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Transmission statistics in a nonconservative disordered optical medium
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We determine the cumulants of electromagnetic energy transmitted through one-dimensional disordered
medium with absorption or amplification. For this purpose we derive the Keldysh nonlinear σ model action
with a source term that generates the energy current fluctuations. The fluctuations over the ensemble of disorder
realizations are found to decrease (increase) with increasing absorption (amplification). In the conservative
medium the fluctuations can be related to the Dorokhov’s distribution of transmission coefficients.
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I. INTRODUCTION

The physics of disordered mesoscopic conductors [1,2]
made a strong impact on the research on light propagation in
disordered media because of the well-known analogy between
the scalar wave equation and the Schrödinger equation. Impor-
tant information about the system can be gained by studying
the fluctuations of the charge current (or energy current in
optical medium), which are usually described via the current
cumulants [3]. The calculation of these quantities normally
requires the knowledge of the full statistical distribution of
transmission eigenvalues [4,5].

The theory for electronic charge transmission has a long
history and is well developed. Various methods were employed
to compute the full counting statistics of electronic conduction
through disordered wires, among them the semiclassical for-
malism [6], random matrix theory [7], and the Green’s function
formalism [8]. In particular, it was found in all these works that
the electronic shot noise in disordered conductors is reduced
below the Poissonian (uncorrelated) value by a universal
factor of 1/3. This reduction is a result of the existence in a
disordered conductor of a fraction of nonweakly transmitting
(“open”) channels with transmission coefficients close to
1, with the remainder being weakly conducting (“closed”)
channels with small transmission coefficients. This property
is reflected in the distribution of transmission coefficients
originally derived by Dorokhov [9]. Although shot noise is not
present in the transmission of classical electromagnetic waves,
the transmission statistics is still governed by the Dorokhov’s
distribution, as we show below.

In the field of optics, transmission statistics in disordered
channels was extensively studied experimentally [10–14] and
slightly less so theoretically [15,16]. We are not aware of
similar research done on dissipative or amplifying systems,
which can be relevant for practical applications, such as
random lasers [17].

In the present work we rederive the Keldysh nonlinear
σ model for the nonconservative medium [18] in the form
that allows one to calculate the energy current fluctuations.
Specifically, we include the source term in the action and
follow the steps outlined by the authors of Ref. [19]. In
the stationary-phase approximation one obtains the Usadel
equation which admits an exact solution for a one-dimensional
conservative system [8,19]. We solve the Usadel equation
in the weakly nonconservative system by a perturbation
expansion and calculate the action at the stationary point.

The action generates the cumulants of the energy transmitted
during a fixed time interval. We apply the general theory in
the special cases of thermal fluctuations in equilibrium and
fluctuations over disorder realizations in the pumped system
at zero temperature. The last of these are related to the
fluctuations of the transmission coefficients described by the
Dorokhov’s distribution. We also find quantitative agreement
with previous diagrammatic calculations [15] of the second-
and third-order cumulants in the conservative medium.

II. NONLINEAR SIGMA MODEL WITH SOURCE

A. Keldysh field theory

Let us consider a classical electromagnetic wave with
transverse magnetic (TM) polarization in a two-dimensional
medium. Following the authors of Ref. [18], we introduce two
complex fields, Aω(r) and A∗

ω(r), whose real parts correspond
to the normal component of vector potential at the position r
and frequency ω. The physically relevant frequencies for the
fields are restricted to the neighborhood of the typical optical
frequency ω = ω0 > 0, which is assumed to be the largest
frequency scale in the system.

A nonconservative medium can be conveniently described
within the Keldysh formalism [20]. Here one considers the
system’s evolution first forward and then backward in time.
Correspondingly, each field acquires two components denoted
as A± and A

†
± for positive (+) and negative (−) time direction.

