:

(1) Atthe fundamental limit, only three states contribute to
the hyperpolarizability and four states contribute to the second
hyperpolarizability.

(2) Bine < 0.7089 and yiy < 0.6 for any system derivable
from a standard Hamiltonian.

Though we have not discussed y in this paper, we have
added the observed behavior for the second hyperpolarizability
[30].

The SOS expression for B has terms of the form given
by Eq. (47), which are indeterminate in sign, making the
calculations of the limit impossible without the use of an
auxiliary condition. Without placing a constraint on the type
of potentials that are allowable, the limit is not calculable.
As such, it is possible that these conjectures are true but
unprovable.

As a corollary to our conjectures, we propose that they are
true but unprovable. The fact that the conjecture has not been
proven is not evidence that it is unprovable. However, without
an additional condition, the conjectures can not be proven. As
such, we must wait until such a condition is found.

The diagram in Fig. 6 summarizes the assumptions of limit
theory, its consequences, and observations. When the sum rules
alone are used to reduce the number of parameters, the intrinsic
hyperpolarizability can be infinite in the neighborhood of the
highly degenerate energy spectrum. However, when the three-
level ansatz is applied, a finite limit results, and all quantum
systems are observed to obey the limit, though the largest
values observed from standard Hamiltonians is 0.7089. When
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FIG. 6. (Color online) Flow chart summarizing the results.

the hyperpolarizability is at the limit, three states are always
observed to dominate.

It is not possible to prove that a three-level system yields
the limit because the many state catastrophe shows that an
infinite number of states can contribute and there is no limit.
However, enforcing the three-level ansatz leads to a finite
limit for the hyperpolarizability that is consistent with all
observations. Thus, the three-level ansatz cannot be proven
because the many-state catastrophe is a counterexample. If the
three-level ansatz is assumed to be true, it leads to the correct
result. As such, the three-level ansatz is not deduced from
other principles, but results from induction. In this sense, it is
unprovable but true based on all known observations.

A proof of the three-level ansatz would require an additional
condition that relates the energies and position matrix elements
that has the effect of excluding all systems that are not derivable
from a mechanical Hamiltonian yet selects every possible
Hamiltonian that describes a real quantum system. Such a
condition may be complex, and perhaps impossible to identify.
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The three-level ansatz is to a good level of approximation a
simple condition that seems to select for systems derivable
from real Hamiltonians that have hyperpolarizabilities near
the fundamental limit.

VIII. CONCLUSION

The many-state catastrophe is an observation that calls into
question the assumptions used in calculating the fundamental
limit. When many states are arranged into a highly degenerate
energy spectrum, the hyperpolarizability diverges in the limit
of an infinite number of states. While the divergence can be
avoided by arguing that real systems that obey a standard
Hamiltonian cannot have such a spectrum, the fact that
this outlier both obeys the sum rules and contradicts the
assumptions in the calculation of the limits demands that the
assumptions be revisited.

By smoothly splitting the degeneracy using an energy
spacing parameter, the fundamental limit theory is found to
hold when E > 0.47, where the many-state catastrophe is
avoided. The fact that the observed universal value for Hamil-
tonians expressed in terms of a potential energy function near
the largest observed upper bound of the hyperpolarizability
(E ~ 0.49) meets this condition supports the assertion that
systems representable by a potential energy function have a
restricted energy spectrum of this form.

Based on these observations, we propose a conjecture that
the three-level ansatz is a fundamental law and that the true
fundamental limit is given by Bi, = 0.7089. We also posit
that while true, the conjectures may not be provable due to the
difficulty (or impossibility) of defining an auxiliary condition
that standard Hamiltonians must obey while excluding more
general systems.

The three-level ansatz appears to be the correct auxiliary
condition needed to calculate the true fundamental limit to
within 30% of the correct value. Reconciling the three-level
ansatz with the many-state catastrophe and the overestimation
of the true limit are open research problems under study.
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