[Here and below functions without (some of the) arguments
are considered as column or row vectors in the appropriate
Hilbert space.] The Keldysh rotation

Acl = 1√
2

(A+ + A−), Aq = 1√
2

(A+ − A−) (1)

defines the classical and quantum field components which form
a vector

Â =
(

Acl

Aq

)
(2)

in the Keldysh space of twice the dimensionality of the original
Hilbert space.

The basic object of the Keldysh field theory [19] is the
functional-integral form of the partition function

Z =
∫

D[Â,Â†] eiS[Â,Â†], h̄ = 1, (3)
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with the measure

D[Â,Â†] = N
∏
r,ω,

j = cl,q

d
(
Re A

j
ω(r)

)
d
(
Im A

j
ω(r)

)
π

. (4)

All information about the system is contained in the action

S[Â,Â†] = 1

16π
Â† Ĝ−1Â, (5)

where the inverse Green’s function operator has the form

Ĝ−1 =
(

0 (G−1)A

(G−1)R (G−1)K

)
(6)

(we remind that matrix products involve integration over
continuous variables). The retarded, advanced, and Keldysh
components of Ĝ−1 are given by (we set the velocity of light
c = 1)

(G−1)R,A
ω (r) = ε′(r,ω) ω2 + ∂2

r ± iε′′(r,ω) ω2, (7)

(G−1)K = (G−1)RF0 − F0 (G−1)A, (8)

ε′(r,ω) ≡ Re [ε(r,ω)], ε′′(r,ω) ≡ Im [ε(r,ω)], (9)

where ε(r,ω) is the dielectric constant of the medium and

F0 = 2n0 + 1 = coth
ω

2T
(kB = 1) (10)

is related to the photon occupation number n0, which is
given here for the thermal equilibrium at temperature T .
The normalization constant N in Eq. (4) depends on the
discretization of continuous variables and ensures the property
Z = 1, which reflects the fact that the system arrives to its
initial state as a result of the forward-backward evolution.

To compute the averages of physical observables, suitable
“source” terms are added to the action (5). The source term for
the energy current density is (cf. Ref. [19])

�S = Tr (λ · jcl), (11)

where jcl is the classical field component of the current

j(r,t) = − 1

16π
[(∂rA

∗)(∂tA) + (∂tA
∗)(∂rA)] (12)

and the source field λ(r,t) is the quantum component of the
field (0,λ)T with the zero classical component in the Keldysh
space. Here and below the trace includes integration over
continuous variables. The average current is then given by the
functional derivative of the (logarithm of) partition function
with respect to the source,

〈j(r,t)〉 = −i
δ ln Z[λ]

δλ(r,t)

∣∣∣∣
λ≡0

= −i
δZ[λ]

δλ(r,t)

∣∣∣∣
λ≡0

. (13)

The fact that λ is a quantum field is responsible for Z[λ] �= 1,
in general, whereas Z[λ = 0] = 1 by construction.

Performing the Fourier transform we approximate ∂tA 	→
−iωA ≈ −iω0A and ∂rA 	→ ikA ≈ iω0

√
ε′κ(k)A, where

κ(k) = k/|k|. Then the sum of contributions (5) and (11) yields
the total action

S[Â,Â†,λ] = 1

16π
Â†(Ĝ−1 +

√
2ε′ω2

0κ · λ1̂
)
Â, (14)

where 1̂ is the unit operator in the Keldysh space.

B. Nonlinear sigma model

We neglect the dispersion of the dielectric constant

ε(r,ω) � ε′ + �ε′(r) + iε′′ (15)

and assume that its real part has a random component with
〈�ε′(r)〉 = 0 and

〈�ε′(r) �ε′(r′)〉 = 2ε′2

πν0ω
2
0τ

δ(r − r′), (16)

where ν0 is the optical density of modes at the frequency ω0, τ
is the scattering time, and the averages are taken over disorder
realizations. The disorder-averaged partition function [which
generates the cumulant expansion (29) below and eventually
enables us to calculate the cumulants]

〈Z[λ]〉 =
∫

D[Q̂] eiS[Q̂,λ], (17)

iS[Q̂,λ] = −Tr

[
πν0

4τ
Q̂2 + ln

(
Ĝ−1

0 + ε′ω0

τ
γ̂ Q̂

+
√

2ε′ω2
0κ · λ1̂

)]
, (18)

γ̂ ≡
(

0 1

1 0

)
, (19)

can be expressed via the functional integral over the field Q̂

which has a 2 × 2 matrix structure in the Keldysh space; here
Ĝ−1

0 is the inverse Green’s function operator in a medium with
dielectric constant ε′ without disorder. The random �ε′(r) was
neglected in the source term of Eq. (14) because its contribution
to S[Q̂,λ] would be small compared to the disorder-free source
term in the limit ω0τ  1.

The stationary point of the action (18) has the form

Q̂ = i�̂, �̂ =
(

1R 1RF + F 1A

0 −1A

)
. (20)

Here the operator F , the so-called distribution function, is to
be determined later. In thermal equilibrium, F = F0 [Eq. (10)]
is uniform in space. The retarded and advanced unit operators
1R,A

ω = e±iωε, where ε � ω−1
0 is an arbitrary constant, oscillate

at high frequencies ω � ε−1, which leads to the property

Tr Q̂
2 = 0. Note that Q̂

2 = −1̂.
The dominant contribution to 〈Z[λ]〉 arises from the trace-

preserving fluctuations of Q̂ about the stationary point that
satisfy the conditions

Tr Q̂2 = 0, Q̂2 = −1̂. (21)

Fluctuations of this type, the “massless” modes, do not affect
the Q̂2 term in S[Q̂,λ], and result in a weaker variation
of the action compared to arbitrary, “massive” fluctuations.
The massless modes describe the diffusive light propagation.
Following the general prescription in Ref. [19], we generalize
the expression for the effective action of massless modes [18]
in the presence of source

iS[Q̂,λ] � −πν0Tr

[
−i∂t Q̂ + D

4
(∂̂rQ̂)2 − i

2τa
Q̂�̂0

]
,

(22)
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where (∂t Q̂)t t ≡ (∂t Q̂tt ′)t ′=t ,

D = τ

2ε′ (23)

is the diffusion coefficient, the covariant derivative is defined
as

∂̂rQ̂ = ∂rQ̂ − i
ω0√

2
[λγ̂ ,Q̂]− (24)

([ ,]− being the commutator), the absorption rate (negative for
amplification) is

1

τa
= ε′′ω0

ε′ , (25)

and �̂0 is given by �̂ [Eq. (20)] with F = F0. We note that
the disorder-free inverse Green’s function can be written as

γ̂ Ĝ−1
0 = (

ε′ω2 + ∂2
r

)
1̂ + iε′′ω2

0 �̂0, (26)

i.e., �̂0 describes the thermal bath responsible for dissipation
(if ε′′ > 0).1 The Q̂-independent contributions to the action
are omitted. The approximation (22), which bears the name of
nonlinear σ model, is derived under the assumptions of weak
variation of Q̂ in time and space and weak absorption,

τ

|τa| � 1. (27)

Corrections to the diffusion coefficient D due to absorption
are neglected within this order of approximation (see the
discussion in Ref. [18]).

III. TRANSMISSION STATISTICS

A. Stationary-phase approximation

We apply the general method to compute the fluctuations
of energy transmitted through a quasi-one-dimensional dis-
ordered system. Let the light be continuously pumped into
the channel at one end, x = 0, and the outgoing energy
E = t0 j (L) accumulated during a time interval t0 be measured
at the other end, x = L. [In the stationary regime the one-
dimensional current j (x) has no time dependence.] The source
field

λ(x,t) =
{ η√

2l
, L − l � x � L and 0 � t � t0

0, otherwise
,

(28)
l → 0,

is constructed in such a way that it couples to the current
averaged over a narrow interval of length l near the channel’s
end during the time t0.2 This form of the source field general-
izes the uniform field of Ref. [19], which was sufficient for a
lossless medium where j (x) = const. The disorder-averaged
partition function 〈Z(η)〉 defines the cumulants Cm of energy
E via the expansion of its logarithm in the counting variable

1In Ref. [18] we did not discriminate between �̂ and �̂0, hence
the results of this reference are valid only in the case of thermal
equilibrium.

2Note that j cl/
√

2 = (j+ + j−)/2.

η as follows:

ln 〈Z(η)〉 =
∞∑

m=1

(iη)m

m!
Cm. (29)

In particular, C1 = 〈E〉 and for m = 2,3 the cumulants are
equal to the central moments, Cm = 〈(E − 〈E〉)m〉. For m � 4
the mth central moment can be expressed in terms of Cm′’s
with m′ � m.

With the help of the gauge transformation

Q̂η(x) =
{

Q̂(x), 0 � x � L − l,

e−iα(x)γ̂ Q̂(x) eiα(x)γ̂ , L − l � x � L,
(30)

α(x) = x − L + l

2l
ω0η, α ≡ α(L) = ω0

2
η, (31)

having the property ∂̂xQ̂ = ∂xQ̂η, the explicit source contri-
bution is eliminated from the action (22), which now reads

iS[Q̂η] = −πν0Tr

[
−i∂t Q̂η + D

4
(∂rQ̂η)2 − i

2τa
Q̂η(�̂0)η

]
.

(32)

By allowing Q̂η to fluctuate under the constraints (21) and
setting the linear variation of S[Q̂η] to zero we obtain the
Usadel equation

−i(∂t + ∂t ′ )(Q̂η
)t t ′ + D ∂x(Q̂

η
∂xQ̂η

)

− i

2τa
[(�̂0)η, Q̂η

]− = 0 (33)

for the stationary-point configuration Q̂
η
. Without the source

(η = 0), the Usadel equation reduces to the equation(−∂t + D∂2
x

)
F − τ−1

a (F − F0) = 0 (34)

for the distribution function Fω(x,t) obtained from the matrix
Ft ′t ′′ (x) by making the Fourier transform in the fast variable
t ′ − t ′′ and keeping the slow variable t = (t ′ + t ′′)/2.

In general, Q̂
η

is not of the form (20). The source enters the
Usadel equation via the boundary conditions. We will model
the pump at x = 0 by the time-independent nonequilibrium
distribution function within the frequency band of width
�ω � ω0 as follows:

Fω(0) =
{

F∗, |ω − ω0| < �ω/2,

F0, |ω − ω0| > �ω/2,
(35)

where F∗ � F0 and F0 is the equilibrium distribution (10) at
ω = ω0. At the other end, x = L, the channel is assumed to be
in contact with the thermal bath. Thus, the boundary conditions
are

Q̂
η
(0) = Q̂(0) = i�∗, (36)

Q̂
η
(L) = i(�0)η(L) = ie−iαγ̂ �0 eiαγ̂ , (37)

where �∗ depends on Fω(0).
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We evaluate the functional integral for 〈Z(η)〉 by the
stationary-phase approximation

〈Z(η)〉 � a(η) eiS(η) � eiS(η), S(η) ≡ S[Q̂
η
], (38)

where we neglect the η dependence of the prefactor and the
normalization 〈Z(0)〉 = 1 is guaranteed by the form of Q̂

η=0
(20). Thus, to obtain the cumulants we need to find the time-
independent solution of the Usadel equation with boundary
conditions (37), and calculate the action S(η).

B. Weakly nonconservative medium

We solve the Usadel equation in the limit of small
absorption or amplification retaining only the leading order
in the small parameter L2/l2

a , where the absorption length
squared (negative for amplification) is defined as

l2
a = D τa. (39)

The second-order Usadel equation is equivalent to the system
of two first-order equations as follows:

∂xĴ = i

2τa
[(�̂0)η, Q̂η

]−, (40)

Ĵ = Q̂
η
∂xQ̂η

[=−(∂xQ̂η
) Q̂

η
], (41)

where the last equality follows from the property ∂x(Q̂
2

η
) = 0.

Equation (41) can be formally integrated to yield

Q̂
η
(x) = Q̂

η
(0)

[
e
∫ x

0 dx ′Ĵ (x ′)], (42)

where the exponential is ordered in x ′ increasingly from left to
right. In the zeroth order in absorption one finds Ĵ (x) = const.,
which leads to [19]

Q̂
(0)

η
(x) = Q̂

η
(0) eĴ0x, (43)

Ĵ0 ≡ L−1 ln[−Q̂
η
(0) Q̂

η
(L)]. (44)

In the next order we write Ĵ (x) = Ĵ0 + �Ĵ (x) and Q̂
η
(x) =

Q̂
(0)

η
(x) + Q̂

(1)

η
(x). By expanding the ordered exponential in

Eq. (42) in �Ĵ (x) we obtain

Q̂
(1)

η
(x) � Q̂

η
(0)

∫ x

0
dx ′ eĴ0x

′
�Ĵ (x ′) eĴ0(x−x ′). (45)

The requirement Q̂
(1)

η
(L) = 0, which follows from the bound-

ary conditions, yields the property∫ L

0
dx eĴ0x �Ĵ (x) e−Ĵ0x = 0. (46)

The gradient contribution to the action contains

Tr (∂xQ̂η
)2 = −Tr

[
(∂xQ̂η

) Q̂
2

η
∂xQ̂η

] = Tr Ĵ 2

� Tr Ĵ 2
0 + 2Tr (Ĵ0�Ĵ ) = Tr Ĵ 2

0 , (47)

according to the property (46). Thus, �Ĵ (x) does not con-
tribute to the action, which now takes the form

iS(η) � −πν0Tr

[
D

4
Ĵ 2

0 − i

2τa
(�̂0)η Q̂

(0)

η

]
. (48)

The nonconservative part of the action can be simplified in
the limit l → 0 by tracing over x explicitly and disregarding
the interval L − l � x � L; the remaining integral can be
evaluated with l = 0 (note that Ĵ0 does not depend on l)
yielding

iSnc(η) = iπν0

2τa
Tr ω,K

[
�̂0 Q̂(0) Ĵ−1

0 (eĴ0L − 1̂)
]
, (49)

where the trace is performed in the ω and Keldysh subspaces.
Below we apply the general expressions in the cases of thermal
equilibrium and transport at zero temperature.

C. Special cases

1. Thermal fluctuations

We consider the fluctuations of transmitted energy in the
absence of pumping F∗ = F0 at finite temperature T . The
leading contribution to the action (48) is

iS0(η) = −πν0Dt0

4L

∫ ∞

0

dω

2π
2(ln λ)2, (50)

where λ is one of the two eigenvalues

λ1,2 = 1 + X ±
√

X(X + 2), λ1λ2 = 1, (51)

X ≡ 2
(
F 2

0 − 1
)

sin2 α, (52)

of the matrix �̂0 e−iαγ̂ �̂0 eiαγ̂ appearing in the logarithm in
Eq. (44). According to Eq. (10) only frequencies ω � T con-
tribute to the integral (50).3 The nonconservative contribution
reads

iSnc(η) = −πν0

2τa
t0L

∫ ∞

0

dω

2π
2

{√
X(X + 2)

ln λ1
− 1

}

= πν0

2τa
t0L

∫ ∞

0

dω

π

{ √[
1 + 2

(
F 2

0 − 1
)

sin2 α
]2 − 1

ln
[
1 + 2

(
F 2

0 − 1
)

sin2 α +
√[

1 + 2
(
F 2

0 − 1
)

sin2 α
]2 − 1

] − 1

}
, α = ω0

2
η, (53)

where the unity in the braces is subtracted to account for the high-frequency regularization due to 1R,A. To justify this result, let
us first set T = 0 (F0 = 1). In this case the matrix Ĵ0 cannot be diagonalized, but can be brought to the upper triangular form
with 1R,A on the diagonal by the rotation P̂−1Ĵ0P̂ , where

P̂ = 1√
2

(
1 1

−1 1

)
, P̂−1 = P̂T . (54) 3To regularize the integral at low frequencies we should avoid

fixing ω in α = ωη/2.
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The regularization makes the trace in Eq. (49) vanish, which
results in Snc(η; T = 0) = 0. For finite temperature we can
write

Snc(η; T ) = Snc(η; T ) − Snc(η; T = 0)

= S̃nc(η; T ) − S̃nc(η; T = 0), (55)

where the tilde indicates that the regularization is ignored when
the action is calculated. The second equality is based on the
fact that the regularization is only important at frequencies
ω  T , but the high-frequency contribution to the action does
not depend on T because F0 → 1 for ω → ∞. Equation (53)
then follows from Eq. (55)

It can be easily seen that the expansion of ln 〈Z(η)〉 � iS(η)
contains only even powers of η. Hence, the odd-order cumu-
lants vanish in thermal equilibrium, which is a consequence of
the equivalence of the positive and negative directions of the
current. The odd-order cumulants are useful for studying the
nonequilibrium properties at finite temperatures because they
are not obscured by thermal fluctuations [21].

2. Transport at zero temperature

For the medium at zero temperature in the presence of
pumping (F∗ > F0 = 1) the leading contribution to the action
becomes

iS0(η) = −ν0Dt0�ω

4L
(ln λ)2

= −ν0Dt0�ω

4L
ln2{1 − (F∗ − 1)(e2iα − 1)

+
√

[1 − (F∗ − 1)(e2iα − 1)]2 − 1}. (56)

Here λ is one of the eigenvalues

λ1,2 = 1 − Y ±
√

Y (Y − 2), (57)

Y ≡ (F∗ − 1)(e2iα − 1), (58)

of the matrix

B̂ ≡ �̂∗ e−iαγ̂ �̂0 eiαγ̂ . (59)

It is convenient to calculate the nonconservative part (49)
by diagonalizing the matrix Ĵ0. This is achieved with the
transformation R̂−1Ĵ0R̂, where the rotation matrices

R̂ = (R̂(1),R̂(2)), R̂−1 =
(

(L̂(1))†

(L̂(2))†

)
(60)

are defined by the biorthogonal right and left eigenvectors of
matrix B̂, R̂(j ), and L̂(j ), corresponding to the eigenvalue λj .
After some algebra we arrive at

iSnc(η) = −ν0t0�ωL

4τa

×
2∑

j=1

{
λj − 1

ln λj

[
1 + 2(F∗ − 1)

(
L

(j )
1

)∗
R

(j )
2

] − 1

}
,

(61)

where, again, the regularization makes it necessary to subtract
unity.

The linear contribution in the S(η) expansion yields the
first-order cumulant, the average transmitted energy, which is

proportional to the average current

〈j 〉 � 〈j0〉
(

1 − L2

6l2
a

)
. (62)

The average current in the conservative medium,

〈j0〉 = ν0 �ω ω0Dn∗L−1, (63)

is linear with the photon occupation number (pump intensity)
n∗ = (F∗ − 1)/2 and inversely proportional to the length of
the channel. To clarify the meaning of these expressions, we
derive them, alternatively, from the nonconservative diffusion
equation (34), which, in the stationary regime, takes the form

∂2
xn − l−2

a n = 0. (64)

The solution for the occupation number satisfying the bound-
ary conditions n(0) = n∗ and n(L) = 0 is

n(x) = n∗
sinh [(L − x)/la]

sinh (L/la)
. (65)

Expanding the energy current j (L) = −ω0Dn′(L) in L/la we
obtain Eqs. (62) and (63) (up to the number of modes ν0 �ω).

Higher-order cumulants can be calculated by expanding
Eqs. (56) and (61) in iη, possibly, with the help of a symbolic
manipulation software. Specifically, we find

C2/ω
2
0

C
(0)
1

/
ω0

� 2

3
n∗

(
1 − 11

10

L2

l2
a

)
, (66)

C3/ω
3
0

C
(0)
1

/
ω0

� 16

15
n2

∗

(
1 − 191

336

L2

l2
a

)
, (67)

where C
(0)
1 = 〈j0〉 t0 and we take into account that n∗  1 for

a classical electromagnetic wave. The ratios Cm/ωm
0 describe

the fluctuations of the number of transmitted photons E/ω0.
The principal terms in Eqs. (66) and (67) agree with the
results of the diagrammatic calculation for the square pump
profile incident on a disordered slab [15]. The absorption
(amplification) leads to decrease (increase) of fluctuations.

The results for the conservative medium (l−2
a = 0) are

in agreement with the Dorokhov’s distribution [9] of the
transmission coefficients

P (T ) � P0

T
√

1 − T
, (68)

for sufficiently narrow pumping bandwidth �ω and short
measuring time t0. The distribution was used to derive the
average shot noise for electron transport [7]. P (T ) needs to
be regularized at T → 0 to be normalizable, but can be used
directly to calculate the moments of T and, hence, of the
transmitted energy E = n∗ ω0T . The constant

P0 = ν0�ωDt0

2L
(69)

can be determined by comparing the average 〈E〉 = n∗ ω0〈T 〉
with C

(0)
1 . Then, for P0 � 1, averaging with P (T ) reproduces

the leading-order terms in Eqs. (66) and (67). After estimating
the one-dimensional density of modes as ν0 ∼ 1, we can
recast the condition of small P0 in the form

�kl0
l0

L
∼ �kL

t0

tTh
� 1, (70)
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where �k = �ω is the wave-number pumping bandwidth,
l0 = √

Dt0 is the distance that the energy diffuses in time t0,
and the Thouless time tTh = L2/D is the time that it takes to
diffuse the distance L.

Despite the similarities, the fluctuations of the transmitted
energy of the classical wave and the fluctuations of transmitted
electron charge (shot noise) are of different origins. In the
latter case, the number of transmitted electrons fluctuates for
a given realization of T , and the average noise is obtained
after integrating with P (T ). In the classical case, the energy
fluctuations result from the fluctuations of T , whereas no
fluctuations occur for a given disorder realization.

IV. CONCLUSION

In the framework of the Keldysh nonlinear σ model for clas-
sical electromagnetic waves in the nonconservative disordered
medium we derived an action that includes the source term for

the energy current. Within the stationary-phase approximation
we obtained a generating function for the cumulants of
the energy transmitted through the weakly nonconservative
one-dimensional disordered system. The odd-order cumulants
for thermal fluctuations vanish in the absence of pumping,
which is a consequence of the symmetry of the system. In the
pumped system the fluctuations over the ensemble of disorder
realizations can be related to the Dorokhov’s distribution
of transmission coefficients. Our results for a conservative
medium quantitatively agree with previous diagrammatic cal-
culations of the low-order cumulants. Moreover, we show that
the absorption (amplification) causes a reduction (increase)
of fluctuations. The photon concentration, or energy density,
in the nonconservative medium is shown to obey the diffusion
equation with relaxation term; the gradient of the concentration
determines the average current.

Note added in proof. Photon shot noise in a nonconservative
medium was considered in Refs. [22,23].
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